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A B S T R A C T   

Background: Parkinson's disease is a neurodegenerative disease manifested as increased tremor, bradykinesia, 
rigidity, and postural instability. Brain-derived neurotrophic factor (BDNF) is essential for neurocognitive 
function. However, its cardiometabolic effect has recently been identified in health and disease, but not in PD. 
Therefore, the current study examined the relationship of BDNF with glucose and lipid profile. 
Methods: This was a cross sectional comparative study where PD patients (n = 26) and age-matched healthy 
controls (n = 27) were recruited. Blood samples were drawn to determine BDNF, glucose, and lipid profile 
including total cholesterol (TC), HDL, LDL, triglyceride (TriG). 
Result: The linear regression showed that BDNF predicted 11.9 % of TC (p = 0.05), 3.0 % of HDL (p = 0.003), 
27.3 % of LDL (p = 0.006), 16.6 % of TriG (p = 0.04), 15.8 % of TC/HDL (p = 0.06), 22.1 % of TC/LDL (p =
0.01), and 35.1 % of TriG/HDL (p = 0.001) but not glucose (B = -0.006; CI = -0.19/0.18; F = 0.005; p = 0.9) and 
LDL/HDL (B = 0.06; CI = -0.17/0.3; F = 0.3; p = 0.6). Subsequent ANCOVA revealed differences (p < 0.05) in 
TC, HDL, LDL, TC/LDL, and TriG/HDL but not in glucose, TriG, and TC/HDL among the patients with low-BDNF 
versus high-BDNF. 
Significance: The results demonstrate a relationship of BDNF with lipid profile suggesting the importance of BDNF 
for lipid metabolism in PD.   

1. Introduction 

Parkinson's disease (PD) is the second most common neurodegen-
erative disease that affects an estimated 0.3 % (7–10 million people) of 
the world's population, while the prevalence can be as high as 1–2 % 
among the elderly [1]. The primary motor symptoms of PD are tremor`, 
bradykinesia`, rigidity`, and postural instability [2]. Additionally, 
mental and behavioral changes, sleep problems, depression, memory 
difficulties, and fatigue are the main non-motor symptoms of PD [3]. 
The disease is characterized as progressive loss of dopaminergic neurons 
in the substantia nigra along with the presence of Lewy bodies. The 
causes of the disease are unknown, however, a combination of genetic, 
environmental, and lifestyle risk factors have been identified [4]. About 
10–20 % of all Parkinson's are attributed to genetic factors. Additionally, 

age, gender, head trauma, toxins, diabetes, glycemic variability, and 
physical activity have also been implicated in the etiology of the disease 
[3]. 

A meta-analysis study that involved 1496 participants showed an 
association between decreased level of circulatory brain-derived neu-
rotrophic factor (BDNF) and PD [5]. BDNF is pivotal in the development, 
maintenance, and healing of the central nervous system [6]. It is found 
in various brain compartments; however, it is most abundant in the 
hippocampus and hypothalamus, areas essential for cognition [7]. BDNF 
is also found in the periphery including cardiovascular, muscular, and 
adipose tissues. The exact role of BDNF in periphery is still elusive thus 
deserves more examination and explanation, however it seems to 
regulate cardiometabolic risk factors including glucose, lipids, and li-
poproteins [8–11]. Subsequently, BDNF has been implicated in the 
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cardiometabolic disorders including obesity [12], diabetes [13,14], and 
coronary heart disease [15,16]. In facts, attempts are in progress to 
develop BDNF mimetics for metabolic disorder therapy [17,18]. 

While the relationship between BDNF and PD is well established, the 
lipid and lipoprotein relationship with PD is still equivocal. Studies have 
shown that lipids are lowered and may accelerate the development of PD 
while others have shown increased or unchanged lipid profile [19]. For 
example, low levels of LDL and total cholesterol (TC) are associated with 
a greater incidence of PD [20], while higher circulatory level and intake 
[21] reduces the risk of developing [22] and progressing [23] of PD, and 
improved executive and fine motor function in patients [24]. In contrast, 
higher levels [25] and consumption [26] of cholesterol might adversely 
affect the risk and manifestations of PD while HDL reduces the risk of PD 
[27]. However, a meta-analysis for 246,112 subjects, of which 5488 PD 
cases, found no relationship between cholesterol level and risk of PD 
[28]. With respect to glucose homeostasis, long-term glycemic vari-
ability with or without diabetes has been shown to be associated with PD 
development [29]. Therefore, the current study aims at comparing 
glucose and lipoprotein profile in PD patients versus healthy controls. 
Additionally, the relationship of circulatory glucose and lipoprotein 
with BDNF in PD patients was elucidated. According to the previous 
results [20–24,26–29], the changes in glucose and lipoprotein among 
the PD patients cannot be predicted while BDNF is expected to be related 
to glucose and lipoprotein profile in the PD patients. The results of the 
current study would help in understanding the changes in glucose and 
lipoprotein profile due to PD and the importance of BDNF for glucose 
and lipoprotein metabolism in PD patients. Subsequently, examine the 
therapeutic potential of BDNF in neurodegenerative diseases, particu-
larly PD. 

