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In transfer learning, two major activities, i.e., pretraining and fine-tuning, are carried out to perform downstream tasks. )e
advent of transformer architecture and bidirectional language models, e.g., bidirectional encoder representation from transformer
(BERT), enables the functionality of transfer learning. Besides, BERT bridges the limitations of unidirectional language models by
removing the dependency on the recurrent neural network (RNN). BERT also supports the attention mechanism to read input
from any side and understand sentence context better. It is analyzed that the performance of downstream tasks in transfer learning
depends upon the various factors such as dataset size, step size, and the number of selected parameters. In state-of-the-art, various
research studies produced efficient results by contributing to the pretraining phase. However, a comprehensive investigation and
analysis of these research studies is not available yet. )erefore, in this article, a systematic literature review (SLR) is presented
investigating thirty-one (31) influential research studies published during 2018–2020. Following contributions are made in this
paper: (1) thirty-one (31) models inspired by BERT are extracted. (2) Every model in this paper is compared with RoBERTa
(replicated BERTmodel) having large dataset and batch size but with a small step size. It is concluded that seven (7) out of thirty-
one (31) models in this SLR outperforms RoBERTa in which three were trained on a larger dataset while the other four models are
trained on a smaller dataset. Besides, among these sevenmodels, six models shared both feedforward network (FFN) and attention
across the layers. Rest of the twenty-four (24) models are also studied in this SLR with different parameter settings. Furthermore, it
has been concluded that a pretrained model with a large dataset, hidden layers, attention heads, and small step size with parameter
sharing produces better results. )is SLR will help researchers to pick a suitable model based on their requirements.

1. Introduction

Transfer learning encompasses the model training on
large text corpus and utilization of obtained knowledge to
downstream tasks [1]. Before the emergence of trans-
former architecture for transfer learning, unidirectional
language models were used extensively but these models
faced many limitations such as reliance on unidirectional
recurrent neural network (RNN) architecture and limited
context vector size. To overcome these gaps, bidirectional
language models such that bidirectional encoder

representation from transformer (BERT) is introduced to
improve the performance of downstream tasks. Bidirec-
tional language models can be applied in a wide variety of
tasks such as natural language inference (NLI) [2, 3],
paraphrasing at sentence-level [4], Question Answering
(QA) systems, and entity recognition at token level [5]. In
the beginning, pretraining of bidirectional language
models was done via supervised learning [6] but human-
labeled datasets are limited. To resolve this issue, the
use of a large corpus-based unsupervised learning
increased.
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Language models are one of the most crucial compo-
nents of natural language processing (NLP). A language
model provides context to distinguish between words and
phrases that sound alike in English such as “recognize
speech” and “wreck a nice beach” but indeed very different.
)e language model is a probability distribution over se-
quences of words and used in information retrieval. )ere
are many types of language models including n-gram, ex-
ponential neural network (ENN), and bidirectional. )ese
language models are the backbone of Google Assistant,
Amazon’s Alexa, and Apple’s Siri to analyze the data for the
prediction of words. BERT is first deep bidirectional lan-
guage models based on transformer architecture which
means it reads the input from both sides left-to-right and
right-to-left while existing models were unidirectional and
just read the input from one side. BERT outperforms all
existing models.

A large amount of data [7] such as text corpus, domain-
specific data (e.g., PubMed, PubMed Central (PMC) [8]),
and scientific dataset [9] is available for unsupervised
learning. Also, different sentence tokens, e.g., span [10],
semantic [11–13], lexical [14], and syntactic [15], are used
to pretrain the models. In general, large pretraining ob-
jective, unlabelled datasets [16, 17], benchmarks [18, 19],
and fine-tuning methods [20, 21] are beneficial in unsu-
pervised learning. Pretrained models developed using
unsupervised learning have produced state-of-the-art re-
sults due to better use of parallel computing. )e resultant
models are not only applicable to computer domains but
also used in other specific domains, e.g., [22] business [23],
medical [24, 25], and science [26]. )e performance of
downstream tasks directly depends on pretraining of the
models which subsequently considers many significant
factors such as dataset size, batch size, step size, sequence
size, parameters, layers, hidden layers, attention heads, and
cross-layer sharing for practical implications. )ese factors
are used in different research studies to get better results of
pretrained models, but there is no study available to the
best of our knowledge which provides comprehensive
review to these research studies. )is paper attempts to find
answers to the following five research questions (RQs) as
follows:

RQ1: what are the significant model types and tech-
niques used for sentence embedding learning?
RQ2: what is the effect of dataset size with different
batch, step, and sequence size on the performance of
the pretrained model?
RQ3: what is the effect of parameters with different
input layers, hidden layers, and attention heads on the
performance of the pretrained model in downstream
tasks?
RQ4: what are the effective techniques for cross-layer
parameter sharing in the pretraining of models?
RQ5: what are the leading datasets used in the pre-
training of models?

To find answers to these research questions, we per-
formed an exhaustive systematic literature review (SLR) of
thirty-one (31) research papers as presented in Table 1. )e
contributions of this paper are as follows:

(i) Firstly, this research study discovers all bidirectional
language models built upon transformer or
Transformer-XL architecture during 2018–2020.

