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A B S T R A C T   

Fiber-reinforced polymer (FRP) composites have recently been considered in the field of structural engineering as 
one of the best alternatives to conventional steel reinforcement due to their high tensile strength, lightweight, 
cost-effectiveness, and superior corrosion resistance. However, the variation in FRP physical and mechanical 
characteristics among the different FRP types and manufacturers makes it difficult to predict the strength of FRP- 
reinforced concrete (RC) members. For that reason, an efficient prediction tool was developed for a fast, accurate, 
and intelligent (FAI) prediction of the flexural capacity of FRP-RC beams based on the result of an optimized 
super-learner machine learning (ML) model. A database of the experimental results on the flexural strength of 
FRP-RC beams was compiled and randomly split into 80% train and 20% test sets. Six factors were considered in 
the model; namely, width and effective depth of the beam, concrete compressive strength, FRP flexural rein-
forcement ratio, FRP modulus of elasticity, and FRP ultimate tensile strength. Grid search is combined with a 10- 
fold cross-validation to optimize the hyperparameters of the ML models. The prediction capability of the pro-
posed super-learner ML model was benchmarked against boosting- and tree-based ML models, such as classifi-
cation and regression trees, adaptive boosting, gradient boosted decision trees, and extreme gradient boosting. 
Moreover, a comparison with the existing code and guideline equations showed that the proposed super-learner 
ML model provided the most desirable prediction of the flexural capacity of FRP-RC beams.   

1. Introduction 

Steel corrosion is a universal concern that poses significant risks and 
challenges to reinforced concrete (RC) structures, especially those 
exposed to aggressive environments. One out of every seven bridges in 
the United States undergoes significant steel corrosion, and about USD 4 
billion is expended annually to maintain and repair their corrosion- 
damaged elements [1,2]. The latter is not only costly but also reduces 
the serviceability of such structures and disturbs the public through road 
and building closures during the repair work, which can cost 10 times 
the corrosion repair itself [2]. This has prompted researchers to inves-
tigate the feasibility of replacing conventional steel reinforcement with 
non-corrosive reinforcement. In this context, fiber-reinforced polymer 
(FRP) composites have been highlighted as durable reinforcement for 
RC structures due to their high tensile strength, lightweight, 
cost-effectiveness, and non-corrosiveness compared with conventional 
steel reinforcement [3]. Despite the beneficial properties of FRP rein-
forcement, its widespread use applications is restricted due to its brit-
tleness, low elastic modulus, and high initial cost [3]. Thus, numerous 

studies evaluated the structural performance of RC members with 
various types of FRP composites, including glass FRP (GFRP), carbon 
FRP (CFRP), aramid FRP (AFRP), and basalt (BFRP) to ensure the safety 
and serviceability of such members and to establish comprehensive 
design guidelines for broader FRP-RC applications [4–9]. 

The flexural behavior of FRP-RC beams has been extensively inves-
tigated [4,5,10–13]. Adam et al. [4] investigated the flexural behavior of 
RC beams with GFRP bars and found that the crack widths and de-
flections were significantly decreased with an increase in the rein-
forcement ratio. In addition, the ultimate load was increased by 97% 
when the reinforcement ratio increased by 2.7 times the balanced 
reinforcement ratio. Abdelkarim et al. [10] evaluated the flexural 
behavior of GFRP-RC beams prepared with normal- and high-strength 
concrete. They observed that the reinforcement ratio and bar spacing 
were more influential on the beam service moment than the moment 
resistance. They also found that the beams recorded a higher moment 
resistance and ductility by increasing the compressive strength of con-
crete. In the study by Karayannis et al. [5], the failure mode of CFRP-RC 
beams is switched to shear as the reinforcement ratio increased. Ruan 
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et al. [11] noticed that hybrid steel-GFRP RC beams exhibited a slightly 
lower flexural capacity and showed deflections 1.15–2.1 times higher 
than those of steel-RC beams. In the work of Al-Rousan et al. [12], 
increasing the FRP reinforcement ratio from 0.38% to 0.46% and 0.57% 
increased the ultimate load by 7.3% and 17.1%, respectively. 

Despite the ample research on the flexural behavior of FRP-RC 
beams, researchers have raised major concerns about the brittleness of 
FRP reinforcement and the consequent sudden failure and low ductility 
of FRP-RC members [3]. As a result, FRP design guidelines recommend 
overdesigning FRP-RC members to ensure that concrete crushing pre-
cedes FRP bar rupture, which allows for a higher deformability and 
progressive failure before full structural collapse [14–17]. 
Over-reinforced FRP-RC members are also preferred over 
under-reinforced members because of their high axial stiffness, which 
decreases their service crack width and deflection [6]. Meanwhile, the 
empirically analytical equations to predict the performance of FRP-RC 
members were established using limited experimental data on GFRP, 
CFRP, and AFRP-RC beams only. In addition, the existing FRP-RC 
guidelines do not account for BFRP-RC members [14–17]. Therefore, 
further research on the flexural capacity prediction of FRP-RC members 
is required to develop a comprehensive flexural model for all types of 
FRP composites. 