2. Methods 

2.1. Patients and recruitment 

The study is cross-sectional comparative observational designed to 
examine BDNF and glucose and lipid profile among PD patients and 
healthy controls. Sequential PD patients attending routine neurology 
clinic appointments at King Abdulla University Hospital (KAUH) or 

Princess Basma Hospitals, Irbid, Jordan were screened for eligibility by a 
neurology consultant; the clinician who is responsible for their care. 
Eligible subjects were invited to participate in the study. Age and 
gender-matched healthy individuals were recruited from the local 
community to serve as the controls for this study. 

Idiopathic PD patients confirmed by neurologist examination ages 
30–80 years with sufficient capacity to give informed consent and stage 
1–4 in the modified Hoehn and Yahr were recruited to participate. Pa-
tients with unstable medical conditions (i.e. uncontrolled diabetes 
mellitus) or injuries (i.e. hip faction) were excluded from the study. Each 
participant signed an informed consent after accepting to participate 
and receiving oral and written information about the study. The study 
was approved by the Institutional Research Board of Jordan University 
of Science and Technology, Irbid, Jordan (approval ID: MA20200481). 

2.2. Blood sampling 

Venous blood (6 mL) was collected from each subject after overnight 
fasting into EDTA tubes. Tubes were immediately centrifuged, and 
plasm was transferred into new tubes and stored at − 80 ◦C until used. 

2.3. Circulatory blood lipids and glucose 

Fasting blood glucose, TC, LDL, HDL, and triglyceride (TriG) were 
determined in all participants at diagnostic laboratories of King Abdul-
lah University Hospital using the Roche Analyzer and Roche reagents 
(Roche Diagnostics, Basel, Switzerland). The results are expressed as 
mmol/L. TC/HDL, LDL/HDL, TriG/HDL, and TC/LDL ratios were sub-
sequently calculated. 

2.4. Circulatory BDNF 

Plasma BDNF levels were measured by the ELISA method, using 
commercially available kits (Quantikine kit, R&D system, Minneapolis, 
USA) according to the manufacturer's instructions [30,31]. Standards 
were measured in triplicates whereas samples were measured in dupli-
cate. Samples of patients and controls were analyzed together in the 
same ELISA plates [31]. Plates were read using tat Fax 2100 plate reader 
(Awareness Technology, Palm City, FL, USA) at 450 nm. 

2.5. Statistical analysis 

Statistical Package for the Social Sciences (Version 21) was used for 
all data analysis. Data were presented as mean ± SD and percentages. 
The Student's t-test was used to compare sociodemographic and clinical 
characteristics between the patients and the controls. Pearson's product- 
moment correlation were used to examine the relationship of plasma 
BDNF with glucose and blood lipid profile including glucose, TC, HDL, 

Table 1 
Sociodemographic and clinical characteristics in the patients versus control.   

Patients (n = 24) Control (n = 27) P value 

Gender (females, %) 38.5 40.7 – 
Age (years) 56.5 ± 13.0 55.4 ± 13.1 0.70 
Weight (kg) 69.9 ± 11.1 66.3 ± 9.6 0.20 
Height (cm) 164.3 ± 9.5 167.4 ± 9.4 0.0001 
BMI (kg/m2) 26.0 ± 3.7 31.0 ± 5.6 0.001 
Heart rate 77.8 ± 12.4 71.0 ± 13.2 0.06 
Systolic blood pressure (mmHg) 122.6 ± 14.3 113.5 ± 15.8 0.033 
Diastolic blood pressure 

(mmHg) 
73.3 ± 10.3 66.4 ± 10.2 0.018 

Mean arterial pressure (mmHg) 89.9 ± 10.9 82. ± 10.9 0.014 
Hoehn and Yahr staging scale 1.4 ± 0.5 – – 
MDS-UPDRS (part III) 54.3 ± 29.1 – – 

Data are presented in mean ± SD. MDS-UPDRS: The Movement Disorders So-
ciety Unified Parkinson's Disease Rating Scale. 

Table 2 
Anti-Parkinsonian medications.  

