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A B S T R A C T

Electric load forecasting is essential for the planning and maintenance of power systems. However, its un-
stationary and non-linear properties impose significant difficulties in predicting future demand. This paper
proposes a novel ensemble deep Random Vector Functional Link (edRVFL) network for electricity load
forecasting. The weights of hidden layers are randomly initialized and fixed during the training process. The
hidden layers are stacked to enforce deep representation learning. Then, the model generates the forecasts using
the ensemble of the outputs of each layer. Moreover, we also propose to augment the random enhancement
features by empirical wavelet transformation (EWT). The raw load data are decomposed by EWT in a walk-
forward approach without introducing future data leakage problems in the decomposition process. Finally, all
the sub-series generated by the EWT, including raw data, are fed into the edRVFL for forecasting purposes.
The proposed model is evaluated on sixteen publicly available time series from the Australian Energy Market
Operator of the year 2020. The simulation results demonstrate the proposed model’s superior performance
over eleven forecasting methods in two error metrics and statistical tests on electricity load forecasting tasks.
1. Introduction

Forecasting electricity load accurately benefits electric power sys-
tem planning for maintenance and construction. After collecting raw
electricity demand, a reliable forecasting model established on raw his-
torical data can estimate how much electricity is expected. Therefore,
accurate forecasts can help the supplier to decrease energy generation
and expenses and plan the resources efficiently (Heydari et al., 2020).
Furthermore, short-term load forecasting models assist electricity orga-
nizations in making opportune decisions in a data-driven fashion. As a
result, developing novel and accurate forecasting models for short-term
load is beneficial.

The electricity load forecasting is a kind of time series forecasting
tasks. Forecasting the future using intelligent forecasting models is a
well-developed field, where the models established from the historical
data are used to extrapolate future values (Makridakis, Wheelwright,
& Hyndman, 2008). There are plentiful forecasting models, such as
Auto-regressive integrated moving average (ARIMA) (Contreras, Es-
pinola, Nogales, & Conejo, 2003), fuzzy time series (Gao & Duru,
2020), support vector regression (SVR) (Chen et al., 2004; Yang, Li, &
Yang, 2019; Zhang & Hong, 2021), randomized neural networks (Ren,

∗ Corresponding author.
E-mail addresses: gaor0009@e.ntu.edu.sg (R. Gao), liang011@e.ntu.edu.sg (L. Du), epnsugan@ntu.edu.sg (P.N. Suganthan), ZH0031IN@e.ntu.edu.sg

(Q. Zhou), kumfai.yuen@ntu.edu.sg (K.F. Yuen).

Suganthan, Srikanth, & Amaratunga, 2016), hybrid models (Gao, Du, &
Yuen, 2020; Gao, Du, Yuen, & Suganthan, 2021; Qiu, Ren, Suganthan,
& Amaratunga, 2017; Ren, Suganthan, & Srikanth, 2014a), ensemble
learning (Qiu, Zhang, Suganthan, & Amaratunga, 2017; Qiu, Sugan-
than, & Amaratunga, 2018) and deep learning models (Liu et al., 2022).
Accurate and reliable forecasts of electricity load is a challenging and
significant problem for the electric power domain. In the field of load
forecasting domain, the methods can be classified into three categories
(i) statistical models, (ii) computational intelligence models and (ii)
hybrid models. The statistical models, such as ARIMA (Contreras et al.,
2003) and exponential smoothing (Taylor, 2011), are computationally
efficient and theoretically solid, but their performance is not outstand-
ing. The second huge branch is the computational intelligence models
including fuzzy system (Ali, Adnan, Tariq, & Poor, 2020; Gao et al.,
2020), SVR (Chen et al., 2004), shallow artificial neural networks
(ANN) (Ren et al., 2016) and deep learning (Almalaq & Edwards,
2017; Shi, Xu, & Li, 2017; Hafeez, Alimgeer, & Khan, 2020; Qiu,
Zhang, Ren, Suganthan, & Amaratunga, 2014). Although deep learning
has dominated the intelligent methods for forecasting, it owns some
limitations, such as overfitting, hyper-parameter optimization, and a
vailable online 11 June 2022
957-4174/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2022.117784
Received 9 February 2022; Received in revised form 14 May 2022; Accepted 4 Jun
e 2022

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:gaor0009@e.ntu.edu.sg
mailto:liang011@e.ntu.edu.sg
mailto:epnsugan@ntu.edu.sg
mailto:ZH0031IN@e.ntu.edu.sg
mailto:kumfai.yuen@ntu.edu.sg
https://doi.org/10.1016/j.eswa.2022.117784
https://doi.org/10.1016/j.eswa.2022.117784
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.117784&domain=pdf


Expert Systems With Applications 206 (2022) 117784R. Gao et al.

h
a
i
t
r
e
(
o
(
o
s
i
(
E
l
c
f
2

Fig. 1. EWT implementation.
Fig. 2. Architecture of the edRVFL.
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uge computation burden. Researchers have dedicated themselves to
ddressing these limitations and improving forecasting accuracy. For
nstance, the authors construct a diverse pool of training samples by in-
egrating all neighbors’ observations, and such diversity helps the deep
ecurrent neural network (RNN) address the overfitting problems (Shi
t al., 2017). A deep factored conditional restricted Boltzmann machine
FCRBM) whose parameters are optimized via a genetic wind-driven
ptimization (GWDO) for load forecasting is proposed by Hafeez et al.
2020). The last category, hybrid models, includes the combination
f feature extraction blocks and several forecasting models to form a
ingle model. For example, the empirical mode decomposition (EMD)
s utilized to extract modes from the load and then deep belief network
DBN) is implemented to forecast each mode in Qiu, Ren, et al. (2017).
mpirical wavelet transformation (EWT) is applied to decompose the
oad data into sub-series in a walk-forward fashion and then the con-
atenation of raw data and sub-series is fed into a random vector
unctional link (RVFL) network for forecasting purposes (Gao et al.,
021).
2