(ii) Secondly, all the important settings of the pre-
trained model such as size of the dataset, batch size,
step size, sequence size, parameters, layers, hidden
layers, attention heads, and cross-layer sharing are
recognized in this paper.

(iii) Every model is compared with RoBERT that is a
replicated BERT model with a large dataset and
batch size but with a small step size. )e analysis of
existing models with RoBERTa is also carried out in
this SLR.

Rest of the paper is organized as follows: in Section 2, the
research methodology is developed which consists of se-
lection and rejection criteria, search process, quality as-
sessment criteria, data extraction, and synthesis. Section 3
and Section 4 present the results and answers of the five
developed questions, respectively. Section 5 discusses the
analysis of the selected research studies. Section 6 provides
recommendations to the existing research studies. Lastly,
Section 7 concludes the whole research study and provides
future directions.

2. Research Methodology

)is research study is performed based on the guidelines of
the systematic literature review standard. Following features
that distinguish the systematic literature review from con-
ventional literature review are as follows [53]:

(i) To begin, review protocol is developed based on the
research questions.

(ii) Selection and rejection criteria are developed to
assess each primary study.

(iii) Search strategy is defined to provide the addition of
the most relevant literature in the SLR. It is
documented to ensure the completeness of research
study.

(iv) Information from each research study is evaluated
using quality assessment criteria.

(v) To perform quantitative meta-analysis, review
protocol turns out to be the prerequisite.

(vi) )is review protocol establishes the basis of SLR due
to which it becomes possible to identify the research
gaps from the selected area so that new research
activities can be positioned.

Two sections (Background and Research Questions) are
already provided in the introduction section. )erefore, we
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are omitting both sections and will describe the other four
elements in subsequent sections.

2.1. Selection andRejectionCriteria. We defined logical rules
for the selection and rejection of the research papers to
achieve the objectives of SLR. )ese rules are as follows:

(i) )e selected research studies must target the bidi-
rectional language modeling and the BERT model.

(ii) Selected research studies for this SLR must be
published between 2018 and 2020.

(iii) All the research studies selected in this SLR must be
from one of these four scientific repositories, i.e.,
arXiv, Elsevier, ACM, IEEE, and two conferences
including NIPS (neural information processing
systems) and MLR (machine learning research).

(iv) Duplicate research studies are not selected. Similar
content shared by more than one research study is
discarded.

2.2. Search Process. Four scientific repositories and two
conferences mentioned in Section 2.1 initiated the search
process. Five defined keywords, i.e., (1) bidirectional

language modeling, (2) pretrained language modeling, (3)
biLM, (4) BERT, and (5) transformer, are used to search the
research studies as shown in Table 2. We only use AND
operator while searching because without AND operator,
some keywords produced irrelevant searches. We also used
some advanced options provided by databases to refine the
search result. For example, while searching for research
studies on Science Direct with the keyword “transformer,”
we receive a lot of results because “transformer” belongs to
other domains as well. To generate relevant results, an ad-
vanced option is used for publication titles such as “Science
of Computer Programming.”

We used open coding like process which involves three
phases (Phase 1, 2, and 3) and three authors (A1, A2, and
A3):

(i) Phase 1: A3 selects all papers which are from
mentioned databases.

(ii) Phase 2: A2 checks all papers selected in Phase 1 and
checks either these papers are published in between
2018 and 2020.

(iii) Phase 3: A1 selects all the papers provided at the end
of Phase 2 which targeted the bidirectional language
modeling or share its properties. Phases 1 and 2 are

Table 1: Overall hyperparameters.

Paper Batch size Max sequence Learning rate Step size Parameters Layers Hidden Attention head
[17] 2K 512 1e− 6 125K 360 24 1024 16
[10] 256 128 1e− 4 2.4M 340 24 1024 16
[11] 32 128 2e− 5 1M 340 24 1024 16
[14] 512 256 5e− 5 1M 114 6 768 12
[15] 400K 256 5e− 5 4K 114 24 1024 16
[27] 256 128 1e− 4 1M 110 12 768 12
[28] 2048 512 1e− 5 500K 340 24 1024 16
[29] 330 512 3e− 5 777K 340 24 1024 16
[20] 32 512 1e− 4 1M 330 24 1024 16
[30] 32 512 1e− 4 1M 340 24 1024 16
[31] 256 128 1 1M 14.5 4 312 12
[32] 256 128 1e− 4 1M 340 24 1024 16
[33] 4096 512 0.00176 125K 233 12 4096 128
[34] 1024 128 1.0e− 4 1M 3.9 48 2560 40
[35] 4096 512 0.00176 125K 233 12 4096 64
[36] 2048 128 0.01 2.1M 11 12 768 12
[37] 2K 512 10–3 125K 356 24 1024 16
[38] 8K 512 1e− 6 500K 360 24 1024 16
[39] 32 128 2e− 5 1M 340 12 768 12
[40] 2048 512 2e− 4 1.75M 335 24 1024 16
[41] 1024 512 5e− 4 400k 33 12 768 12
[42] 32 256 2−5 to10−5 1M 66 6 768 12
[43] 256 128 1e− 4 1M 108 12 768 12
[44] 128 128 1e− 4 1M 340 24 1024 16
[45] 256 128 1e− 4 1M 110 12 768 12
[46] 256 128 1e− 4 1M 340 24 1024 16
[47] 256 128 5−5 to 10−5 1M 110 12 768 12
[48] 128 512 3e− 4 50K 9.5 24 1024 16
[49] 6 512 1.5e− 5 1M 340 24 1024 16
[50] 8000 512 1e− 6 500K 400 12 1024 12
[51] 5120 128 1.8e− 4 25K 340 24 1024 16
[52] 7680 128 6e− 4 0.5M 110 12 768 12
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straight forward, but in Phase 3, if any of other two
authors A1 or A2 had any disagreement, then a
voting procedure was followed and majority wins.