Drug name Number of patients taking the drug 

Sinemet  28 
Amantadine hydrochloride  14 
Sifrol  3 
Stalevo  3 
Parlodel  2 
Gabatnex  2  

Table 3 
ANCOVA comparison for plasma glucose, lipid, and BDNF profile in the patients 
versus the control.   

Patients (n =
26) 

Control (n =
27) 

P value 

Glucose (mmol/L) 7.1 ± 3.0 6.0 ± 1.7  0.25 
Total cholesterol (mmol/L) 4.7 ± 0.7 5.3 ± 1.0  0.18 
High density lipoprotein (mmol/ 

L) 
1.0 ± 0.2 1.0 ± 0.2  0.60 

Low density lipoprotein (mmol/ 
L) 

3.2 ± 0.7 3.6 ± 1.0  0.10 

Triglyceride (mmol/L) 2.1 ± 1.2 2.9 ± 4.0  0.81 
TC/HDL (mmol/L) 4.9 ± 1.2 5.3 ± 1.6  0.70 
TC/LDL (mmol/L) 1.5 ± 0.2 1.5 ± 0.4  0.52 
Tri/HDL (mmol/L) 2.4 ± 1.9 3.4 ± 5.7  0.90 
BDNF (mg/dl) 1.3 ± 1.4 2.6 ± 1.6  a0.04 

Data are presented in mean ± SD. 
a Indicate significant. 
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Fig. 1. The linear regression in the PD patients showing BDNF predicted (A) 11.9 % of TC (p = 0.05), (B) 3.0 % of HDL (p = 0.003), (C) 27.3 % of LDL (p = 0.006), 
(D) 16.6 % of TriG (p = 0.04), (E) 15.8 % of TC/HDL (p = 0.06), (F) 22.1 % of TC/LDL (p = 0.01), and (G) 35.1 % of TriG/HDL (p = 0.001). 
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LDL, TriG, TC/HDL, LDL /HDL, TriG/HDL, and TC/LDL in the patients. 
The correlation coefficient (r-value) was used to determine the strength 
of the relationship of BNDF with glucose and blood lipid profile. 
ANCOVA was used to compare glucose, TC, HDL, LDL, TriG, TC/HDL, 
LDL /HDL, TriG/HDL, and TC/LDL among the patients versus the con-
trols and among the patients with low versus high BDNF, after adjusting 
for age, gender, BMI, and mean arterial pressure. The participants were 
divided above and below the 50th percentile. 

3. Results 

3.1. The participants 

The participants' sociodemographic and clinical characteristics are 
presented in Table 1, age, weight, height, BMI, and cardiovascular 
indices. A total of 24 patients and 27 age-matched healthy controls, with 
age range 31–76 years, were recruited to the study. As in Table 1, the 
ranges for the Hoehn and Yahr Staging Scale score and the MDS-UPDRS 
(Part III) for the patients' sample were 1–4 and 19–93, respectively. 
Additionally, the patients' prescribed medications are presented in 
Table 2. 

3.2. Relationship of Parkinson's disease with circulatory lipid profile and 
BDNF 

The ANCOVA, shown in Table 3, revealed no differences (p > 0.05) 
in lipid profile measures, whereas plasma BDNF was lower in the pa-
tients versus the controls. 

3.3. Relationship of BDNF with Lipid Profile 

As in Figs. 1, the Pearson's product-moment correlation in the pa-
tients only, showed that BDNF was related to TC (r = − 0.40; p = 0.05), 
(r = − 0.60; p = 0.003), LDL (r = 0.50; p = 0.006), TriG (r = 0.40; p =
0.04), TC/HDL (r = 0.40; p = 0.06), TC/LDL (r = 0.5; p = 0.01), and of 
TriG/HDL (r = 0.60; p = 0.001), however, was not related to glucose (r 
= − 014; p = 0.9). As in Table 4, subsequent ANCOVA revealed differ-
ences in TC (p = 0.007), HDL (p = 0.06), LDL (p = 0.001), TC/LDL (p =
0.01), and TriG/HDL (p = 0.05) but not in glucose (p = 0.70), TriG (p =
0.10), and TC/HDL (p = 0.70) among low-BDNF versus high-BDNF 
groups. 

4. Discussion 

The study examined the changes in glucose, TC, HDL, LDL, TriG, TC/ 
HDL, TC/LDL, and TriG/HDL in PD patients versus health controls. 
Additionally, the relationship of BDNF with glucose and lipoprotein 
profile indices was determined. The results showed no differences in 
glucose and lipid profile while BDNF was lower among the patients 

versus controls. Uniquely, BDNF was related to TC, HDL, LDL, TriG, TC/ 
HDL, TC/LDL, and TriG/HDL in the patients. Additionally, TC and LDL 
were greater while TC/LDL and TriG/HDL were less in the patients with 
low versus high BDNF. These results are useful, as they show no dif-
ference in glucose and lipid profile in PD versus healthy individuals. 
Importantly, they demonstrated, for the first time, the relationship of 
BDNF with lipid profile in PD patients. 

