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ABSTRACT Various incentives are introduced for the expansion of electric vehicle fleets and electricity
generation from renewable energy resources. Although many researchers studied the effect of these policies
on the related sector, there is no study investigating the indirect effect of renewable energy incentives on the
deployment of electric vehicles or the indirect effect of electric vehicle adoption policies on the long-term
integration of renewable energy resources. The main contribution of this paper is to analyze the impact of
the specific incentives on both deployment of electric vehicles in the transportation system and investment
in capacity generation in the electricity market. For this purpose, a new framework was designed to analyze
the effect of policies on the electric vehicle deployment and development of DC charging stations based on
the system dynamics approach. Then, this framework was combined with the existing dynamic models of
the electricity market to study the interaction and behavior of both coupled systems from the policymakers’
perspective. The effect of policies implementation was interpreted in a mathematical framework and the Net
Present Value method was used for assessing the investment in charging infrastructures. Simulation results of
a case study in the United States and sensitivity analysis illustrate that increasing the wind capacity incentives
accelerated the electrification of the transportation system and increasing the incentives for electrification of
transportation system influences wind capacity positively. Moreover, the sensitivity of the electric vehicle
adoption to gas price is more than the sensitivity of the wind capacity penetration to gas price.

INDEX TERMS DC charging stations, electricity market, electric vehicles deployment policies, plug-in
electric vehicles, renewable capacity incentive, system dynamics, wind capacity investment.

NOMENCLATURE
A. ABBREVIATIONS
ESS Energy storage system.
RES Renewable energy source.
PEV Plug-in electric vehicle.
EVSE Electric vehicle supply equipment.
HC Hard coal units.
CCGT Combined cycle gas turbines.
GT Gas turbines.
NPV Net Present Value.
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B. VARIABLES
DUCH Number of PEVs that are supplied in DC charg-

ing station.
d Time step (day).
TNPEV Total number of plug-in electric vehicles.
DCEVC Daily consumption of electric vehicles that use

DC charging stations (kWh/day).
MAGE Average daily driving distance of electric vehi-

cles (km/day).
ACEV Average daily consumption of electric vehicles

(kWh/km).
TCEV Total electricity consumption of all PEVs each

day (kWh/day).
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TCESC Stored energy in ESSs of charging sta-
tions (kWh/day).

TCS Total number of DC charging stations.
EE Excess energy sold to the grid by ESSs.
ESG Energy of PEVs that is not supplied from

ESSs of DC charging stations (kWh/day).
WDF Electricity demand in each week (MW).
ADGR Growth rate of demand in each year

(%/year).
1T Time step changes equal to one year

(year).
WD Weekly demand after price response

(MW).
t Time step (week).
AP Average price in the previous year

($/MWh).
RP Average of prices in five recent years

($/MWh).
PED Long-term price elasticity of demand.
i Indices of each technology (HC, CCGT,

GT, and wind).
h Time step (hour).
WSH Weekly average wind speed at H (m/s).
WSB Average weekly wind speed at HB (m/s).
TCPR Terrain characteristics of the area.
H Height of the turbine’s hub (m).
HB Height of measurement tools (m).
1PR Hourly electricity price changes

($/MWh).
PR Electricity price ($/MWh).
QNET Electricity net demand (MWh).
TEGC Total electricity generation of fossil fuel

units (MWh).
1h Time step changes equal to one hour

(hour).
TAM Amortization time (year).
DR Discount rate (%/year).
TPE Perceived time (year).
PROFC Total profit of DC charging stations

($/MW).
EPROFC Common expected term of operating

profit for DC charging stations
($/MWyear).

OMCC Average operational and maintenance
costs of DC charging stations
($/MWyear).

TCONSC Construction time of DC charging sta-
tions (year).

ICC Investment cost of DC charging stations
($/MW).

REV Average weekly revenue of DC charging
stations ($/MWh).

EXP Average weekly expenditure of DC
charging stations ($/MWh).

IRRC Investment rate of return for DC charging
stations (%/year).