In Figure 1, overview of the search process is illustrated.
By using keywords shown in Table 2, we received total 94,954
results:

(i) We have rejected 92,876 papers based on the title of
the research studies.

(ii) Among 92876, we rejected another 1589 papers by
applying selection and rejection criteria on abstract.

(iii) Another 364 research studies are discarded by
performing the general study of papers.

(iv) Lastly, after detailed study of 127 research studies,
96 research studies are eliminated and only thirty-
one (31) relevant research studies are selected to
perform SLR.

2.3.QualityAssessment. For the reliable outcome of the SLR,
a quality assessment checklist (QA 1 to QA 5) is developed.
Every paper included in this study must satisfy the assess-
ment criteria to ensure high-quality of the selected research
studies by answering a few questions in Table 3.

All selected research studies target bidirectional language
models or BERT by either using or improving these models.
)e selected repository-based distribution of research
studies is shown in Figure 2. All of the papers are from
internationally recognized scientific repositories such as
arXiv, IEEE, ACM, Elsevier, NIPS, and MLR. We included
arXiv with other databases because most of the work on the
bidirectional language model is published in arXiv. Almost
all top LMs are developed by big technology organizations,
and their work is published in arXiv. It can be analyzed from
Figure 2 that arXiv is the most cited database. Also, it is
ensured that the selected research study must answer at least
one question. We have developed this checklist presented in
Table 3 to ensure high-quality findings of our research
studies.

2.4. Data Extraction and Synthesis. A template for data
extraction and data synthesis is developed in Table 4 to
answer the research questions. Data extraction is used to
extract the specific and most related data based on selection
and rejection criteria (Section 2.1). For data extraction and
synthesis, we have extracted the bibliography of the paper
and then core findings of the paper such as methodology,
pretraining, fine-tuning, and the results are synthesized. We

have performed the data synthesis to answer our developed
research questions for this SLR.

3. Results

After applying the review protocol (see Section 2), thirty-one
(31) research studies published during 2018–2020 are se-
lected to conduct this SLR. We compared all models with
RoBERTa [17] which is the replication of BERT [27] with a
large dataset, batch size, sequence size, parameter, layers,
hidden layers, attention head but with small step size, no
parameter sharing, and no sentence representation learning.
)e main advantage of comparison with RoBERTa is that it
is a model built on BERT with slightly changed parameters
and can generate fair comparison for all other models used
in this research. In this section, the dataset with other pa-
rameters effecting the pretraining of models, results based on
model structure, pretraining objectives, sharing parameters
in pretraining, and model selection for testing are discussed
in detail.

3.1. Model Type and Technique Used for Sentence Embedding
Learning. We identified four (4) types of pretraining ob-
jectives for language representation and three (3) types of
sentence representation learning presented in Table 5.
Pretraining objectives are as follows: (1) autoencoding is a
model type in which the model reconstructs the original data
from corrupted inputs. (2) Autoregressive uses the proba-
bility distribution that remembers previous states while
partially autoregressive uses only one previous state. (3)
Autoencoding and autoregressive present objective in which
corrupting and knowledge of previous values preserve. (4)
Autoencoding and partially autoregressive present objective
in which corrupting and partially knowledge of previous
values preserve.

)ree (3) sentence representation learning tasks are
discussed in terms of pretraining objectives in Table 5: Next
Sentence Prediction (NSP), Sentence Order Prediction
(SOP), and None. (1) NSP is a binary classification that
predicts whether two segments that appear consecutively are
from the same document. (2) SOP focuses on intersentence
coherence with positive examples the same as NSP but
negative examples are different and achieved by swapping
the documents. (3) If a model used None it means neither
NSP nor SOP is used.

3.2. Pretraining Setup. We have divided the pretraining
dataset into four categories presented in Table 6 with respect

Table 2: Number of results using keywords.

Sr. no. Keywords Operator Scientific repositories
IEEE ACM arXiv Elsevier NIPS MLR

1 Bidirectional language modeling AND 5 1 24 6 0 1
2 Pretrained language modeling AND 2 2 18 2 0 0
3 biLM N/A 1 3 1 1 0 0
4 BERT N/A 16 6 24 1 1 1
5 Transformer N/A 1 4 4 0 0 0
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Table 3: Quality assessment checklist.

Sr. no. Quality assessment checklist
QA 1 Are models using bidirectional language modeling in selected research studies?
QA 2 Do all the papers use either BERT or improve it?
QA 3 Are selected research studies published from 2018 to 2020?
QA 4 Do the selected research papers are from the scientific repositories, NIPS and MLR?
QA 5 Do the selected research papers provide the required answers for developed research questions?
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30

IEEE ACM arXiv Elsevier NIPS MLR

Figure 2: Summary of selected papers.