The relationship of PD with lipid profile is controversial and com-
plex. For example, lowered circulatory lipids [32,33] has been attrib-
uted to reduced biosynthesis [34] and linked to the PD diagnosis [20], 
progression [23], incidence [35], and severity [36]. Similarly, the 
importance of dietary [21] and circulating [27] lipids for reducing the 
risk, development, progression, and delaying the symptoms of the dis-
ease has been suggested. However, a meta-analysis showed that levels of 
lipids were not related to the risk, development, progression, symptoms, 
and incidence of the disease [28] and was not altered in the patients 
versus the control [37]. Similarly, the current results revealed no dif-
ferences in lipid profile in the patients versus the control suggesting no 
changes in lipid profile due to PD. 

In the current study, BDNF levels were lower in the PD group than in 
the control group. This is in agreement with recent studies that have 
demonstrated reduced BDNF levels among PD patients [38–40] and was 
linked to disease duration, severity, symptoms, and levodopa treatment 
[40], and cognitive [38] and cardiovascular [39] functions. In fact, the 
therapeutic potential of BDNF for PD is being examined [41]. 

In the current study, BDNF was related to lipid profile indices in the 
patients. Additionally, the results revealed lower TC and LDL levels and 
greater TC/LDL and TriG/HDL in the patients with high versus low 
BDNF implying a role of BDNF in cardiometabolic risk factors. These 
findings are unprecedented in PD and suggest the involvement of cir-
culatory BDNF in lipid metabolism [42]. Studies in animals suggest the 
involvement of BDNF in regulating synaptic [43] and neuronal [44] 
cholesterol metabolism, a mechanism important for the central nervous 
system repair, regenerative, and resilience capacity, especially after 
injury. However, no studies examined the role of circulatory BDNF in 
lipid metabolism in PD and few in other populations [42,45–48]. 
Opposite to the current findings, BDNF was positively related to TC and 
LDL among the elderly [42] and Korean adults [47] to TriG in adoles-
cents [46], Korean adults [47], and schizophrenics [45]. Similar to the 
current results, however, BDNF was inversely associated with TC/HDL 
and LDL in the elderly [48]. Apparently, the relationship of BDNF with 
lipids is conflicting and considerably affected by genetic, environmental, 
and disease factors [47–50]. Subsequently, future studies are needed to 
examine this relationship under a variety of genetic and environmental 
factors including diet, exercise, smoking, and diseases, particularly in 
PD. 

4.1. Implications 

Ample evidence has shown the importance of brain BDNF for 
metabolism. However, few studies have examined the relationship of 
circulatory BDNF with lipid profile and none in PD. According to the 
results, circulatory BDNF is related to lipid profile in the patients. These 
findings suggest the importance of BDNF for modifying lipid profile in 
PD. Given the role of lipids in the risk, development, and progression of 
PD, BDNF can be considered while designing and implementing thera-
peutic planes for the patients. 

5. Conclusions 

The current study examined the changes in lipids and the relation-
ship of BDNF with lipids among PD patients. The results showed no al-
terations in lipids in the patients versus the controls. Additionally, lipids 
were favorably different in the patients with high versus low circulatory 
BDNF, suggesting the importance of BDNF for lipid metabolism among 
PD patients. 

Table 4 
ANCOVA comparison for plasma glucose and lipid profile in the patients with 
low versus High BDNF.   

Low BDNF (n =
12) 

High BDNF (n =
12) 

P value 

Glucose (mmol/L) 7.2 ± 2.9 7.0 ± 3.5  0.57 
Total cholesterol (mmol/L) 5.1 ± 0.5 4.4 ± 0.8  a0.007 
High density lipoprotein 

(mmol/L) 
1.1 ± 0.2 0.9 ± 0.2  0.06 

Low density lipoprotein 
(mmol/L) 

3.6 ± 0.4 2.7 ± 0.7  a0.001 

Triglyceride (mmol/L) 1.6 ± 0.6 2.7 ± 1.5  0.086 
TC/HDL (mmol/L) 4.8 ± 1.0 5.1 ± 1.4  0.70 
TC/LDL (mmol/L) 1.4 ± 0.6 1.6 ± 0.2  a0.01 
Tri/HDL (mmol/L) 1.5 ± 0.7 3.5 ± 2.3  a0.04 

Data are presented in mean ± SD. 
a Indicate significant. 
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