k

Neural networks are popular models for mining complex knowl-
dge due to their high accuracy and strong ability to handle non-
inearity (Almalaq & Edwards, 2017; Liang, Liu, et al., 2021). The deep
earning models succeed in solving problems for transportation (Liang,
iu, et al., 2021), shipping industry (Liang, Zhan, & Liu, 2021) and
oad forecasting (Shi et al., 2017; Hafeez et al., 2020; Qiu et al.,
014). The deep learning models succeed in forecasting short-term load
ccurately because of their hierarchical structures which learn a mean-
ngful representation of the input data. However, most fully trained
eep learning models suffer from huge computation burdens. The huge
omputation of deep learning is due to the iterative optimization of the
eights and biases. The network needs to do feed-forward and back-
ard computations of the output and gradients during each iteration.
o achieve adequate training, the deep learning models must process
he whole dataset in multiple iterations. Therefore, this paper proposes
fast ensemble deep learning algorithm for short-term load forecasting.
he proposed model inherits the advantages of ensemble learning and
eep learning without imposing much computational burden at the
ame time. This paper investigates the forecasting ability of a special
ind of randomized deep neural networks, the deep RVFL network.
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Fig. 3. The proposed model’s flowchart.

The randomization of the RVFL network simultaneously achieves strong
non-linearity and generalization abilities (Zhang & Suganthan, 2016b).
The hidden layers of the RVFL network are randomly initialized and do
not need training. The unique part, which requires training, is the linear
output layer. The output layer’s weights are computed with the closed-
form solution without iterative steps. Therefore, the training of the deep
RVFL network is faster than the deep learning models with an iterative
training process. Ensemble learning techniques are combined with the
deep RVFL to reduce the uncertainty caused by a single model. Since
the deep RVFL’s hidden features are randomly generated and remained
fixed during the training process, the EWT is utilized to extract features
with different frequencies to augment the deep RVFL’s random features.
Recently, the universal function approximation ability of the RVFL
network is proved in Needell, Nelson, Saab, and Salanevich (2020).
This paper uses EWT to decompose the raw data in a walk-forward
fashion which is different from decomposing the whole time series
altogether (Qiu, Ren, et al., 2017; Ren et al., 2014a; Ren, Suganthan,
& Srikanth, 2014b; Qiu et al., 2018). The future data are not involved
in the walk-forward decomposition process. Therefore there is no data
leakage problem in terms of forecasting.

The novel perspectives of the proposed model are summarized as
follows:

1. This paper implements the edRVFL for short-term load forecast-
ing for the first time. The median computation is utilized as
3

the ensemble approach which is different from the edRVFL for
classification (Shi, Katuwal, Suganthan, & Tanveer, 2021).

2. The EWT is combined with the edRVFL as a feature engineering
block to augment the random features. Furthermore, the EWT is
conducted in a walk-forward fashion to avoid future data leak-
age problems. Finally, a novel hybrid forecasting model based on
walk-forward EWT and edRVFL is proposed for short-term load
forecasting.

3. The hyper-parameters of the proposed model are optimized
in a layer-wise fashion. The succeeding layers are based on
the optimized previous layer’s features. Therefore, each layer
has its suitable hyper-parameters and does not degrade the
performance.

4. The proposed model is compared with various benchmark mod-
els from statistical ones to state-of-the-art models on sixteen
load time series. Two error metrics and two statistical tests are
conducted for precise comparisons. The statistical tests demon-
strate the proposed model’s superiority both in a group-wise and
pair-wise fashion.

The remainder of this paper is organized as follows: Section 2
describes the methodologies and the proposed model in detail. We
first describe the EWT and the walk-forward decomposition. Then,
the ensemble deep RVFL and its combination with the walk-forward
EWT is presented. Section 3 presents the experimental step-up and the
results. Finally, conclusions are drawn and potential future directions
are discussed in Section 4.

2. Methodology

This section describes the methodologies in detail. First, we intro-
duce the EWT and the walk-forward decomposition procedure. Then,
we describe the ensemble deep RVFL network and the proposed model.

2.1. Empirical wavelet transformation

The EWT is an automatic signal processing approach with solid
theories in decomposing non-stationary time series (Gilles, 2013). Un-
like discrete wavelet transform (DWT) and EMD (Flandrin, Rilling, &
Goncalves, 2004), EWT precisely investigates the time series in the
Fourier domain after fast Fourier transform (FFT). The EWT separates
the spectrum using data-driven band-pass filtering. Fig. 1 shows the
EWT’s regular procedures. In the EWT, limited freedom is provided
for selecting wavelets. The algorithm employs Littlewood–Paley and
Meyer’s wavelets because of the analytic accessibility of the Fourier
domain’s closed-form formulations (Spencer, 1994). We represent the
normalized frequency as 𝜔 ∈ [0, 𝜋]. We utilize 𝜔𝑛 to represent the limits
between the segments that are obtained from the Fourier support [0, 𝜋].
These band-pass filters’ formulations are denoted using Eqs. (1) and (2)
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Fig. 4. Nemenyi testing results for load forecasting based on: (a) RMSE and (b) MASE. The critical distance is 4.17. The Friedman p-values are: (a) 7.92e−28 and (b) 4.55e−22.

Fig. 5. Comparisons of raw data and forecasts for the SA dataset.
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Fig. 6. Comparisons of raw data and forecasts for the NSW dataset.
with a transitional band width parameter 𝛾 satisfying 𝛾 ≤ min𝑛
𝜔𝑛+1−𝜔𝑛
𝜔𝑛+1+𝜔𝑛

.
The most common function 𝜁 (𝑥) in Eqs. (1) and (2) are presented
in Eq. (3).