Table 4: Data extraction and synthesis.

Sr. no. Description Details
1 Bibliographic information Authors, title, research type, publication year, etc.
2 Methodology )e main structure of our study is to extract the methodology of the paper.
3 Pretraining Pretraining structure of each study is thoroughly analyzed.
4 Fine-tuning Fine-tuning structure of each study is thoroughly analyzed.
5 Dataset Datasets used in the selected research studies are identified.

9798 
research
studies

82556 
research
studies

762
research
studies

1837
research
studies

1
research
studies

2
research
studies

Rejection based on title
92876 research studies

Rejection based on abstract
1589 research studies

Rejection based on general study
364 research studies

Detailed study of 
127 research studies

Selected research studies 
(31)

Rejected research studies 
(96)

94956 – 92876 = 2080

2080 – 1889 = 491

491 – 364 = 127

IEEE ACM Elsevier arXiv NIPS MLR

Figure 1: Overview of the search process.
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to size such as (1) 1GB to 99GB, (2) 100GB to 149GB, (3)
150GB to 199GB, and (4) 200GB to onwards. )e main
advantage of this categorization helps in visualization of
dataset size used by different language models and the re-
lation of dataset size with step size, batch size, and sequence
size. Step size indicates how many steps a program will run
and takes data points with respect to time. Batch size is the
number of examples that can be utilized in one iteration.
Sequence size defines the maximum size of an input. If one
increases the sequence size, then it required a lot of com-
putational power and resources to pretrain an LM. We
divide the batch and step size into three categories (small,
big, and same) while sequence size has two categories (small
and same). Wemake two categories of sequence size because
no model has a bigger sequence size than 512. Sequence size
of 512 is used by RoBERTa [17] which has 160GB of training
dataset size with 2K (small) of batch size and 125K (me-
dium) step size. )e comparison of performance of different
models is done using GLUE leaderboard. GLUE consists of
ten (10) diversified tasks, but we use results of eight (8) of
these tasks and leave WNLI and AX due to completely
different behavior of these two tasks. Subsequently, SQuAD
and then RACE are also used for comparison.

3.3. Effect of Parameters with Different Layers, Hidden Layers,
and Attention Heads. As shown in Table 7, we have divided
the parameter size of models into seven categories such as (1)
1M to 99M, (2) 100M to 199M, (3) 200M to 199M, (4)
301M to 349M, (5) 350M to 399M, (6) 400M to 500M, and
(7) 501M to onwards. Every category contains the param-
eters used by models in pretraining. We have three cate-
gories for parameter size: (1) layers, (2) hidden layers, and
(3) attention head, and every category has three subcate-
gories: (1) less, (2) more, and (3) same. All results are
compared against RoBERTa [17] which has 360M param-
eters, twenty-four (24) layers, 1024 hidden layers, and six-
teen (16) attention heads.

3.4. Cross-Layer Parameter Sharing. Cross-layer parameter
sharing is a process in which models share some parameters
during pretraining with purpose of gaining knowledge. We
divide the cross-layer parameter sharing into four different
categories as shown in Table 8. (1) In all-shared means both
feedforward network (FFN) and attention are shared across
layers, (2) in shared-attention, only attention is being shared,
(3) in shared-FFN, only FFN is being shared across layers,
and (4) not-shared shares nothing during pretraining. For
the selected parameters, results are shown in Table 8.

3.5. Dataset Used. In this section, the datasets used are
mentioned so that new models could be tested using these
datasets. Four datasets are identified: (1) General Language
Understanding Evaluation (GLUE): it consists of ten di-
versified tasks. Some tasks are single-sentence classification
and some are sentence-pair classification. GLUE provides
split training and testing data to test the performance of
pretrainedmodels. It allows us to submit our submissions on
the GLUE leaderboard and compare our evaluation results
on private held-out test data; (2) Bilingual Evaluation Un-
derstudy (BLEU) is used to evaluate the quality of machine
translation text from one language to another; (3) the
Stanford Question Answering Dataset (SQuAD) has two
datasets with SQuAD v1.1 and SQuAD v2.0 with one has
answerable questions and the other has unanswerable.
SQuADv1.1 consists of 100K questions while SQuADv2.0
consists of 150K questions; (4) RACE is a comprehension
dataset consists of 28K passages and 100K questions.

4. Answers to Research Questions

RQ1: what are the significant model types and techniques
used for sentence embedding learning?

Answer: as shown in Table 5, in thirty-one (31) identified
models, only six models, ERNIE [14], BERT [27], UniLM
[29], StructBERT [30], TinyBERT [31], and MT-DNN [32],
use NSP as sentence learning technique while three models,
ALBERT [33], Megatron-LM [34], and AlBERT (xxlarge-
ensemble) [35], use SOP. It could be seen that twenty-one
(21) out of thirty-one (31) research studies do not use any
sentence embedding learning which means both NSP and
SOP decrease the performance of these models.

Different models have different pretraining objectives
such as BERT [50] is an autoregressive model without using
NSP. Nezha [51] uses autoencoding and autoregressive with
NSP while XLNet [28] uses autoencoding and autoregressive
without NSP. Another model, UniLMv2 [52], is an
autoencoding and partially autoregressive model. Rest of the
models, i.e., twenty-seven (27) out of thirty-one (31) models,
use autoencoding that is the most used pretraining objective
with none sentence learning technique.