PITC Profitability index of charging stations.
SSFDC S-shaped function of DC charging sta-

tions.
ADC Saturation capacity for DC charging sta-

tions.
BDC and CDC Fixed values of the S-shaped investment

function for DC charging stations.
IRCS Investment rate of charging stations

(number/year).
RRC Retired rate of charging stations (num-

ber/year).
NNCS Needed number of fast DC charging sta-

tions (number/year).
TAGEC Lifetime of DC charging stations (year).
TEV Total number of PEVs.
CST Targeted ratio of plug-in electric vehi-

cles to DC charging station.
PROB Probability of purchasing new PEVs.
Z Factors that affect the probability of pur-

chasing a new electric vehicle.
COVA Constant value related to the purchasing

a new electric vehicle.
LCOE Logit coefficient correspond to Z.
CSPC DC charging stations per capita (charg-

ing stations per 10,000 capita).
POP Population of the United States.
PROBA Probability of purchasing new PEVs

after implementing incentives.
ICI Individual credit for purchasing a new

vehicle ($).
HOV HOV lane access incentive (vehicles per

HOV lane per hour).
EVSES Electric vehicle supply equip-

ment (EVSE) Subsidy ($).
ALDV Added number of light-duty vehicles

(number/year).
GRLDV Growth rate of light-duty vehicles pro-

duction (%/year).
TLDV Total number of light-duty vehicles.
AEV Added number of PEVs.
RREV Depreciating rate of PEVs

(number/year).
TREV Lifetime of PEVs (year).
TCV Total number of conventional vehicles.
ACV Added number of conventional vehicles.
RRCV Depreciating rate of conventional vehi-

cles (number/year).
TRCV Lifetime of conventional vehicles (year).
1t Time step changes equal to one week

(week).
SCDR Development rate of DC charging sta-

tions (number/year).
UCCS Number of under-construction charging

stations.
TDEV Time needed for construction of each

charging station.
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I. INTRODUCTION
Due to the finite fossil fuel supplies, growing energy demand,
and environmental issues, the utilization of RESs has become
an attractive alternative for electricity generation [1]. Mean-
while, the combination of RESs with PEVs plays an impor-
tant role in emissions reduction [2]. As the replacement
of electric vehicle batteries has an expensive process and
may cause environmental problems, there are still challenges
regarding the cost of acquisition andmaintenance of batteries,
their recycling [3], performance, life, and required protection
devices [4]. Nevertheless, due to the benefits of the elec-
trification of the transportation system regarding fossil fuel
consumption and air pollution, the number of electric vehicles
is expected to rise rapidly in the near future [5]. At present,
one of the main barriers to the large-scale deployment of elec-
tric vehicles is the shortage of charging infrastructures [6].
Although fast-charging stations reduce the time of charging,
uncoordinated charging of a high number of PEVs in charging
stations can cause some problems for the power grid oper-
ators [7]. It is common that RESs and ESSs to be utilized
along with charging stations. Therefore, ESSs can mitigate
the intermittent nature of RESs, provide load-leveling func-
tions and reduce the charging time [6]. The ESSs are charged
when demand is low, supply PEVs, and the remaining stored
energy is discharged to the grid when demand is high [8].

As mentioned above, the interaction of fast charging sta-
tions equipped with ESSs and renewable energy resources is
inevitable. One of the main concerns of the policymakers and
regulators is the investigation of the interaction of different
components of the power systems, such as renewable energy
resources and fast charging stations. To reach this purpose,
they can utilize the system dynamics approach as a beneficial
instrument to study the interaction and behavior of these
components and orient planning decisions and strategies [9].

There have been various dynamic models studying the
behavior of energy systems and electricity markets over
the last few years. For instance, in [10], the dynamics of
investment in fossil fuel and wind capacity in the electricity
market were studied considering the stochastic characteristics
of wind speed. A dynamic model was introduced in [11]
to investigate the effect of the renewable portfolio standard
policy on the strategy of stakeholders in the retail electric-
ity market in China. In [12], a system dynamics approach
was used to investigate the implementation of island opera-
tion capability in the Colombian electricity market. A new
dynamic model was proposed in [13] to consider the peak
shaving and frequency control reserve constraints in addition
to power generation planning. In [14], the effect of the trans-
mission and distribution tariff policy on electricity network
investment was studied and a novel investment optimization
decision-making model based on system dynamics theory
was introduced and applied in the case study of a city in
China. The integration of renewable energy resources has
been investigated through the system dynamics approach in
many countries such as Sweden [15], Iran [16], China [17],
and Australia [18]. The authors of [19] introduced a system