Recently, with the development of artificial intelligence and 
computational capabilities, machine learning (ML) techniques have 
gained considerable attention in the field of structural engineering. 
Numerous classification and regression-based ML models have been 
developed to predict the failure mode and load capacity of RC columns 
and walls [18–22], shear capacity of concrete beams [23–30], plastic 
hinge length and seismic response of RC bridges and buildings [31–36], 
and axial load capacity of short FRP-RC columns [37]. However, the 
literature lacks the implementation of ML models to analyze the flexural 
capacity of FRP-RC beams. Therefore, this study investigated the 
application of tree- and boosting-based algorithms and super-learner 
model for predicting the flexural capacity of FRP-RC beams. First, a 
comprehensive experimental database of FRP-RC beams with different 
geometries, FRP reinforcement types and ratios, and mechanical prop-
erties of concrete and FRP composites was collected. The compiled 
database was randomly split into the train and test sets comprising 80% 
and 20% of the total dataset, respectively. Different tree- and 
boosting-based algorithms were then trained on the train set and eval-
uated on the unseen (test) set. Grid search was combined with 10-fold 
cross-validation to tune the hyperparameters of the ML models. After 
that, the super-learner model combined the optimized ML models to 
produce a strong single model. In addition, the results of the proposed 
models were compared with the analytical guideline formulations. 
Finally, the super-learner model was deployed to a web-based applica-
tion for user-friendly FAI: fast, accurate, and intelligent flexural capacity 
prediction of FRP-RC beams. 

2. Review of the current design provisions 

The predicted flexural capacities of FRP-RC beams based on the 
developed ML models and the analytical estimates of ACI 440.1R-15 
[14] and CAN/CSA-S806–12 [16] were compared with the experi-
mental results. A brief review of the ACI 440.1R-15 [14] and CAN/-
CSA-S806–12 [16] provisions is provided below. 

2.1. ACI 440.1R-15 [14] 

As per ACI 440.1R-15 [14], the flexural capacity of over-reinforced 
FRP-RC beams can be calculated as given in Eqs. (1) to (4): 

Mn = ρf ff

(

1 − 0.59
ρf ff

f ′

c

)

bd2 (1)  

ρf =
Af

bd
(2)  

ff =

⎡

⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Ef εcu)
2

4
+

0.85β1f ′

c

ρf
Ef εcu

√

− 0.5Ef εcu

⎤

⎦ ≤ ffu (3)  

β1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

17 ≤ f ′

c ≤ 28,& β1 = 0.85

28 < f ′

c < 55,&β1 = 0.85 −
0.05(f ′

c − 28)
7

f ′

c ≥ 55, β1 = 0.65

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(4)  

where ρf is the FRP reinforcement ratio, ff is the tensile strength of FRP 
bars (MPa), f

′

c is the concrete compressive strength (MPa), Ef is the 
elastic modulus of FRP bars (MPa), εcu is the concrete ultimate strain 
(0.003), β1 is a constant, b is the width of the beam (mm), d is effective 
depth of the beam (mm), Af is the area of FRP reinforcement (mm2), 
and ffu is the ultimate tensile strength of FRP reinforcement (MPa). 

The flexural capacity of under-reinforced FRP-RC beams can be 
calculated as per Eq. (5): 

Mn = Af ffu

(

d −
β1cb

2

)

(5)  

cb =

(
εcu

εcu + εfu

)

d (6)  

where εfu is the rupture strain of FRP. 

2.2. CAN/CSA-S806-12 [16] 

According to CAN/CSA-S806–12 [16] design code, the flexural ca-
pacity of FRP-RC beam can be calculated as per Eqs. (7) to (11): 
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where α1 is a constant and εcu is 0.0035. 

3. Database description 

The ML models for predicting the flexural behavior of FRP-RC beams 
were established using an extensive database of 132 flexural test results 
reported in the open literature [6,38–59]. The flexural test results were 
assembled from 24 research articles published between 1991 and 2021. 
As presented in Table 1 and Fig. 1, six parameters were selected as input 
parameters, including width and effective depth of the beam, concrete 
compressive strength, FRP flexural reinforcement ratio, FRP modulus of 
elasticity, and FRP ultimate tensile strength. Four types of FRP com-
posites were included in the collected database; namely, GFRP, CFRP, 
BFRP, and AFRP. The beam width and depth, concrete compressive 
strength, flexural reinforcement ratio, FRP modulus of elasticity, and 
FRP ultimate strength were in the range of 100–500 mm, 
107–512.5 mm, 21–97.4 MPa, 0.12–3.6%, 35.63–147 GPa, and 
552–2250 MPa, respectively, as shown in Fig. 1. It should be noted that 
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the cubical compressive strength was converted into cylindrical 
compressive strength by considering that cylindrical specimens are 80% 
of the cubical specimens [60]. The established models were trained 
using a randomly selected 80% of the total database and tested using the 
remaining 20%. 

4. ML model development 

In this study, a super-learner model is used to predict the flexural ca-
pacity of FRP-RC beams. In addition, the performance of the super-learner 
model is benchmarked against different widely used boosting- and tree- 
based models such as classification and regression trees, adaptive boost-
ing, gradient boosted decision trees, and extreme gradient boosting. 