RQ2: what is the effect of dataset size with different
batch, step, and sequence size on the performance of the
pretrained model?

Answer: as shown in Table 6, seven (7) out of thirty-one
(31) models, i.e., [15, 33–36, 38, 40], have outperformed
RoBERTa. Among these seven models, three models
[34, 36, 38] were trained on a larger dataset than RoBERTa
while other three models [15, 33, 35] are trained on a smaller
dataset whereas [40] trained on 126GB dataset size which is

Table 5: Model type and sentence representation learning.

Pretraining objectives
Sentence representation learning

NSP SOP None
Autoencoding (AE) [14, 27, 29–32] [33–35] [10, 11, 15, 20, 36–49]
Autoregressive (AR) — — [50]
Autoencoding and autoregressive [51] — [28]
Autoencoding and partially autoregressive (PAR) — — [52]
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close to RoBERTa of 160GB. However, other three out of
thirty-one (31) models [37, 50, 52] trained on the same size
of the dataset but perform lesser than RoBERTa due to the
large or same step size. Rest of the twenty-four (24) models
trained on smaller datasets and among these 23 models,
three models outperform the RoBERTa and all of these
models use bigger batch size and same or small step size. A
model trained on a larger dataset with larger batch size and
smaller step size will generate better outcomes and saves
pretraining time.

RQ3: what is the effect of parameters with different input
layers, hidden layers, and attention heads on the perfor-
mance of the pretrained model on downstream tasks?

Answer: performance of downstream tasks depends on
the number of parameters used in training along with the
layers, hidden layers, and attention heads. As shown in
Table 7, seven models in [15, 33–36, 38, 40] outperform
RoBERTa. Among these seven models, four models
[15, 33, 35, 40] have less parameters than RoBERTa such as a
model in [15] utilized a very low number of parameters, i.e.,
114M parameter w.r.t 360M of RoBERTa. With less pa-
rameters, different combinations are also analyzed such as
two research studies [33, 35] have less parameters but
pretrained with deep hidden layers. On the other side, two
out of seven models [34, 36] have very large parameters than
RoBERTa. Lastly, one model [38] used the same number of
parameters as RoBERTa. In the light of above parameters, it
is analyzed that if a model has very large parameters or has
large hidden layers and attention heads, it will produce
better results.

RQ4: what are the effective techniques for cross-layer
parameter sharing in pretraining of models?

Answer: cross-layer sharing helps the models to produce
better results. As shown in Table 8, seven models
[15, 33–36, 38, 40] produce a better output than RoBERTa
and all of these models except for [38] shared both FFN and
attention across layers during pretraining. On the other side,
almost all the models except for [38] which are not shared
during pretraining produce less efficient results. Among
these seven models, different combinations with cross-layer
parameters are used such as [33, 35] represents deeper model
(i.e., including large hidden layers) while [34, 36, 38] are
humongous models which means large input layer, hidden
layer, and big attention head are involved in these models,
whereas [40] is also close to RoBERTa in size, parameters,
and other setting, but it shares parameters in pretraining and
produces better results. It could be seen that all-shared
parameters have a positive effect on the performance of
models.

RQ5: what are the leading datasets used in pretraining of
models during 2018–2020?

Answer: twenty-eight (28) out of thirty-one (31) models
used GLUE for downstream tasks. GLUE consists of ten
diversified tasks. )ese tasks could be seen on https://
GLUEbenchmark.com/leadaerboard. As shown in Table 9,
the higher number of models, i.e., seventeen (17), uses
SQuAD for the downstream task. )e SQuAD has two
subtasks SQuAD v1.1 and SQuAD v2.0. Six models,
[29, 36, 41, 50, 52, 54] research studies, used the BLEU
dataset while [27, 28, 33, 34, 38, 43] research studies use the
RACE dataset. Only [27] used all of these datasets while
[28, 33] used GLUE, SQuAD, and RACE datasets altogether.
GLUE and SQuAD are significant datasets for testing new
models, and that is the reason that these datasets become the
benchmark for future models.

5. Analysis

In this section, we discuss the analysis of the research studies
based on the pretraining dataset and different settings such
as data size, batch size, and step size.

5.1. Different Ways of Pretraining of BERT Model. Delvin
et al. [27] introduced the first deeply bidirectionally pre-
trained model to train the unlabelled text. BERT also in-
troduced the NSP which is used to predict the next sentence
for the Question Answering system. Besides, BERT requires
an additional layer to perform any type of downstream task.
Wang et al. [30] incorporate the language structures (word
and sentence) during pretraining which enable the model to
reconstruct the right order of words and sentences. )is
model extends the NSP by predicting previous values. Joshi
et al. [10] used Masked Language Modeling (MLM) at span
level. It uses a novel span boundary objective which sum-
marizes as required span as possible and uses a single
contiguous segment instead of two segments in pretraining.
Zhang et al. [11] introduced the model consisting of out-of-
the-shelf labeler, a sentence encoder where semantic labels
are mapped into embedding in parallel and semantic inte-
gration components to obtain joint representation for fine-
tuning. Su et al. [39] presented squeeze and excitation to
extract global information between layers and Gaussian
blurring to capture the neighbor context in the downstream
task. It also uses the Heuristic Analysis for NLI Systems
(HANS) dataset which shows SesameBERTadopted shallow
heuristic instead of a generalization.