dynamic model to analyze the development of electric vehi-
cles under direct and indirect policies in China. A system-
dynamics model of Iceland’s energy and transport systems
was established in [20] and different strategies for hydrogen
and electricity transitions toward a greener transportation
system were compared. To obtain the evolution pattern of
electric vehicles, a system dynamics approach was repre-
sented in [21] to simulate and forecast the scale of the PEVs.
This forecasting helps accelerate PEVs’ deployment. As far
as we know, many papers study the renewable resources
investment problems in electricitymarkets and deployment of
electric vehicles via the system dynamic approach, separately.
Nevertheless, there is no comprehensive dynamic model that
studies the integration of renewable energy resources in
power systems and electrification of the transportation system
simultaneously and accounts for their interaction.

The main purpose of this paper is to study the effect of
the penetration of renewable energy resources on the devel-
opment of fast-charging stations or deployment of electric
vehicle fleets and vice versa. In other words, the effect of
renewable energy incentive policies on electrification of the
transportation system is analyzed and the effect of policies for
electrification of the transportation system on the investments
in the electricity market is studied.

In this regard, themain contributions of this paper are listed
below:
• A dynamic model is designed to model the purchas-
ing behavior of PEV drivers as well as the behavior
of companies in the investment in DC charging infras-
tructures. Then, this model is combined with the pro-
posed dynamic model of the electricity market in [22] to
achieve a comprehensive model to study the behavior of
the coupled electricity market and electrified transporta-
tion system. Such models draw a better picture of the
whole system for policymakers and help them provide
planning strategies and policies effectively.

• New stock and flow variables, feedback loop, and causal
loop diagrams of the transportation system are designed.

• The implementation of policies for the electrification of
the transportation system is described in a new mathe-
matical framework.

• The NPV method is used to assess the economic aspects
of investment in DC charging infrastructures.

• Different criteria are introduced to evaluate the social
benefit resulting from the implementation of incentive
policies.

It is expected that this model answers the following ques-
tions. What is the effect of the renewable energy incentive
policies on the development of fast charging stations and
consequently on the deployment of electric vehicles? What is
the effect of PEV deployment policies on the penetration of
renewable energy resources?Does the rising utilization of fast
charging stations encourage companies to invest in renewable
energies? Does the rising penetration of renewable energy
resources encourage people to purchase electric vehicles?
How does the utilization of fast charging stations influence
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FIGURE 1. Causal loop diagram of the coupled electricity market and transportation system.

the investment in fossil fuel generation units in the electricity
market?

The rest of this paper is arranged as follows. Section II
depicts the overall features of the presentedmodel. Section III
discusses the details of the proposed dynamic model.
Section IV illustrates the simulation results. Section V is
devoted to sensitivity analysis. The validation process is clar-
ified in Section VI. The main conclusions are provided in
Section VII.

II. GENERAL ASPECTS OF THE MODEL
System dynamics has a wide range of use in modeling the
behavior of electricity networks. It is applicable for evalu-
ating the regulation policies, generation expansion planning,
investment in renewable energy resources, demand-side man-
agement models, etc. [23]. To achieve the dynamic model of
the coupled electricity market and transportation system, the
main components of both systems should be simulated by the
system dynamics approach. The details of the feedback loops,
stock and flow diagram, auxiliary, inflow, outflow variables,
connectors, and causal loop diagram as the main elements of
the system dynamics approach were described in [23].

The causal loop diagram of the coupled electricity mar-
ket and transportation system is illustrated in Fig. 1. The

black arrows in this Figure show the relation of variables in
the transportation system and pink, blue, and green arrows
represent the relation of variables in the electricity market.
Red arrows depict the link of the transportation system with
the electricity market. Positive (negative) signs illustrate that
as the independent variable rises, the dependent variable
increases (decreases) [10]. In the dynamics of an economical
system, positive loops reinforce changes in the system, and
negative ones balance changes [24]. One positive and four
negative feedback loops are seen in Fig. 1. The details of
two inner negative loops (loops 1 and 2) in the market can
be found in [10] and [22]. Loops 1 and 2 show the price
elasticity of demand and the price elasticity of conventional
units’ generation, respectively. Green arrows form the third
negative loop and pink arrows construct the fourth one. The
investments in new wind farms and fossil fuel power plants
are balanced through the third and the fourth loops, respec-
tively [22]. In order to show the causal loop diagram of
the transportation system and complete the proposed models
of [10] and [22], a positive loop is added.