4.1. Classification and regression tree 

Classification and regression tree (CART) is a supervised ML algo-
rithm that resembles a flowchart-like structure [61]. It is the basis for 
other powerful ML algorithms. In CART, the most relevant feature is 
represented in the root node (top node), while each internal node 
specifies a test on the attribute. The value of the response variable is 
represented in the leaf nodes, which are used to make a prediction. A 
tree is built by recursively splitting the input space RN into J disjoint 
feature subspaces {R1, …, RJ} based on a set of splitting rules, where 
each Rj ∈ RN. On each feature subspace Rj, the same prediction is made 
for all x ∈ Rj. The tree can then be defined as a function h(x), as shown in 
Eq. (12): 

h(x) =
∑J

j=0
bjI(xϵRj) (12)  

where Rj is the jth disjoint region that is assigned to one of the leaves of 
the tree, bj is the value of prediction in the region Rj, and I(xϵRj) is the 

indicator function that equals unity when x ∈ Rj. 

4.2. Adaptive boosting 

Boosting algorithms convert weak learners into a single strong 
learner with reduced bias and variance by combining multiple weak 
learners a.k.a. base learners sequentially. Adaptive boosting (AdaBoost) 
was the first successful boosting algorithm. AdaBoost sequentially trains 
multiple base learners (CARTs in this study) iteratively using reweighted 
bootstrap samples from the training example to learn the relationship 
between the input parameters (X) and the response variable (Y). Except 
for the first iteration, each subsequent base learner is trained from the 
previous base learner in the sequence by giving more emphasis to 
incorrectly predicted instances. Consider a training example of N in-
stances in Eq. (13), where (Xi, Yi) is the ith observation in the training 
example, Xi is the vector of input parameters, and Yi is the outcome of 
interest. The objective of the AdaBoost algorithm is to sequentially train 
multiple base learners ft(X) and finally combine them to produce a 
single strong model F(X), as given in Eq. (14): 

(X, Y) = {(Xi, Yi)}
N
i=1 (13)  

F(X) =
∑T

t=1
G{wtft(X) } (14)  

where T is the number of weak learners (CART in this study), wt is the 
weight of the tth learner ft(X), and G(⋅) is the combination rule. 

In the first iteration, the weak learner is trained on the training ex-
amples with the uniform distribution with respect to the weights of 
{

w1,i = 1/N, ∀i
}

[62]. In the subsequent iterations, the weights are 
re-assigned to each observation, with higher weights assigned to 
incorrectly predicted observations by the previous base learner in the 
sequence. The weight distribution at iteration step t is updated based on 
Eq. (15), where βt ∈ [0, 1] is the distribution updating parameter defined 
by Eq. (16), and Lt is the average loss function defined by Eq. (17). In this 
study, the performance of the base learner is evaluated using linear loss 

Table 1 
Geometries and material characteristics of FRP-RC beams included in the database.  

References Number Geometry Concrete Internal reinforcement 

bw (mm) d (mm) f
′

c (MPa) ρf (%) Ef (MPa) ffu (MPa)

FAZA and GANGARAO [38] 18 152 216.3-223.8 29-51.71 0.42 - 3.08 48263 896 
Benmokrane et al. [49] 9 200 262.5- 512.5 43-52 0.56 - 1.09 42000 - 49000 641 - 689 
Duranovic et al. [53] 4 150 210 31.2-43.4 1.36 45000 1000 
Almusallam [54] 2 200 157.5-210.7 31.3 1.20-3.60 35630-43370 700-886 
Theriault and Benmokrane [55] 12 130 110.6-147.9 46.2-97.4 1.24-3.31 38000 773 
Grace et al. [56] 1 152 338 48.3 0.28 147000 2250 
Toutanji and Deng [57] 6 180 255-268 35 0.52-1.10 40000 695 
Alsayed et al. [58] 4 200 157.5-203.3 31-41 1.15-3.60 35630-43370 700-886 
Pecce et al. [59] 2 500 145 30 0.70-1.23 42000 600 
Yost et al. [39] 12 191-381 124-192 28 0.12-1.35 41400 830 
Wang and Belarbi [40] 3 178 168.5-174.5 48 0.71-3.59 41000-124000 552-2069 
Lau and Pam [41] 5 280 359.5-366 33.9-42.5 0.33-1.95 38000-40200 582-603 
Kassem et al. [42] 12 200 243.7-245.5 39.1-40.8 0.52-2.08 36000-122000 617-1988 
El-Nemr et al. [43] 12 200 297.5-343.5 29-73 0.38-1.95 48700-69300 762-1639 
El Refai et al. [44] 3 230 242-244 40 0.40-1.08 50000 1000 
Tomlinson and Fam [45] 2 150 270 55.4-57.2 0.14-0.51 70000 1100 
Goldston et al. [46] 3 100 124.7-127.8 80 0.49-2.03 37500-55600 732-1764 
Alkhraisha et al. [47] 6 180 107-111 30 0.58-2.20 42900-46600 1075-1121 
Abed et al. [48] 10 180 182-186 47-70 0.51-1.94 42800-131000 1029-2068 
Xiao et al. [50] 1 200 359 21 0.47 50700 901 
Abushanab et al. [6] 1 200 260 39.4 0.91 44700 1070 
Sun et al. [51] 3 150 210-214 41.6 0.70-1.99 48600-49300 650-680 
Sijavandi et al. [52] 1 200 132 37 3.05 46000 1000 
Mean 192.1 226.5 44.12 1.24 51565.9 967.7 
STD 62.53 87.21 15.75 0.88 22186.9 368.5 
Minimum 100 107 21 0.12 35630 552 
25% 152 173 33.98 0.58 41000 724 
50% 180 222.3 40.6 1.10 46000 891 
75% 200 262.5 48.07 1.58 49000 1075 
Maximum 500 512.5 97.4 3.6 147000 2250  
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function, as given in Eq. (18): 