Josefowicz et al. [55] fine-tuned on extreme multilabel
text classification. )is classification used semantic label

Table 8: Cross-layer parameter sharing.

Cross-layer parameter sharing Paper
Performance

Decrease Increase
All-shared [15, 20, 29, 32–36, 40, 44, 46, 47, 51] [20, 29, 32, 44, 46, 47, 51] [15, 33–36, 40]
Shared-attention [28] [28] —
Shared-FFN [48] [48] —

Not-shared [10, 11, 14, 27, 30, 31,
37–39, 41–43, 45, 49, 50, 52]

[10, 11, 14, 27, 30, 31, 37,
41–43, 45, 49, 50, 52] [38]
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clusters for better model dependencies and both label and
input text to build label representation. It consists of semantic
label indexing and ensemble ranking component. Jiao et al.
[31] propose a transformer distillation method which
transfers the linguistic knowledge from teacher BERT to
TinyBERT. In distillationmethods, we have twomethods: first
one consists of the big model called the teacher method, and
other consists of the small model called the student model.
When the teacher model is pretrained, it gains knowledge and
transfers its knowledge to the student model. A two-stage
learning framework uses transformer distillation on pre-
training and fine-tuning and lets the TinyBERT capture
general and specific knowledge of teacher BERT with 28%
fewer parameters. Xu et al. [42] used progressive model
replacing to compress the parameters; it first divides the
BERT model and then builds their compact substitute. )e
probability of replacing was increased through training.Wang
et al. [30] trained by the BERTmodel using stacking algorithm
that observes the self-attention at different layers and posi-
tions for transferring the knowledge from shallow to deep
model. It also finds local attention distribution and start-of
sentence distribution. Goyal et al. [43] improved inference
time with very little performance loss. PowerBERT removes
the word-vector from the encoder pipeline which reduces the
computation and directly improves inference time.

Furthermore, Chen et al. [48] task-oriented the com-
pressed BERT model, called AdaBERT which uses differen-
tiable neural architecture searches to automatically compress
the BERT model into task-specific small models. AdaBERT
incorporates task-oriented knowledge distillation (KD) loss
for search hint and efficiency loss as search constraints.
Beltagy et al. [26] built a new scientific vocabulary.)e trained
BERT model on large and in-domain-scientific data shows
that the in-domain pretrained model performs better on
downstream tasks due to in-domain vocabulary. Lee et al. [8]
proposed a first domain-specific pretrained model that
trained BERT on a medical dataset. )e medical dataset in-
cludes PubMed abstracts and PMC full text instead of general
datasets such as Wikipedia. Results show that the domain-
specific pretrain model outperforms the BERT on Question
Answering (QA) (12.24), Relation Extraction (RE) (2.8), and
Named Entity Recognition (NER) (0.82). Chadha et al. [49]
used set of modified transformer encoder units to add more
focused query-to-context (Q2C) and context-to-query (C2Q)
attention to BERT architecture. It also adds localized infor-
mation to self-attention and skips connections in BERT. Kao
et al. [35] boosted the BERT by duplicating some layers which
makes BERT deeper without extratraining to increase the
performance of the BERT model in downstream tasks.

5.2. Different Settings for Models. Liu et al. [17]pre-trained
the BERT model on a 12 times bigger and diverse dataset
with two changes in hyper-parameters during pre-training.
First is a bigger batch size with small step size and second is
dropping the NSP.. Lan et al. [33] reduced the size of the
parameters of the model during training. Also, it uses two-
parameter reduction techniques. )e first one is factorized
embedding parameterization to separate the size of hidden
layers from the size of vocabulary embedding. )e second
one is cross-layer parameter sharing. It also replaces NSP
with SOP. Yang et al. [28] used an autoregressive and
autoencoding pretrained model that uses all possible
permutations of factorization order. It uses relative posi-
tioning and segment recurrence mechanism borrowed
from Transformer-XL (extension of transformer archi-
tecture with positional encoding). XLNet does not use
MLM to remove pretraining and fine-tuning discrepancy
and also leave the NSP which decreases the XLNet per-
formance. Zhu et al. [38] presents the adversarial training
algorithm which makes the transformer-based models
better by adding adversarial perturbation to word em-
bedding and minimize the maximum risk. Bao et al. [52]
use Pseudo-Masked Language (PMLN) training procedure
combining autoencoding (AE) and partially autoregressive
(PAR).it follows BERTfor encoding modeling. AE provides
global PAR to learn interrelation between masked span.
PMLN learns long-distance context better than the BERT.