𝛽(𝑥) = 𝑥4(35 − 84𝑥 + 70𝑥2 − 20𝑥3) (3)

This empowers the formulated empirical scaling and wavelet func-
tion {�̂�1(𝜔), {�̂�𝑛(𝜔)}𝑁𝑛=1} to be a tight frame of 𝐿2(R) (Casazza et al.,
2000). It can be observed that {�̂�1(𝜔), {�̂�𝑛(𝜔)}𝑁𝑛=1} are used as band-pass
filters centered at assorted center frequencies.

2.2. Walk-forward decomposition

Plentiful works utilize signal decomposition techniques as a feature
engineering block for the forecasting algorithms (Qiu, Ren, et al., 2017;
Ren et al., 2014a; Ghelardoni, Ghio, & Anguita, 2013; Gao et al., 2020;
Yang & Liu, 2018; Gao et al., 2021; Huang & Deng, 2021), however,
most do not implement the decomposition in a proper way (Gao et al.,
2021; Huang & Deng, 2021). As mentioned in Gao et al. (2020, 2021),
Huang and Deng (2021), direct utilization of signal decomposition
algorithm to the whole time series causes the data leakage problem in
terms of forecasting. The decomposed data are actually the output from
convolution operations and the future data definitely are involved dur-
ing the convolution. Therefore, decomposing the whole time series is
incorrect and improper, especially for establishing forecasting models.

Some solutions are proposed to avoid the future data leakage prob-
lem for decomposition-based forecasting models, such as the data-
driven padding (Gao et al., 2020), moving window strategy (Huang &
5

Deng, 2021) and walk-forward decomposition (Gao et al., 2021). The
data-driven padding approach is to train a simple learning algorithm
which aims at padding its forecast to the end of the time series (Gao
et al., 2020). The moving window strategy only decomposes the data
located in the window (order) and then the decomposed series are
fed into forecasting models (Huang & Deng, 2021). Different from the
moving window strategy, only part of the decomposed sub-series are
used as input in the walk-forward decomposition. The moving window
strategy is a subset of the walk-forward decomposition. When the order
is equal to the window, the moving window and the walk-forward
strategies are the same.

This paper adopts the walk-forward decomposition for the EWT. The
walk-forward EWT decomposes the data within a rolling window 𝑤,
which consists of 𝑥(𝑡−1), 𝑥(𝑡−2),… ...𝑥(𝑡−𝑤), into 𝑘 scales with the aim
to forecast 𝑥(𝑡). Then only the last order data points are used as input
for the forecasting model. The whole process of the walk-forward EWT
is presented in Algorithm 1. Therefore, only historical observations are
involved both in the decomposition process and the model’ training.

2.3. BayesIan optimization algorithm for hyper-parameters tuning

Bayesian optimization (Pelikan, Goldberg, Cantú-Paz, et al., 1999)
utilizes a surrogate function to model the conditional probability of
the performance on the validation set. Different from grid search

method, Bayesian optimization memorizes all the calculations. The
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Fig. 7. Comparative results of different signal processing techniques: (a) Average RMSE and (b) Average MASE.
algorithm avoids the redundant computation to evaluate inferior hyper-
parameters. Then, an acquisition function is utilized to seek the best
configuration to be evaluated in the next iteration.

Bayesian optimization algorithm (BOA) consists of five elements:
surrogate function, the searching space of hyper-parameters, acquisi-
tion function, objective function, and evaluations’ history. In this paper,
the objective function is defined as the prediction performance on
the validation set. This paper utilizes the popular tree-based Parzen
window estimation (TPE) algorithm to model the surrogate function
and uses expected improvement as the acquisition function 𝑆 shown
in Eq. (4)

𝑆𝑓∗ (𝜈) =
𝑓∗

(𝑓 ∗ − 𝑓 )𝑃 (𝑓 |𝜈)𝑑𝑓 , (4)
6

∫−∞
where 𝑓 is the objective function and 𝑓 ∗ is the threshold of objective
function given the hyper-parameters 𝜈. Finally, the procedures of TPE
are presented in Algorithm 2.

2.4. Ensemble deep RVFL

Inspired by the deep representation learning, the deep RVFL is an
extension of the RVFL with a shallow structure (Shi et al., 2021).
The deep RVFL is established by stacking multiple enhancement layers
to achieve deep representation learning. The clean data are fed into
each enhancement layer to guide the random features’ generation. In
this fashion, the enhancement features of hidden layers are generated
based on the information from the clean data and the features from the

previous layer. A diverse set of features is generated with the help of
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Fig. 8. The barplot of the performance measured in normalized RMSE. The BOAedRVFL represents the edRVFL trained using layer-wise BOA. The GridEWTedRVFL represents
the EWTedRVFL optimized by grid search. Finally, the BOAEWTedRVFL represents the proposed model whose input is augmented by EWT, and the layer-wise BOA optimizes
architecture.
Algorithm 1: Walk-forward EWT.
Input: Input time series 𝑥(𝑡), rolling window size 𝑤,
decomposition scales 𝑘, time lag used for modeling 𝑝
Output: Sub-series, 𝐗

1 𝐗 = 𝑧𝑒𝑟𝑜𝑠(𝑘, 𝑝, 𝑙𝑒𝑛(𝑥(𝑡)) −𝑤)
2 for 𝑖 = 𝑤 ∶ 𝑙𝑒𝑛(𝑥(𝑡)) do
3 Apply EWT to decompose 𝑥(𝑖 −𝑤 ∶ 𝑖) to 𝑘 scales

𝑥1(𝑖 −𝑤 ∶ 𝑖), 𝑥2(𝑖 −𝑤 ∶ 𝑖), ..., 𝑥𝑘(𝑖 −𝑤 ∶ 𝑖)
4 for 𝑗 = 1 ∶ 𝑘 do
5 𝐗[𝑗, ∶, 𝑖 −𝑤] = 𝑥𝑗 (𝑖 − 𝑝 ∶ 𝑖)
6 end
7 end