wt+1,i =
wt,iβt

1− Lt,i

∑N

i=1
wt,iβt

1− Lt,i

(15)  

βt =
Lt

1 − Lt
(16)  

Lt =
∑N

i=1
Dt,iLt,i (17)  

Lt,i =

⃒
⃒Yi − ft,i(Xi)

⃒
⃒

max
⃒
⃒Yi − ft,i(Xi)

⃒
⃒
, i = 1, …, N (18)  

4.3. Gradient boosted decision trees 

Similar to other boosting algorithms, the core of gradient boosted 
decision trees (GBDT) algorithm is to train multiple base learners and 
accumulate the results of all base learners as the final predicted value of 
the response variable. The GBDT algorithm uses the gradient descent 
method to generate new trees based on the previous base learner(s) and 
minimize the objective function. In the first iteration, the model is 
initialized with a constant value, as given in Eq. (19). In the subsequent 

iterations, GBDT fits a new base learner (CART in this study) ht(X) at 
each iteration, t as given by Eq. (20), to the negative gradient descent or 
pseudo-residual (ri,t) of the previous learner in the sequence, i.e., 
training set 

{(
xi, ri,t

)}N
i=1, as given by Eq. (21): 

Fo(X) = arg min
γ

∑N

i=1
L(Yi, Ŷ i) (19)  

Ft(X) = Ft− 1(X) + γtht(X), for t = 1, …, T (20)  

ri,t = −

[
∂L(Yi, F(Xi))

∂F(Xi)

]

F(X)=Ft− 1(X)
, for i = 1, …, N (21)  

where L(⋅) is the training loss between the actual (Y) and predicted (Ŷ) 
values and γt is the multiplier obtained by solving the following one- 
dimensional optimization problem (Eq. (22)): 

γt = argmin
γ

∑N

i=1
L(Yi, Ft− 1(Xi) + γht(Xi) ) (22)  

4.4. Extreme gradient boosting 

Extreme gradient boosting (XGBoost), proposed by Chen and 
Guestrin [63], is an improvement and extension to gradient boosting. 

Fig. 1. Statistical distributions of the input and output variables.  

T.G. Wakjira et al.                                                                                                                                                                                                                             



Materials Today Communications 33 (2022) 104461

5

The objective function in XGBoost comprises a regularization term in 
addition to the training loss, Eq. (23) [63]: 

Obj(θ) =
∑N

i=1
L(Yi, Ŷ i) +

∑T

t=1
Ω(ft) (23) 

Here, Ω(⋅) is the regularization term that controls the complexity of 
the model and prevents overfitting, T is the number of base learners, as 
defined earlier, and ft is the model of the tth tree. Generally, the squared 
error is used for L(⋅), Eq. (24), while the complexity Ω(⋅) is defined by 
Eq. (25). 

L(Yi, Ŷ i) = (Yi − Ŷ i)
2 (24)  

Ω(ft) = γK +
1
2

λ‖wt‖
2 (25)  

where γ and λ are the penalty coefficients, wt is the leaf weights (scores), 
and K is the number of leaves in a tree. 

Thus, the objective function at step t ≤ T can be rewritten as Eq. (26): 

Obj(t) =
∑N

i=1
L
(
Yi, Ŷ t− 1,i + ft(Xi)

)
+ Ω(ft) + constant (26)  

where Ŷt− 1,i is the predicted value at step t − 1 and constant term rep-
resents 

∑t− 1
k=1Ω

(
ft
)
. 

Taking the second-order Taylor expansion of the loss function and 
removing the high-order infinitesimal terms, the objective function can 
be given by Eq. (27), where gi and hi are the first- and second-order 
gradients of the loss function. 

Obj(t) =
∑N

i=1

[

L
(
Yi, Ŷ t− 1,i

)
+ gift(Xi) +

1
2
hif 2

t (Xi)

]

+ Ω(ft) + constant (27)  

gi = ∂
Ŷ t− 1,i

L
(
Yi, Ŷ t− 1,i

)
(27a)  

hi = ∂2
Ŷ t− 1,i

L
(
Yi, Ŷ t− 1,i

)
(27b) 

Removing all the constants including L
(
Yi, Ŷt− 1,i

)
, the objective 

function can be given by Eq. (28), which can be further simplified as 
given in Eq. (29) [63]: 

Obj(t) =
∑N

i=1

[

gift(Xi)+
1
2
hif 2

t (Xi)

]

+Ω(ft) (28)  

Obj(t) =
∑T

j=1

[(
∑

i∈Ij

gi

)

wj +
1
2

(
∑

i∈Ij

hi + λ

)

w2
j

]

+ γT (29)  

where Ij = {i|q(xi) = j } is the set of indices of data points assigned to the 
jth leaf. 