Moreover, Lewis et al. [50] proposed denoising autoen-
coder to pretrain sequence-to-sequence models by corrupting
the text with arbitrary noisy function and then reconstruct the
original text. It proposes a novel in-filling scheme and is best
to perform for generalization. It differs from BERT as ad-
ditional cross-attention by decoder layers perform on the last
hidden layer of the encoder. Chen et al. [56] proposed a
unified framework that converts language problems into a
text-to-text problem for training on a new dataset C4 with
11B parameters. Houlsby et al. [20] presented a novel adaptor
tuning that uses only 3.6% of task-specific parameters of
BERT instead of 100% use in fine-tuning. It provides a
compact and extensible model adding only a small number of
additional parameters per task because it remembers the
previous values. Chang et al. [54] proposes a novel task
conditional masked language to fine-tuned BERTon the text-
generation dataset. It improves text generation by providing
word probability distribution for every token in the sentence.
Xu et al. [57] improved the BERT by using self-ensemble and
self-distillation in fine-tuning without using external data.)e
self-ensemble model is an intermediate model at a different
time which has average parameters of base-models. )e
distillation loss is used as regularization which improves the
performance. Jiang et al. [37] overcome the limited down-
stream resources which make the model overfit, and it forgets
the knowledge of the pretraining model. Smoothness-in-
ducing regularization and Bregman proximal point optimi-
zation were applied on fine-tuning of models in which
SMARTRoBERTa produces the SOTA results for many tasks.
Zhang et al. [14] pretrained models on knowledge graphs and

Table 9: Datasets used in selected research studies.

Dataset name Research studies
GLUE [10, 11, 14, 15, 20, 27, 29–33, 36–48, 50–52]
BLEU [28, 29, 36, 41, 50, 52, 54]
SQuAD [10, 11, 20, 27–31, 33–36, 40, 41, 49, 50, 52]
RACE [27, 28, 33, 34, 38, 43]
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large-scale textual. )is model uses lexical, syntactic, and
knowledge information with MLM and NSP loss.

Furthermore, Sun et al. [15] presented a pretraining
framework that builds the task and then incrementally learn
multitask learning. It extracts the lexical, syntactic, and se-
mantic information as named entity, closeness relation from
things corpus.Wei et al. [51] presented a new pretrainedmodel
trained on large Chinese corpus with functional relative po-
sitional encoding whole word masking strategy, LAMB opti-
mizer mixed-precision training, and length of the training
sequence. In Clark et al.’s study [40], the pretrained repre-
sentation masked the input with plausible alternative sampled
from a small genitor network. )is model predicts whether
each of the tokens in corrupted input was replaced by a
generator sample or not. )e computational speed of Electra
was four times faster than RoBERTa and XLNet. Wang et al.
[41] presented a compressed and small pretrained language
model. )is model contains two models: student and teacher.
)e student model is trained by deeply mimicking the self-
attention model in the larger model (the teacher model). It
performs distillation of the self-attention model from the last
layer of the large model.

Shoeybi et al. [34] used billions of parameters by using
efficient intralayermodel parallelism attention in the placement
of layer normalization in the BERTstyle model which increases
the performance of model. Liu et al. [32] introduced a model
that learned from multiple Natural Language Understanding
(NLU) tasks. It uses cross-layer sharing and general repre-
sentation which helps it to adapt to new tasks and domains.
Clark et al. [44] introduced a model that uses knowledge
distillation in which single-task trains themultitask. It proposes
teacher annealing which takes the distillation to supervised
learning which helps the multitask model to learn and surpass
its teacher model. Dong et al. [29] trained the model on
unidirectional, multidirectional, and sequence-to-sequence
tasks. It fine-tuned for language understanding and generation
tasks. It uses specific self-attention masks and a shared
transformer network. Liu et al. [46] presented learning text
representation across NLU tasks. An ensemble of teacher
models is trained, and the student model is trained on the
teacher model via learning distill knowledge.

Table 10 presents the overall data of all the models in-
cluded in this study, training dataset, dataset size, tokens,
model type, sentence learning, and cross-layer parameter
sharing of every model. Table 1 shows the parameters and
model setting, and Table 11 shows the result of every model.
Every model in this study not just pretrained with different
hyperparameters, different learning techniques, or sharing
techniques. )ese models also pretrained differently, for
example, some use MLM at the token level, some use at span
level, some models use annealing, distillation method, and
duplication of hidden layers, and others separate the hidden
layers frommodel size. Effect of different ways of pretraining
is minimum against the effect of parameters, for example,
very few models perform better then RoBERTa. )ese better
models solely depend on techniques which show the effect of
hyperparameters, learning, and sharing on the performance
of language models.

6. Discussion

In the above section, we have provided the answers to the
question in Section 4. )ere are a few recommendations to
existing/new models as follows:

(i) Small + FFN: small models (small input layers,
hidden layers, and attention heads) with fewer
parameters but with the sharing of both FFN and
attention during pretraining improve the perfor-
mance of the language model.

(ii) Deeper models: small models with very deep
hidden layers and bigger attention heads using all-
shared cross-layer sharing produce the best result
among language models.

(iii) Bigger models: bigger models produce better re-
sults except when they are trained with fewer
hidden layers and fewer attention heads. To in-
crease hidden layers, we need to use fewer input
layers to computationally compatible.

(iv) Dynamic masking: the use of dynamic masking
allows changing the masking with every epoch to
overcome the limitation of static masking. Static
masking only masks the tokens with the same
sequence affecting the performance of themodel. If
dynamic masking is used, then with every epoch, a
new token will be masked.

(v) Larger batch: pretraining of the language model
with larger batch size learns faster and improves
results. It also saves us from large step size. If one
increases the size of batch size, the step size
decreases.