The fifth loop in Fig. 1 represents the investment in fast
DC charging stations. As the number of PEVs increases, the
number of drivers that refer to the charging station increases
and this will lead to the rise of the expected profitability
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of charging stations. Accordingly, the investment decisions
for building new stations will increase and after a time
delay, more charging stations will be added to the system.
The more the number of fast DC charging stations increases,
the more the charging station per capita will rise. By rising
the charging station per capita, citizens will be encouraged
to purchase electric vehicles. Consequently, the total number
of electric vehicles grows. The deployment of PEVs influ-
ences the electricity market from two aspects. Firstly, as the
number of PEVs increases, the consumption of electricity
rises. Secondly, ESSs of charging stations can change the load
profile since they are used for load leveling purposes. Load
leveling can prevent low prices and consequently provide
higher benefits for wind units. On the other hand, the behavior
of the electricity market affects PEVs adoption. The arrange-
ment of generation technologies alters the electricity price
and any price fluctuation can change the profit of charging
stations and the investment in this context.

Indeed, any incentive for accelerating the deployment of
PEVs influences the electricity market and vice versa, wind
capacity incentives affect the deployment of PEVs indirectly.
It seems that by subsidizing wind units and their penetra-
tion, the electricity price will decrease and this encourages
the deployment of PEVs, but it should be noted that when
the electricity price decreases, the electricity demand in the
transportation system and other sectors increases and this
increases the electricity price after a short time delay. More-
over, decreasing the electricity price prevents investment in
the electricity market. Therefore, the variables and behavior
of actors in the system is changing constantly. To study the
behavior of the components of complex systems, the effect
of all factors should be considered simultaneously and one of
the positive features of the system dynamics approach is its
ability to study the effects of all factors simultaneously.

In this paper, ancillary services markets, distribution costs,
and the effects of transmission and distribution lines are
neglected for simplicity.

III. DETAILED DESCRIPTION OF THE MODEL
In order to reach the dynamic model of the electricity mar-
ket, fast-charging stations, and electric vehicles deployment,
the whole system is divided into several subsystems. Each
subsystem receives the input data and produces output data
as input data for other subsystems. The policymakers can
investigate each output data as the outcome of the problem.
The detailed description of each subsystem is clarified in the
next sections.

A. ELECTRICITY CONSUMPTION OF PLUG-IN ELECTRIC
VEHICLES
In this paper, it is assumed that PEVs can be charged at
home, public charging stations, and DC charging stations.
DC charging stations provide energy for 5% of the electric
vehicles in the United States [25] and the rest of those are
supplied by level 1 and 2 chargers. Therefore, the following
equation calculates the number of PEVs that are supplied at

FIGURE 2. Valley filling and peak load shaving using ESS.

DC charging stations.

DUCH (d) = 0.05× TNPEV (d) (1)

Then the energy that the PEVs get from DC charging
stations and the total consumption of electric vehicles each
day can be obtained from (2) and (3), respectively, as follows:

DCEVC (d) = MAGE× ACEV× DUCH (d) (2)

TCEV (d) = MAGE× ACEV× TNPEV (d) (3)

All PEVs in this paper are assumed Tesla model 3, as it
is the most popular electric vehicle in the United States [26].
Although in some papers, average daily driving distance is
a function of driving time and fitted by Normal distribu-
tion [27], for simplicity, the average daily driving distance
was used in this paper because the focus of this paper is on
the performance of incentives. Moreover, it is assumed that
the efficiency of the old and new PEVs are the same and their
average daily consumption would not change during the time
horizon. All charging stations are equipped with ESSs with a
capacity equal to 500 kWh [5]. The total storage capacity of
charging stations is calculated from the following equation.