Taking the derivative of the objective function in Eq. (29), the best wj 

and the best objective can be given by [63]: 

w∗
j = −

Gj

Hj + λ
(30)  

Obj∗ = −
1
2
∑T

j=1

G2
j

Hj + λ
+ γT (31)  

where Gj =
∑

i∈Ij

gi and Hj =
∑

i∈Ij

hi. 

4.5. Super-learner model 

Super-learner prediction algorithm combines multiple prediction 
models by assigning different weights to the models to find their optimal 

combination and produce a single best prediction function [64]. The 
weights of the candidate learners are estimated through K-fold 
cross-validation so that the loss function is minimized. The super-learner 
algorithm maps a training set (X,Y) into a prediction set (Z,Y), in which 
Z represents the predictions that are constructed using K-fold splits of X. 
The training process in super-learner model is shown in Fig. 2 and 
summarized below:  

i) Split the training example X into K-folds (K = 10 in this study), as 
shown in Fig. 2.  

ii) Select the base learners: three base models, namely, CART, 
AdaBoost, and GBDT are used in this study, as shown in Fig. 2.  

iii) Perform the following for each base learner (Fig. 2):  

• Evaluate the model using K-fold cross-validation.  
• Construct a matrix Z by stacking out-of-fold predictions.  
• Fit the model on the full training dataset and store the fitted 

estimator.  

i) Fit a meta-model on Z: the meta-model predicts the value of the 
target variable using Z as input. Linear support vector regression 
(SVR) is used as a meta-model in this study. 

Support vector regression estimates a decision function f(x) in Eq. 
(32) with a maximum of ε deviation from the value of the target variable 
for each instance in the training dataset, and at the same time as flat as 
possible [65]. Given a training dataset {(x1, y1), (x2, y2), …, (xN, yN) }

with N observations, the aim of SVR is to find a mapping function f(x)
given by: 

f (x) = ω.ϕ(x)+ b (32)  

where xi ϵ X = 〈x1
i , …, xQ

i 〉 ⊆ ℝQ, yi ϵ Y ⊆ ℝ, Q is the number of input 
features, ϕ(x) is non-linear mapping, ω is the weight coefficient, and b is 
the bias. 

The optimization problem of Eq. (32) can be transformed into the 
following by introducing the slack variables ξi and ξ∗i : 

min
w,b,ξ,ξ∗

1
2
‖w‖2 + C

1
n

∑n

i=1

(
ξi + ξ∗i

)
, i = 1, 2, …, N (33) 

Subject to 

{
(w.ϕ(x) + b ) − yi ≤ ε + ξi (ξi ≥ 0)
yi − (w.ϕ(x) + b ) ≤ ε + ξ∗i (ξ

∗
i ≥ 0)

}

. 

where C is regularization parameter, 12‖w‖
2 is the regular term, ε is 

the insensitivity function parameter. 
The solution of the optimization problem in Eq. (33) is given by [66]: 

f (x) =
∑

iϵSV

(
αi − α′

i

)
K(xi, x) + b subject to αi, α′

i ϵ [0, C] (34)  

here, K(xi, x) is a kernel function, C is a regularization parameter, SV 
denotes support vectors, which are subsets of training data points, and αi 

and α′

i are Lagrange multipliers of the lower and upper support vectors, 
respectively. The kernel function for linear SVR is given by Eq. (35). 

k(x, y) = xT y+ constant (35)  

4.6. Hyperparameter Optimization and performance measures 

The database was randomly split into train and test sets in the 80% / 
20% proportion, respectively. The training set was used for model 
training and development, while the test set was used for the final 
evaluation of the models. Grid search is combined with K-fold cross- 
validation to optimize the hyperparameters of the ML models. K-fold 
cross-validation splits the training set into K mutually exclusive and 
exhaustive sets of as nearly equal size as possible, as shown in Fig. 3 for 
K = 10. The model is trained on K − 1 folds and validated on the 
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remaining one-fold. This process is repeated K times; thus, each fold and 
its complement play the role of the validation and training sets, 
respectively. Finally, the performance of the cross-validated model is 
taken as the average of the performance from the K validation sets. In 
this study, a commonly used 10-fold (K = 10) cross-validation is 
adopted, as shown in Fig. 3. 

In addition, commonly used statistical performance metrics such as 
mean absolute percent error (MAPE), root mean squared error (RMSE), 

and coefficient of determination (R2) were used to measure the predic-
tive performance and effectiveness of the developed ML models. The 
statistical metrics are mathematically expressed in Eqs. (36)–(38), 
respectively.  

• Mean absolute percentage error: 

MAPE =
1
N
∑N

i=1

⃒
⃒
⃒
⃒
Yi − Ŷ i

Yi

⃒
⃒
⃒
⃒ (36) 

Fig. 2. Training process in super-learner model.  