Algorithm 2: TPE for hyper-parameters tuning.
Input: Objective function 𝑓 , TPE method , hyper-parameters

space H𝜈 , acquisition function validation 𝑆, initialized
memory 

Output: Best hyper-parameters 𝜈∗ in memory 𝐷
1 for 𝑖 = 1 ∶ 𝑁 do
2 𝑃 (𝑓 |𝜈) ← Fit memory  using 
3 𝜈𝑖+1 ← Maximize acquisition function 𝑆 in Equation (4) in

search for the next hyper-parameters choice
4 𝑓 (𝜈𝑖+1) ← Evaluate the objective function

 ←  ∪ (𝜈𝑖+1, 𝑓 (𝜈𝑖+1))
5 end

hierarchical structures. Ensemble learning is introduced into the deep
RVFL architecture to formulate the ensemble deep RVFL (edRVFL).
Different from the popular deep learning models with a single output
layer, the edRVFL trains multiple output layers based on all the hidden
7

features. Finally, the forecasts from all output layers are combined for
forecasting.

For the sake of presentation simplicity, we only present the edRVFL
with a structure of 𝐿 enhancement layers and there are 𝑁 enhancement
nodes in each layer. Fig. 2 shows the architecture of the edRVFL net-
work with 𝐿 hidden layers. The input feature vector with 𝑑 dimensions
is propagated to the enhancement layers with 𝑁 non-linear nodes.
When computing the output, each enhancement layer’s features are
concatenated with the input data to generate its output �̂�𝑖. Finally,
the aggregation of all �̂�𝑖 is the entire network’s output. Suppose that
the input data are 𝐗 ∈ R𝑛×𝑑 , where 𝑛 and 𝑑 represent the number of
samples and feature dimension, respectively. 𝑑 is the time lag (order)
for the time series forecasting model. The features generated by the first
enhancement layer are defined as

𝐇𝟏 = 𝑔(𝐗𝐖𝟏), (5)

where 𝐖𝟏 ∈ R𝑑×𝑁 represents the weight vector of the first enhance-
ment layer, 𝐇𝟏 ∈ R𝑛×𝑁 denotes the enhancement features and 𝑔()
is a non-linear activation function. The readers can refer to Zhang
and Suganthan (2016a) for a comprehensive evaluation of different
activation functions. Then, for the deeper enhancement layer 𝑙, the
enhancement features can be computed as

𝐇𝑙 = 𝑔([𝐇𝑙−1,𝐗]𝐖𝑙), (6)

where 𝐖𝑙 ∈ R(𝑑+𝑁)×𝑁 and 𝐇𝑙 ∈ R𝑛×𝑁 . The enhancement weight
vectors 𝐖𝟏 and 𝐖𝑙 are randomly initialized and remained fixed during
training.

The edRVFL computes the output weights by splitting the task into
𝑙 small tasks. The output weights are calculated separately for each
layer. There are several differences from using the last layer’s features
and all layers’ features for decisions. Most deep learning models only
use the last layer’s features for decisions, however, the information

from the intermediate features is lost. These intermediate features
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from the hidden layers formulate a hierarchical representation of the
input data. Simply ignoring them may lose multi-scale information
and deteriorate the network’s performance. Using all layers’ features
requires a computation on the feature matrix with a huge dimension.
Moreover, both of the above architectures only train one network, but
our method benefits from the ensemble approach, which reduces the
uncertainty of a single model.

The loss function of 𝑙th enhancement layer is defined as

𝐿𝑜𝑠𝑠𝑙 = ‖[𝐇𝑙 ,𝐗]𝛽𝑙 − 𝑌 ‖2 + 𝜆‖𝛽𝑙‖2, (7)

here 𝛽𝑙 denotes the output vector of 𝑙th layer and 𝜆 is the regu-
arization parameter. The minimization of 𝐿𝑜𝑠𝑠𝑙 can be solved via a
losed-form solution based on ridge regression (Saunders, Gammerman,
Vovk, 1998).

𝑙 = (𝐃𝐓𝐃 + 𝜆𝐈)−1𝐃𝑇 𝑌 , (8)

here 𝐃 = [𝐇𝑙 ,𝐗]. After computing all 𝛽𝑙, the deep network can output
forecasts. The output of 𝑙th layer is calculated by

= [𝐇𝑙 ,𝐗]𝛽𝑙 (9)

The training algorithm of the edRVFL is summarized in Algorithm 3.
irst, it is necessary to define the network’s hyper-parameters, such as
he hidden dimension, number of layers, and regularization strength.
fter initializing the hidden layer’s weights, a feed-forward compu-

ation of the hidden state 𝐇𝑙 is conducted using Eqs. (5) or (6).
inally, this training algorithm outputs the output layers’ weights 𝛽 =
𝛽1,… , 𝛽𝑙].

The final forecast is an ensemble of all outputs. Any forecast com-
ination approach can be applied to this procedure (Timmermann,
006). According to the suggestions in Timmermann (2006), the me-
ian operation is always likely to improve the forecast combination’s
erformance. Therefore, we use the median as the combination oper-
tor and propose the edRVFL. The whole test process for the edRVFL
s presented in Algorithm 4. When the training process is finished, the
dRVFL computes the output �̂� in a feed-forward way.