TCESC (d) = TCS (d)× 500 (4)

The charging strategy at the DC charging stations is in a
way that electricity demand of PEVs is first supplied by the
ESSs, and when ESSs are exhausted, the grid starts to supply
their demand [28]. Therefore, it is assumed that ESSs are
charged completely based on Fig. 2 in each day. Then, they
supply the needed energy of the vehicles that are charged
in DC fast charging stations and sell the excess energy to
the grid in peak hours for peak shaving purposes [8]. The
excess energy that the ESSs deliver to the grid in peak hours
is obtained from the following equation.

EE (d) = TCESC (d)−DCEVC (d) (5)

Then, the electric consumption of EVs which are charged
by level 1 and level 2 chargers can be obtained by (6).

ESG (d) = TCEV (d)−DCEVC (d) (6)
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In Fig. 2, the difference of the red and blue areas is equal
to the daily consumption of electric vehicles that use fast DC
charging stations.

Hourly load profile of electric vehicles that are supplied
directly from the grid (not from ESSs) can be obtained from
ESG and the hourly charging coefficients of EVs. The output
of this block is the hourly load profile of electric vehicles that
are supplied directly from the grid and the needed energy of
PEVs that is supplied from ESSs. The needed coefficients can
be found in the Appendix.

B. ELECTRICITY DEMAND
It is assumed that the electricity market is run on an hourly
basis and total demand and generation are balanced in each
hour. Therefore, the hourly total electricity demand should
be calculated. For this purpose, the average weekly load is
determined from weekly load coefficients and yearly peak
value. The weekly load coefficients are obtained from the
past year’s data of the electricity consumption (which is the
electricity demand of the USA in this case) [29]. The same
weekly pattern will be used for all years of time horizon but
the average weekly demand alters in each year proportional
to the annual demand growth rate. In this paper, it is a
random variable so the normal distribution function with the
standard deviation equal to 0.01 and expected value equal to
0.011 shows its random behavior [30]. Therefore, the weekly
demand is determined from (7) [22].

WDF (t+1T) =WDF (t)+WDF (t)× ADGR (t) (7)

It is assumed that consumers can modify their demand
proportional to the long-term price signals that they receive.
Such assumption can be modeled by (8) [22].

WD (t) =WDF (t)×
(
AP (t)
RP (t)

)PED

(8)

After calculation of the weekly average load, the hourly
demand in each day can be calculated. Although the peak
value of demand on the weekends is lower than those of
common weekdays [31], for the sake of simplicity, the peak
value of all days and their hourly load profile are considered
the same in each week. In this paper, the hourly electricity
load coefficients in Texas are used. It is assumed that the
hourly coefficients of all days of each season are the same and
their peak values change. These coefficients are represented
in the Appendix.

The total hourly load profile can be achieved by adding the
hourly load profile of electric vehicles, which was obtained
in section A, and the hourly load profile which is obtained in
this section.

C. GENERATION OF FOSSIL FUEL UNITS
The three main energy sources for electricity generation in
the United States are fossil fuels (coal, natural gas, and
petroleum), nuclear energy, and RESs [32]. The HCs and
nuclear power plants are responsible to meet the baseload.
Although these units have different costs, for simplicity, it is

assumed that the baseload is supplied just by HCs. There-
fore, three technologies comprised of HC, CCGT, and GT
are considered as the conventional technologies to supply
base, middle, and peak loads, respectively [10]. A centralized
approach is considered in this paper to investigate the inter-
action of investment decisions in the electricity market and
the deployment of electric vehicles from the perspective of
policymakers [22]. In addition, all units with similar technol-
ogy were considered as one company to form a competition
between various technologies [9].

The gas and coal prices and pollution penalty are the main
elements of the marginal cost of conventional technologies.
The uncertainty in fuel price is neglected and a fixed value
is considered for that. As the efficiency and performance of
the old units are different from middle-aged and new ones,
the vintage model is utilized to show the different variable
costs of these fossil fuel units [10]. Since the demand and
generation are cleared on an hourly basis, the generation of
fossil fuel units is calculated each hour [10], [22]. In order
to obtain the generation, the capacity factor of these units
is acquired from the supply curves (see the Appendix) [33].
Then, the hourly generation of each fossil fuel technology is
calculated from the installed capacity and capacity factor of
that technology in that specific hour.