Fig. 3. Hyperparameter optimization using 10-fold cross validation combined with grid search.  
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• Root mean squared error: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N

i=1
(Yi − Ŷ i)

2

√

(37)    

• Coefficient of determination: 

R2 = 1 −
∑N

i=1(Yi − Ŷ i)
2

∑N
i=1(Yi − Y)2 (38)  

where, 
Yi = experimental flexural capacity, 
Y = average of the flexural capacity of the beams in the database, 
Ŷi = predicted flexural capacity, and. 
N = number of observations in the database. 
The model with the highest R2 and lowest MAPE and RMSE is 

considered as the best predictive model. R2 = 1 shows a perfect agree-
ment between the actuals and predictions. 

5. Results and discussion 

5.1. Optimized ML models and their predictive capabilities 

As discussed earlier, a grid search is combined with K-fold cross- 
validation to optimize the hyperparameters of the ML models using the 
training set and taking the RMSE as the evaluation index. The optimized 
hyperparameters for CART include maximum depth of the tree, maximum 
number of randomly selected input parameters, minimum number of 
samples required to split an internal node, and minimum number of 
samples to be at a leaf node. For AdaBoost, the number of estimators 
(CARTs) and learning rate are optimized in addition to the hyper-
parameters of its base learner, CART. Similarly, the gradient boosted 
decision tree is optimized using the number of estimators, learning rate, 
maximum depth of tree, maximum number of input parameters, mini-
mum number of samples required to split an internal node, and minimum 
number of samples required to be at a leaf node for base learner. The 
maximum number of estimators, maximum depth, and learning rate are 
optimized for XGBoost. The optimal values of the hyperparameters are 
listed in Table 2 for CART, AdaBoost, GBDT, and XGBoost models. The 
super-learner model combined the optimized CART, AdaBoost, and GBDT 
models into a single and strong model using linear SVR as a meta-model. 

After optimizing the hyperparameters of each model, their prediction 
capability is evaluated on the test dataset. Fig. 4a–e show the scatter plots 
for the experimental moment (Mexp) versus predicted moment (Mpred) 
based on the optimized models, in which the abscissa and ordinate show 
the experimental and predicted flexural capacities, respectively. As 
shown in these figures, the vast majority of the data points are concen-
trated on both sides of the equity line (y = x), indicating a good agreement 
between the predicted and experimental flexural capacities. Apart from 
CART, all models provided predictions within ±20% of the experimental 
values, as shown in Fig. 4a–e. Fig. 4a–e also provided the coefficient of 
determination on both the train and test datasets for all models. As can be 
seen in these figures, the super-learner model provided the highest coef-
ficient of determination on both the train and unseen (test) datasets. 

The predictive performance of the ML models is further evaluated 
based on the previously defined performance metrics and results are 
presented in Table 3 for both the train and test datasets. As listed in 
Table 3, the MAPE and RMSE values on the test dataset using the CART 
model for flexural capacity predictions are the highest at 20.77% and 
20.91 kN.m, respectively. All ensemble models showed better prediction 
accuracy relative to CART, which is logical since ensemble models 
integrate multiple weak learners to produce a strong learner with a 
better prediction capability over the base learners. The GBDT and 
XGBoost models showed comparable prediction performances in 

predicting the flexural capacities of FRP-RC beams, as shown in Fig. 5 
and Table 3. The super-learner model further improved the prediction 
capability of the models and resulted in the lowest prediction errors: 
MAPE (6.63%) and RMSE (5.61 kN.m), as well as the highest coefficient 
of determination of 98.8% on the test dataset, as can be observed in 
Table 3 and Fig. 5. These results demonstrate the predictive capability of 
super-learner model amongst other ML models considered in this study. 

5.2. Comparative study 

The flexural capacity of FRP-RC beams estimated using the super- 
learner model was compared to those predicted using ACI 440.1R-15 
[14] and CAN/CSA-S806–12 [16] equations, as shown in Figs. 6 and 7 
and Table 4. The comparison was carried out using the statistical mea-
sures of R2, histogram distribution of the predictions, coefficient of 
variance (COV), MAPE, and RMSE. It can be seen that the predictions of 
ACI 440.1R-15 [14] were slightly more accurate than CAN/-
CSA-S806–12 [16]. As shown in Fig. 6 and Table 4, ACI 440.1R-15 [14] 
recorded higher R2 and lower MAPE and RMSE than CAN/CSA-S806–12 
[16]. Furthermore, Fig. 7 illustrates that CAN/CSA-S806–12 [16] had a 
higher variability than ACI 440.1R-15 [14]. The slightly lower accuracy 
of the CAN/CSA-S806–12 [16] predictions compared to that of ACI 
440.1R-15 [14] could be attributed to the fact that CAN/CSA-S806–12 
[16] accounts for only over-designed FRP-RC beams, whilst ACI 
440.1R-15 [14] considers both over- and under-reinforced FRP-RC 
beams. Thus, the prediction of the flexural capacity of under-reinforced 
FRP-RC beams using CAN/CSA-S806–12 [16] design code could be less 
accurate than that of ACI 440.1R-15 [14]. The scatter plots in Fig. 6 also 
reveal that many of the predictions obtained by ACI 440.1R-15 [14] and 
CAN/CSA-S806–12 [16] design code were overestimated, indicating 
unsafe prediction for the flexural capacity of FRP-RC beams. Moreover, 
Fig. 6 demonstrates that a considerable number of predictions are 
over-conservative. Even though over-conservative FRP-RC members 
ensure that concrete crushing precedes FRP bar rupture, excessive over 
conservation in FRP-RC beam design requires the use of high amounts of 
reinforcement, which could increase the manufacturing cost of RC 
structure and encounter rebar-congestion related problems. 