Algorithm 3: Training algorithm for edRVFL
Input: 𝑁 , the hidden dimension
𝐿,the number of layers
𝜆𝑙,the regularization strength of 𝑙th layer
Output: 𝛽 = [𝛽1, ..., 𝛽𝑙]

1 Initialize the 𝐖1, ...,𝐖𝐿 randomly
2 𝑙 = 1
3 for 𝑙 ≤ 𝐿 do
4 if 𝑙 = 1 then
5 Compute 𝐇𝟏 using 𝐖1 as in Equation (5)
6 Compute 𝛽𝟏 using 𝜆1 as in Equation (8)
7 else
8 Compute 𝐇l using 𝐖𝑙 as in Equation (6)
9 Compute 𝛽𝑙 using 𝜆𝑙 as in Equation (8)
0 end
1 𝑙 + +
2 end

2.5. EWT-edRVFL

The model EWT-edRVFL consists of two blocks, the walk-forward
EWT decomposition and the edRVFL. The walk-forward EWT is first
applied to the load data to extract some features in a causal fashion.
Then the raw data concatenated with the sub-series are fed into the
edRVFL with 𝐿 enhancement layers for learning purposes. The out-
ut weights 𝛽𝑙 of the 𝑙th enhancement layer are computed according

to Eq. (8). Finally, we ensemble the 𝐿 forecasts with median operation
8

to obtain the output �̂�.
Algorithm 4: Test process for edRVFL
Input: 𝑊 , the hidden layers’ weights
𝛽,the output layers’ weights
𝜆𝑙,the regularization strength of 𝑙th layer
Output: �̂�
Data: 𝑋,the test samples

1 𝑙 = 1
2 for 𝑙 ≤ 𝐿 do
3 if 𝑙 = 1 then
4 Compute 𝐇1 using 𝐖1 as in Equation (5)
5 Compute the output 𝑌1 of each output layer according to

Equation (9)
6 else
7 Compute 𝐇𝑙 using 𝐖𝑙 as in Equation (6)
8 Compute 𝑌𝑙 using 𝐖𝑙 as in Equation (9)
9 end
0 𝑙 + +
1 end
2 Compute the final output via 𝑚𝑒𝑑𝑖𝑎𝑛(�̂�1, ..., �̂�𝐿)

Since the higher enhancement layer’s performance depends on the
lower ones’, the hyper-parameters of the whole model are tuned in
a layer-wise fashion. Once the shallow layer’s hyper-parameters are
determined, they are fixed, and the Bayesian optimization approach is
applied to the next layer. The layer-wise Bayesian optimization algo-
rithm is shown in Algorithm 5. The layer-wise Bayesian optimization
offers a different set of hyper-parameters for each layer. Therefore each
enhancement layer has its own regularization parameter, which helps
the overall edRVFL learns a diverse set of output layers. The flowchart
of the proposed model is shown in Fig. 3.

Algorithm 5: Layer-wise cross-validation algorithm for edRVFL
Input: Search space for 𝑁 and 𝜆
𝐿, number of layers
Output: The best configuration of edRVFL

1 𝑙 = 1
2 for 𝑙 ≤ 𝐿 do
3 if 𝑙 = 1 then
4 Cross-validation for RVFL
5 Obtain the best configuration, 𝑁 and 𝜆1
6 Compute 𝐇𝟏 using the 𝑁 and 𝜆1 based on Equation (5)
7 𝐇1 is fixed and used for the following layers
8 else
9 Cross-validation for 𝑙th layer based on 𝐇l-1

10 Obtain the best configuration, 𝑁 and 𝜆𝑙
11 Compute 𝐇l using the 𝑁 and 𝜆𝑙 based on Equation (6)
12 𝐇l is fixed and used for the following layers
3 end
4 𝑙 + +
5 end

3. Empirical study

This section presents the empirical study on twenty load time series
collected from the Australian Energy Market Operator (AEMO). First,
we briefly introduce the dataset and pre-processing steps. Then, the
benchmark models and hyper-parameter optimization are described. Fi-
nally, the simulation results are shown, and discussions are conducted.

3.1. Data and its nature

Table 1 summarizes the descriptive statistics of the twenty load time
series. These load data are collected from the states of South Australia
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Table 1
Descriptive statistics.

Location Month Max Min Median Mean Std Skewness Kurtosis

SA Jan 3085.49 440.54 1212.79 1268.80 427.93 1.26 2.60
Apr 1841.85 503.67 1177.78 1161.61 248.31 −0.33 −0.37
Jul 2383.18 765.27 1489.76 1514.57 338.45 0.26 −0.59
Oct 1955.46 288.92 1140.50 1095.25 266.31 −0.55 0.21

NSW Jan 13330.14 5765.85 8053.13 8264.22 1535.24 0.85 0.42
Apr 9471.04 5384.58 6983.91 6926.61 792.43 0.20 −0.58
Jul 11739.02 5678.37 8670.19 8690.30 1247.70 0.17 −0.75
Oct 9324.77 5221.13 6999.92 6955.32 771.00 0.01 −0.62

VIC Jan 9507.26 3060.58 4565.41 4765.55 1017.14 1.82 4.39
Apr 6515.96 3094.45 4453.18 4485.45 632.63 0.29 −0.42
Jul 7354.11 3816.70 5497.73 5514.65 832.99 0.04 −0.92
Oct 6142.91 2975.43 4325.26 4379.82 587.84 0.27 −0.53

TAS Jan 1298.63 794.25 1036.17 1040.35 84.44 0.09 −0.26
Apr 1379.49 843.31 1087.11 1093.91 113.14 0.22 −0.71
Jul 1597.64 887.09 1240.32 1246.55 151.24 0.08 −0.86
Oct 1447.61 842.78 1068.39 1087.26 112.91 0.47 −0.33
w
s

(SA), New South Wales (NSW), Victoria (VIC), and Tasmania (TAS)
of the year 2020, which is significantly affected by Covid-19. Four
months, January, April, July, and October are selected to reflect the
four seasons’ features as in Gao et al. (2021), Jalali et al. (2021), Qiu,
Ren, et al. (2017). The data are recorded every half an hour. Therefore,
there are 48 data points per day. The data are publicly available and
can be accessed at the official website of Australian Energy Market
Operator.1

A suitable and correct data pre-processing approach helps the ma-
hine learning model generate accurate outputs. We utilize the max–
in normalization to pre-process the raw data. We assume that the
aximum and minimum of the training set are 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛, re-

pectively. The data are transformed into the range [0,1] using the
ollowing equation:

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
(10)

where 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 and 𝑥 represent the normalized and original time
series, respectively.