(vi) Sentence Order Prediction (SOP): use of SOP
instead of NSP on other models such as XLNet and
RoBERTa is beneficial.)e reason is SOP can cover
NSP tasks, but NSP cannot cover SOP task which
means SOP has higher accuracy.

(vii) Domain-specific dataset: training on domain-
specific datasets, such as medical and scientific,
produces better results as the model will learn
more about the specific domain better than the
general domain.

(viii) Adversarial training: use of adversarial training on
smaller models with cross-layer sharing is highly
recommended. When it is applied on the fine-
tuning step, it limits the maximum risks and could
be applied to anymodel built upon the transformer
architecture.

(ix) MLM: models can be pretrained with different
MLM strategies on the span, lexical, syntactic,
semantic, and knowledge information for pre-
training the models.

(x) Distillation: the use of distillation methods having
a student model and teacher model is highly
recommended. )e student models learn from the
teacher model which saves it to pretrain on the
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whole dataset. )e student model just needs to
learn from the teacher model.

(xi) Duplicating layers: A method of duplicating layers
to make models deeper could save a lot of com-
putational power. Duplicating layer is a method in
which we keep smaller size of layers, and during
the execution of pretraining, we duplicate the
layers which directly make the model deep.

It is very hard to say which setting could be used to
improve the performance of models due to trade-offs as
larger models will use more resources while smaller models
will cover fewer data. It is also recommended to use com-
binations such as bigger batch size with smaller step size, use
of fewer input layers with largely hidden layers, and big
attention heads. Subsequently, training of the hybrid
combination on the domain-specific dataset and use of
MLM on the span and lexical level is suggested. By doing so,
performance of the bidirectional language models can be
improved.

7. Conclusion and Future Work

)is paper presents the SLR on a comprehensive study of
thirty-one (31) pretrained language models to find the

answers to five developed research questions. All models
used in this paper are inspired by BERT and have a trans-
former or Transformer-XL architecture. )e significant
findings of this SLR are presented in Tables 1, 10, and 11.
Table 10 presents the overall data used in these models,
Table1shows the hyperparameter setting of these models,
and Table 11 highlights the results of these models. )ese
research papers show the effect of sentence embedding
learning, size of the dataset, step, batch, parameters, layers,
attention heads, and the effect of cross-layer sharing and also
provide the most used benchmarks for future models. To
conclude, whole focus of our study is about the pretraining
of language models covering fine-tuning settings and the
downstream task. )e tables are created in two ways so that
we could depict more accurate data by providing authentic
information.

)ere are different ways to pretrain a model such that
MLM on tokens or spans, etc. Besides, many models are
pretrained on domain-specific datasets (e.g., business,
medical, and physics) to improve the performance of
models, but still the impact of these models is minimum
when compared by dataset size, objectives, representation,
sharing, and parameters. )erefore, it is important to
consider these factors for language models before imple-
mentation because these factors can affect the performance

Table 11: Results.

Paper Batch size Max sequence Learning rate Step size Parameters (M) Layers Hidden Attention head
[17] 2K 512 1e− 6 125K 360 24 1024 16
[10] 256 128 1e− 4 2.4M 340 24 1024 16
[11] 32 128 2e− 5 1M 340 24 1024 16
[14] 512 256 5e− 5 1M 114 6 768 12
[15] 400K 256 5e− 5 4K 114 24 1024 16
[27] 256 128 1e− 4 1M 110 12 768 12
[28] 2048 512 1e− 5 500K 340 24 1024 16
[29] 330 512 3e− 5 777K 340 24 1024 16
[20] 32 512 1e− 4 1M 330 24 1024 16
[30] 32 512 1e− 4 1M 340 24 1024 16
[31] 256 128 1 1M 14.5 4 312 12
[32] 256 128 1e− 4 1M 340 24 1024 16
[33] 4096 512 0.00176 125K 233 12 4096 128
[34] 1024 128 1.0e− 4 1M 3.9 48 2560 40
[35] 4096 512 0.00176 125K 233 12 4096 64
[36] 2048 128 0.01 2.1M 11 12 768 12
[37] 2K 512 10–3 125K 356 24 1024 16
[38] 8K 512 1e− 6 500K 360 24 1024 16
[39] 32 128 2e− 5 1M 340 12 768 12
[40] 2048 512 2e− 4 1.75M 335 24 1024 16
[41] 1024 512 5e− 4 400k 33 12 768 12
[42] 32 256 2−5 to10−5 1M 66 6 768 12
[43] 256 128 1e− 4 1M 108 12 768 12
[44] 128 128 1e− 4 1M 340 24 1024 16
[45] 256 128 1e− 4 1M 110 12 768 12
[46] 256 128 1e− 4 1M 340 24 1024 16
[47] 256 128 5−5 to 10−5 1M 110 12 768 12
[48] 128 512 3e− 4 50K 9.5 24 1024 16
[49] 6 512 1.5e− 5 1M 340 24 1024 16
[50] 8000 512 1e− 6 500K 400 12 1024 12
[51] 5120 128 1.8e− 4 25K 340 24 1024 16
[52] 7680 128 6e− 4 0.5M 110 12 768 12
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of any model. In this study, we only consider the models
which were built on the transformer or Transformer-XL
architecture and inspired by BERT, but in future, we intend
to include models built on other architectures such as RNN.
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