The results depict that the super-learner model outperformed the ACI 

Table 2 
Optimized values of the hyperparameters for different ML models.  

Model Hyperparameter Optimal 
value 

CART Maximum depth of the tree 7  
Maximum features 4  
Minimum number of samples required to split an 
internal node 

2  

Minimum number of samples required to be at a leaf 
node 

1 

AdaBoost Base learner CART  
Maximum number of estimators (CARTs) 85  
Learning rate 0.1  
Maximum of depth of tree for base learner 8  
Maximum features for base learner 4  
Minimum number of samples required to split an 
internal node for base learner 

2  

Minimum number of samples required to be at a leaf 
node for base learner 

1 

GBDT Maximum number of estimators (CARTs) 145  
Maximum depth of tree 3  
Learning rate 0.2  
Maximum features 3  
Minimum number of samples required to split an 
internal node for base learner 

2  

Minimum number of samples required to be at a leaf 
node for base learner 

1 

XGBoost Maximum number of estimators (CARTs) 70  
Maximum depth of tree 3  
Learning rate 0.17  
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440.1R-15 [14] and CAN/CSA-S806–12 [16] in estimating the flexural 
capacity of FRP-RC beams. This could be demonstrated from the scatter 
plot in Fig. 6, in which most of the predictions by the super-learner model 
lied within the fitted line, while the predictions of ACI 440.1R-15 [14] and 
CAN/CSA-S806–12 [16] significantly scattered away from the fitted lines. 
Additionally, as presented in Table 4, predictions obtained by the 
super-learner model recorded noticeably higher R2 and lower MAPE and 
RMSE than those obtained by 440.1R-15 [14] and CAN/CSA-S806–12 
[16]. Moreover, the histogram plotted in Fig. 7 depicts that the variability 
of the Mpred/Mexp obtained by the super-learner model results was the 
closest to 1 among all models. Furthermore, the COV of the super-learner 
model was 0.05%, whilst ACI 440.1R-15 [14] and CAN/CSA-S806–12 
[16] demonstrated COV of 0.3% and 0.34%, respectively. This indicates the 
adequacy and consistency of the super-learner model in predicting the 
flexural capacity of FRP-RC beams with different beam geometries, FRP 
reinforcement types and ratios, and mechanical properties of concrete and 
FRP composites compared to the standardized equations of ACI 440.1R-15 
[14] and CAN/CSA-S806–12 [16]. 

The performance of the proposed and existing models was further 
investigated with the use of the Modified Demerits Points Classification 
(MDPC) method [67] that can be used to evaluate the safety, accuracy, 
and economic aspects of the predictive models. In this approach, a 
penalty is assigned to each value of the Mpred/Mexp ratio based on  
Table 5. The best predictive model in terms of safety, accuracy, and 
economic aspects is characterized by the least total penalty based on 
MDPC method. Fig. 8a–c shows the scatter plots for the Mpred/Mexp ratio 
and the number of beams in each region for FRP-RC beams. In these 
figures, the appropriate safety, conservative, extra conservative, 
dangerous, and extra dangerous regions are denoted by ‘AS’, ‘C′, ‘EC’, 
‘D′, and ‘ED’, respectively. As can be observed in Fig. 8a–c, only 41% and 
45% of the specimens lied within the appropriate safety region for ACI 
and CAN/CSA models. By contrast, 97 % of the predictions based on the 

Fig. 4. Experimental versus predicted flexural capacities of FRP-RC beams based on the optimized ML models.  

Table 3 
Performance metrics of the ML models.  

Models Training set Test set 

MAPE 
(%) 

RMSE 
(kN•m) 

R2 

(%) 
MAPE 
(%) 

RMSE 
(kN•m) 

R2 

(%) 

CART  8.54  5.83  98.5  20.77  20.91  83.5 
AdaBoost  4.96  3.10  99.6  8.96  6.91  98.2 
GBDT  1.84  1.39  99.9  8.12  6.37  98.5 
XGBoost  1.44  0.80  100  7.33  6.33  98.5 
Super-learner  1.82  1.61  99.9  6.63  5.61  98.8  

Fig. 5. Predictive performance of boosting ensemble models and super-learner 
model on the test set. 
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proposed model lied within the appropriate safety region. In addition, 
the super-learner model recorded a total penalty of 16, whereas ACI 
440.1R-15 [14] and CAN/CSA-S806–12 [16] exhibited a total penalty of 
147 and 219, respectively (Table 6). These observations evidenced that 
the proposed model is superior in predicting the flexural capacity of 
FRP-RC beams and provided the most accurate, safe, and economic 
predictions. The superior predictive capability of the proposed ML 
model is attributed to its capacity to predict the relationship between the 
predictors and response variable without the need for the prior knowl-
edge of the underlying physical model as opposed to statistical or 

mathematical approaches that require a predefined set of assumptions. 