All datasets are split into three sets, the training, validation and
test set, to adopt the cross-validation (Bergmeir & Benítez, 2012).
The validation and test set account for 10% and 20% of the dataset,
respectively. The remaining data are used as the training set.

3.2. Results and discussion

Two forecasting error metrics are employed to appraise the accuracy
of these models. The first error metric is the regular root mean square
error (RMSE) whose definition is

𝑅𝑀𝑆𝐸 =

√

√

√

√

√

1
𝐿𝑡𝑒𝑠𝑡

𝐿𝑡𝑒𝑠𝑡
∑

𝑗=1
(𝑥𝑗 − 𝑥𝑗 )2, (11)

where 𝐿𝑡𝑒𝑠𝑡 is the size of the test set, 𝑥𝑗 and 𝑥𝑗 are the raw data and
predictions. The second error metric implemented in the paper is the
mean absolute scaled error (MASE) (Hyndman & Koehler, 2006). The
definition of MASE is

𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛(
𝑥𝑗 − 𝑥𝑗

1
𝐿𝑡𝑟𝑎𝑖𝑛−1

∑𝐿𝑡𝑟𝑎𝑖𝑛
𝑡=2 |𝑥𝑡 − 𝑥𝑡−1|

), (12)

here 𝐿𝑡𝑟𝑎𝑖𝑛 represents the size of training set. The denominator of
ASE is the mean absolute error of the in-sample naive forecast.

We compare the proposed model with many classical and state-
f-the-art models. These models are Persistence model (Makridakis
t al., 2008), ARIMA (Contreras et al., 2003), SVR (Chen et al., 2004),

1 https://aemo.com.au/.
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MLP (Almalaq & Edwards, 2017), LSTM (Kong et al., 2017), hybrid
EWT fuzzy cognitive map (FCM) learned with SVR (EWTFCMSVR) (Gao
et al., 2020), Wavelet High-order FCM (WHFCM) (Yang & Liu, 2018),
EWTRVFL (Gao et al., 2021) and RVFL (Ren et al., 2016). The previ-
ous one day, 48 data points are used as input for all the models as
in Gao et al. (2021). To achieve a fair comparison, all models’ hyper-
parameters are optimized by cross-validation. The hyper-parameter
search space is presented in Table 2. Some parameters are not involved
in the optimization process and they are set to the same values for
all the relevant models, which include the batch size equals to 32,
learning rate equals to 0.001 and epochs equal to 200. For the edRVFL,
the iterations of Bayesian optimization are set to 50 and there are
500 iterations in total for the edRVFL with 10 layers. For RVFL,
EWTRVFL, DESN, edRVFL and EWTedRVFL, the iterations of Bayesian
optimization are the same for fair comparison.

Tables 3 and 4 present the comparative results on each time series
in terms of RMSE and MASE. The numbers in bold represent the
corresponding model’s performance is the best on the specific time
series. The proposed models achieve outstanding performance on most
datasets. Although EWTFCMSVR achieves the best performance on
several datasets, there is a significant variance in its performance.
In addition, the DESN also achieves outstanding accuracy comparing
with the other models. It is challenging to distinguish these forecasting
methods only based on the error metrics. Therefore, statistical tests are
implemented to investigate the difference among all the models further.
We first implement the Friedman test, and the 𝑝-value is smaller than
0.05, which represents that these forecasting models are significantly
different on these twenty datasets. Therefore, a post-hoc Nemenyi test
is utilized to distinguish them (Demšar, 2006). The critical distance of
the Nemenyi test is calculated by:

𝐶𝐷 = 𝑞𝛼

√

𝑁𝑚(𝑁𝑚 + 1)
6𝑁𝑑

(13)

here 𝑞𝛼 is the critical value coming from the studentized range
tatistic divided by

√

2, 𝑁𝑚 represents the number of models and 𝑁𝑑 is
the number of datasets (Demšar, 2006). Fig. 4 represents the Nemenyi
test results. The figures show that the models that achieve excellent
performance are at the top, whereas the model with the worst perfor-
mance is at the bottom. The models within the vertical line indicate
that their performance is not significantly different, although the upper
models outperform the lower ones to some extent. The proposed two
methods are the best ones. The Persistence method is the tailender
because it learns nothing about the patterns. ARIMA is a penultimate
because of its simple linear structure. The DESN outperforms all the
other baseline models. According to the Nemenyi test results, we claim
that deep architectures usually outperform the shallow ones. MLP and

SVR achieve comparable performance. A pair-wise Nemenyi post-hoc

https://aemo.com.au/
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Table 2
Hyper-parameter search space for the benchmark models.

Model Parameter Values

ARIMA 𝑝∕𝑞 [1,2,3]
𝑑 0,1

SVR 𝐶 [2−10 , 20]
𝜖 [0.001,0.01,0.1]
Radius [0.001,0.01,0.1]

MLP Hidden nodes [2,4,8,16,32]
Layers [1,2,3]
Optimizer Adam
Activation 𝑅𝑒𝑙𝑢

LSTM Hidden nodes [2,4,8,16,32]
Layers [1,2,3]
Optimizer Adam
Activation 𝑇 𝑎𝑛ℎ

TCN Filters [2,4,8,16,32]
Kernel size 2
Optimizer Adam
Activation 𝑅𝑒𝑙𝑢

EWTFCMSVR Concepts [2,6]
WHFCM Regularization [20 , 2−8]

DESN Reservoir size [20,200]
Spectral radius [0.95,1]
Input scalings [0,1]
Leaky rate [0.95,1]
Transient [1,49]
Regularization parameter [0,1]

RVFL-based models Enhancement nodes [20,200]
Regularization parameter [0, 1]
Input scalings [0,1]
𝑘 [2, 3, 4]
Window [48, 96, 144]

statistical comparison is further. Tables 5 and 6 summarize the pair-
wise comparison results based on RMSE and MASE, respectively. The
pair-wise comparison shows that the edRVFL significantly outperforms
Persistence, ARIMA, MLP, SVR and EWTFCMSVR. The EWTedRVFL rel-
atively outperforms LSTM, WHFCM, RVFL, DESN and EWTRVFL. The
EWTedRVFL demonstrates a slight superiority over edRVFL. Finally, the
comparison of raw data and the forecasts of EWTedRVFL is shown in
Figs. 5 and 6. Due to page restrictions, we only present the forecasts of
two states, the SA and NSW. It is clear to find that the proposed model
predicts future trends, cycles, and fluctuations accurately.

3.3. Comparison with other signal processing techniques

This section compares the EWT with other signal processing tech-
niques to demonstrate the suitability and superiority of EWT. These
decomposition techniques are variational mode decomposition (VMD)
(Dragomiretskiy & Zosso, 2013), discrete wavelet transform (DWT)
(Shensa et al., 1992) and Fourier transform (Yu, Zhang, & Qin, 2018)
for denoising. All the decomposition methods are implemented in the
walk-forward fashion, which does not utilize future data points. Then
these features are fed into the edRVFL with the same hyper-parameter
optimization process. Four variants, EWTedRVFL, VMDedRVFL, DWT-
edRVFL, and FedRVFL, are constructed based on the decomposition.
These four variants are applied to forecast these sixteen time series with
the same split of training, validation and test set.

Finally, the average performance on these sixteen datasets based on
RMSE and MASE are obtained, normalized and summarized in Fig. 7.
Fig. 7 shows that the edRVFL combined with EWT outperforms the
other variants. The FedRVFL slightly outperforms the DWTedRVFL.
10

Besides, the VMDedRVFL is the worst.
4. Ablation study

The proposed model has three critical components: the EWT de-
composition, BOA hyper-parameter tuning, and edRVFL. An ablation
study is conducted to investigate the significance of each element. We
generate three variants to trace the performance of different layers.
These three variants are summarized below:

• BOAedRVFL: The edRVFL utilizes BOA to optimize
hyper-parameters, but does not combine with the EWT.

• GridEWTedRVFL: The edRVFL utilizes grid search for hyper-
parameter optimization and is combined with the EWT.

• BOAEWTedRVFL: The edRVFL utilizes both the BOA and EWT,
which is the proposed model.

The evaluation results are shown in Fig. 8. The vertical axis repre-
sents the errors, which are scaled to highlight the difference among the
three variants. Based on the results, we find that the GridEWTedRVFL
is the worst, no matter the number of layers. The main reason is that
the whole edRVFL owns the same regularization strength for each
readout layer, which significantly reduces the diversity. The superiority
of BOAEWTedRVFL over GridEWTedRVFL demonstrates the necessity
of BOA. The layer-wise BOA substantially boosts the performance due
to the different configurations for each layer. The BOAedRVFL achieves
the best performance when the number of layers is smaller than four,
but the performance is not improved when the number of layers
increases. A potential reason is that the randomized hidden layer
cannot mine hierarchical features without the augmentation from sig-
nal decomposition. Without the EWT, the deep layer’s features are
only generated from the shallow layer’s randomized features and the
raw input. Therefore, the information for the deep representations is
limited. Another reason is that the fully-connected hidden layers cannot
extract features of different frequencies. However, the EWT decomposes
the time series into sub-series of different frequencies and amplitudes,
which makes up for the hidden layers’ shortcomings. Finally, the pro-
posed model outperforms the other variants when the networks become
deep. Therefore, both the EWT and BOA are recommended to boost
the performance of the edRVFL. This phenomenon demonstrates the
superiority of deep networks over shallow ones of mining complex
features from the input data.

5. Conclusion

This paper proposes a novel ensemble deep RVFL network combined
with walk-forward decomposition for short-term load forecasting. The
enhancement layers’ weights are randomly initialized and kept fixed
as in the shallow RVFL network. Only the output weights of each
layer are computed in a closed form. Since the enhancement features
are unsupervised and randomly initialized, the walk-forward EWT is
implemented to augment the feature extraction. The walk-forward EWT
is different from most literature, where the whole time series is decom-
posed at one time. Therefore, there is no data leakage problem during
the decomposition process. Finally, the median of all forecasts is used
as the final output. The experiments on twenty electricity loads demon-
strate the superiority and efficiency of the proposed model. Moreover,
the proposed model does not suffer from a colossal computation burden
compared with other deep learning models which are fully trained.

There are several reasons for the superiority of the proposed model:

1. The edRVFL’s structure benefits from ensemble learning. The
edRVFL treats each enhancement layer as a single forecaster.
Therefore, the ensemble multiple forecasters reduce the uncer-
tainty of a single forecaster.

2. The clean raw data are fed into all enhancement layers to
calibrate the random features’ generation.

3. The output layer learns both the linear patterns from the direct

link and nonlinear patterns from the enhancement features.
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Table 3
Comparative results in terms of RMSE.