6. FAI: fast, accurate, and intelligent prediction tool 

Even though ML models are increasingly used in the field of struc-
tural engineering, the practical application of such models is very 
limited owing to their complex nature. Therefore, practical imple-
mentation of such models by providing a user-friendly and efficient tool 
based on optimized ML models is essential. However, only a few studies 
provided practical implementation of such models for using them as a 
predictive tool [68–72]. In this study, a fast, accurate, and intelligent 
(FAI) prediction tool for the flexural capacity of FRP-RC beams is 
established by deploying the developed super-learner model. The 
deployed tool can be run on any device, including computers, tablets, 
and mobile phones. Fig. 9 shows the graphical user interface (GUI) of the 
developed web-based prediction tool, which can be accessed at: 
https://frpflexure.herokuapp.com/. As shown in this figure, in the 
beginning, the user specifies the values of the input parameters, which 
define the beam geometry, material strength, and internal FRP rein-
forcement ratio. The summary of the defined values of the input pa-
rameters is provided under the summary table in the GUI interface. The 
flexural capacity of the FRP-RC beams is then automatically computed 
using the optimized super-learner ML model and displayed under the 
predicted flexural capacity of the beam section. 

7. Conclusion and future work 

This study demonstrated the application of ML to develop flexural 
capacity prediction models for concrete beams reinforced with FRP 

Fig. 6. Experimental versus predicted flexural capacities of FRP-RC beams based on (a) ACI 440.1R-15 [14], (b) CAN/CSA-S806–12 [16], and (c) proposed 
super-learner models. 

Fig. 7. Histogram of predicted to experimental flexural capacities ratio based on (a) ACI 440.1R-15 [14], (b) CAN/CSA-S806–12 [16], and (c) proposed 
super-learner models. 

Table 4 
Performance of existing models and proposed super-learner model on complete 
dataset.  

Model MAPE (%) RMSE (kN•m) R2 (%) 

ACI 440.1R-15[14]  21.81  16.15  88.64 
CAN/CSA-S806–12[16]  25.87  19.84  82.85 
Super-learner  3.37  2.91  99.63  

Table 5 
Modified version of the Demerit Points Classification (DPC) criteria [67].  

Mpred/Mexp Classification Penalty (PEN) 

> 2 Extra dangerous  10 
[1.176 – 2] Dangerous  5 
[0.869 – 1.176] Appropriate safety  0 
[0.5 – 0.869] Conservative  1 
≤ 0.5 Extra conservative  2  
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composites. CART and three boosting- and tree-based ensemble models 
such as AdaBoost, GBDT, and XGBoost were trained and optimized 
based on a database of FRP-RC beams. A super-learner model was then 
developed by combining the optimized boosting algorithms using linear 
support vector regression as a meta-model to develop an accurate, sta-
ble, and reliable prediction model for the flexural capacity of FRP-RC 
beams. The following conclusions can be drawn from this study: 

• It is seen that CART has the lowest prediction accuracy for the flex-
ural capacity prediction of FRP-RC beams compared to other 
considered ML models. The ensemble of CARTs in boosting algo-
rithms including AdaBoost, GBDT, and XGBoost significantly 
improved the prediction performance of the model. 

• All ensemble models performed well in predicting the flexural ca-
pacity of FRP-RC beams. The super-learner model outperformed the 
boosting ensemble algorithms (AdaBoost, GBDT, and XGBoost).  

• Among all models investigated in this study, the super-learner model 
provided the highest predictive performance with the lowest MAPE 
and RMSE, and highest R2.  

• The comparative analysis showed the superior predictive capability 
of the proposed model in predicting the flexural capacity of FRP-RC 
beams over the ACI 440.1R-15 [14] and CAN/CSA-S806-12 [16] 
equations.  

• FAI: fast, accurate, and intelligent prediction tool for the flexural 
capacity of FRP-RC beams is established by deploying the developed 
super-learner. The tool can be used for simple and accurate flexural 
capacity prediction and design of concrete beams reinforced with 
FRP. The database used in this study was compiled from the open 
literature that reported experimental results of FRP-RC failed in 
flexure. With the availability of more experimental results, the 
developed super-learner-based prediction tool can be updated to 
improve its generalization ability and range of applicability. 

The current study demonstrated the application of different ML 
models and developed a user-friendly and FAI (Fast, Accurate, and 
Intelligent) prediction tool for the flexural capacity of FRP-RC beams. 
Future research is recommended to investigate the use of physics- 
informed ML models. 

Fig. 8. Flexural capacity prediction capability of the proposed and existing models based on modified DPC [67].  

Table 6 
Prediction capability of ACI 440.1R-15 [14], CAN/CSA-S806–12 [16], and 
super-learner models based on modified DPC [67].  

Model Number of specimens Total penalty 

EC D AS C EC  

ACI 440.1R-15[14]  0  14  54  51  13  147 
CAN/CSA-S806–12[16]  0  34  60  27  11  219 
Proposed super-learner  0  3  128  1  0  16 

Note: ED, D, AS, C, and EC refer to extra dangerous, dangerous, appropriate 
safety, conservative, and extra conservative, respectively. 
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