Location Month Persistence ARIMA MLP SVR LSTM EWTFCMSVR WHFCM RVFL DESN EWTRVFL edRVFL EWTedRVFL

SA Jan 72.887 55.638 54.087 66.969 59.617 70.211 45.652 53.170 52.020 55.812 48.021 47.209
Apr 67.985 55.639 49.519 52.796 55.789 111.526 50.725 50.886 54.080 50.547 49.104 49.344
Jul 96.180 61.595 56.444 50.478 46.080 43.705 45.918 49.303 50.445 49.647 47.553 47.208
Oct 66.494 51.914 54.993 48.780 44.572 63.008 45.159 44.673 44.934 45.183 44.660 44.411

NSW Jan 241.660 128.522 177.779 176.637 124.134 124.784 125.046 123.006 119.353 123.469 123.791 122.186
Apr 170.539 107.029 82.397 123.231 109.891 262.121 75.458 79.778 102.188 83.560 76.256 76.579
Jul 294.962 131.801 119.467 130.393 100.255 85.548 95.036 97.840 94.851 98.747 94.670 93.621
Oct 179.376 97.906 96.813 147.033 105.038 99.516 85.903 85.131 90.042 84.850 82.415 82.716

VIC Jan 166.027 107.452 105.513 476.514 160.840 80.530 96.099 112.781 123.474 105.947 99.655 100.624
Apr 161.652 95.063 91.879 112.789 90.132 157.680 79.565 81.300 83.322 81.098 75.444 75.245
Jul 202.388 100.130 73.957 76.369 66.879 234.387 77.278 70.122 71.584 70.356 68.484 67.820
Oct 146.720 93.550 84.794 85.882 78.058 68.096 77.101 73.834 73.571 75.050 72.778 73.708

TAS Jan 22.690 18.884 20.378 21.712 17.709 18.647 18.790 18.935 18.150 18.522 18.442 18.423
Apr 29.511 20.464 25.939 17.250 18.122 17.538 20.026 17.428 17.526 17.293 17.412 17.294
Jul 41.606 24.189 22.461 22.544 20.485 20.126 24.928 21.194 20.167 20.575 20.297 20.382
Oct 30.881 21.364 20.147 19.440 19.322 20.087 20.885 20.044 19.236 19.858 20.077 19.890
Table 4
Comparative results in terms of MASE.

Location Month Persistence ARIMA MLP SVR LSTM EWTFCMSVR WHFCM RVFL DESN EWTRVFL edRVFL EWTedRVFL

SA Jan 1.2552 0.8463 0.8405 0.9083 0.8355 1.0406 0.7138 0.7649 0.7739 0.7984 0.6983 0.6909
Apr 1.1203 0.8195 0.7581 0.7782 0.8278 1.7619 0.8120 0.7768 0.8182 0.7654 0.7363 0.7469
Jul 1.1060 0.5701 0.5598 0.4610 0.4125 0.4049 0.4437 0.4861 0.4810 0.4850 0.4550 0.4525
Oct 1.0056 0.7204 0.8209 0.6215 0.6088 0.8455 0.6309 0.6113 0.6190 0.6168 0.6094 0.6089

NSW Jan 1.4312 0.5671 0.9933 0.8771 0.5749 0.5576 0.5445 0.5580 0.5364 0.5584 0.5570 0.5505
Apr 1.0095 0.6026 0.4514 0.5571 0.5353 1.5863 0.4308 0.4345 0.5042 0.4523 0.4100 0.4159
Jul 0.9287 0.3917 0.3415 0.3625 0.3018 0.2551 0.2842 0.2856 0.2859 0.2867 0.2729 0.2686
Oct 1.0979 0.5425 0.5264 0.7185 0.5644 0.5590 0.4746 0.4657 0.4875 0.4599 0.4438 0.4461

VIC Jan 1.3105 0.7993 0.8405 2.3222 1.0803 0.6126 0.7456 0.7800 0.8411 0.7473 0.7241 0.7203
Apr 1.1833 0.6260 0.6363 0.7401 0.5785 0.9166 0.5284 0.5325 0.5480 0.5361 0.4946 0.4926
Jul 1.0659 0.4864 0.3608 0.3698 0.3264 1.2698 0.3729 0.3366 0.3428 0.3383 0.3257 0.3209
Oct 0.9891 0.5518 0.5154 0.5032 0.4693 0.4141 0.4647 0.4600 0.4489 0.4629 0.4504 0.4545

TAS Jan 1.1101 0.8751 0.9565 1.0609 0.8581 0.8967 0.8819 0.9070 0.8441 0.8897 0.8873 0.8884
Apr 1.0463 0.6983 0.9746 0.6081 0.6298 0.5870 0.6926 0.5890 0.5929 0.5852 0.5872 0.5831
Jul 1.1317 0.6349 0.5926 0.5599 0.5358 0.5169 0.6721 0.5393 0.5059 0.5199 0.5084 0.5114
Oct 1.0218 0.6730 0.6354 0.6162 0.6145 0.6295 0.6598 0.6267 0.6070 0.6262 0.6270 0.6219
Table 5
Pairwise comparisons using Nemenyi post-hoc test based on RMSE.

Persistence ARIMA MLP SVR LSTM EWTFCMSVR WHFCM RVFL DESN EWTRVFL edRVFL EWTedRVFL

edRVFL 0.001 0.001 0.009 0.001 0.442 0.126 0.693 0.816 0.900 0.900 1.000 0.900
EWTedRVFL 0.001 0.001 0.002 0.001 0.228 0.047 0.476 0.600 0.877 0.693 0.900 1.000
Table 6
Pairwise comparisons using Nemenyi post-hoc test based on MASE.

Persistence ARIMA MLP SVR LSTM EWTFCMSVR WHFCM RVFL DESN EWTRVFL edRVFL EWTedRVFL

edRVFL 0.001 0.001 0.001 0.001 0.281 0.097 0.569 0.723 0.900 0.754 1.000 0.900
EWTedRVFL 0.001 0.001 0.001 0.001 0.111 0.030 0.309 0.476 0.754 0.508 0.900 1.000
4. The walk-forward EWT is used as a feature engineering block to
boost the accuracy further.

Although our model shows its superiority in these twenty datasets,
here are still some limitations. For the walk-forward EWT process,
hether to discard the highest frequency is an open problem. It is

hallenging to determine how valuable information is in the highest
requency component. Moreover, other learning techniques can be
onsidered to further boost the performance, like incremental learning
nd semi-unsupervised learning.
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