D. GENERATION OF WIND UNITS
In the United States, about 21% of the total electricity is gen-
erated from renewable energy resources. In this regard, the
production of 8.61% of the total power by wind technology
makes this technology the most popular renewable energy
resource in this country [30]. Since one of the goals of this
paper is to study the effect of renewable energy incentive poli-
cies on the electrification of transportation systems, for the
sake of simplicity, other types of renewable energies are not
included in this paper. Therefore, wind technology is consid-
ered as the representative of renewable energy resources and
it will supply the baseload once wind power is available. The
remaining load that is called net demand is supplied by fossil
fuel units [10]. The generation of wind units highly depends
on wind speed and the behavior of wind speed depends on
the regional, seasonal features, and short-term variations [10].
The iteration of wind speed occurrence usually matches with
Weibull distribution functions [10]. In this paper, the hourly
wind speed data in each month is obtained from the histor-
ical data of wind speed in Texas [34] and [35]. These data
are properly fitted by the Weibull distribution function. The
different scenarios of hourly wind speed are produced from
the Weibull distribution functions by using the Monte-Carlo
technique. By utilizing the wind speed time series simulation
technique, the chronological characteristics of wind speed
are considered in created scenarios. Then, the average wind
speed in each week is calculated from these data [10]. The
created average weekly wind speed scenarios are authentic in
the height that measurement tools are installed (10 m) [35].
Accordingly, the calculated average weekly wind speeds sce-
narios are modified for the height of the turbine’s hub, by the
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following equation [22].

WSH (t) =WSB (t)×
ln H

TCPR

ln HB
TCPR

(9)

It is assumed that the height of the turbines is fixed dur-
ing the time horizon. After obtaining the modified average
weekly wind speed data at the height of the turbine hub,
hourly wind speed is obtained from this modified data and
the hourly profile of wind speed in each season. For simplic-
ity, it is assumed that the hourly wind speed profile on all
days of one week is the same. Then, the capacity factor of
wind turbines in each hour can be obtained from the hourly
wind speed profile and output power curve of wind turbines.
Finally, the output power of wind turbines is calculated from
the capacity factor of wind turbines and total installed wind
capacity.

Many factors such as distance from the coast [36], features
of the regions, and learning effects [37] influence the capital
costs of farms over time. Therefore, to reach a precise esti-
mation of the investment cost of wind units, a wide range
of factors should be considered. For simplicity, an average
investment cost is considered for all of the wind units in this
paper.

E. MARKET EQUILIBRIUM AND PRICE DETERMINATION
To investigate the effect of ESSs of DC charging stations on
the market behavior, it is assumed that generation and net
demand are cleared on an hourly basis. For this purpose, the
hourly net demand is leveled based on the capacity of ESSs
and the utilization of PEVs from DC charging stations. Then
it is embedded in the following equations to calculate the
electricity price [10].

1PR (h) = PR (h)×
QNET (h)−TEGC (h)

QNET (h)
(10)

PR (h+1h) = PR (h)+1PR (h) (11)

The electricity generation companies use weekly average
price for investment decision making which can be deter-
mined from hourly electricity market price.

F. GENERATION CAPACITY INVESTMENT
In this paper, investment in all sectors is done on a weekly
basis. Generation companies should predict the future market
price precisely to reach a successful investment. For this
purpose, the trend extrapolation of variables and the expo-
nential smoothing forecast methods are used in this paper for
the price expectation [24]. The NPV method is used for the
economic evaluation of the capacity investment [10] [22].

In the United States, wind capacity investment is supported
by various policies at the state and national levels. These
policies consisted of the production tax credit, renewable
portfolio standards, mandatory green power options, clean
energy funds, state government green power purchasing, etc.
[38]. The production tax credit was assumed as the only wind
capacity supporting policy, which is 20 $/MWh [38].

G. INVESTMENT IN DC CHARGING INFRASTRUCTURES
For the economic evaluation of the investment in DC charging
stations, the NPV method is utilized similar to section F. The
gained profit of the DC charging stations is calculated at week
t by (12).

PROFC (t)

=

TAM∑
k=1

(EPROFC (t)−OMCC)×e−DR×(k+TCONSC)
− ICC

(12)

The expected operating profit of charging stations is deter-
mined from (13).

EPROFC (t) =
t∑

s=t−TPE

(REV (s)−EXP (s))

∀REV (t) ≥ EXP (t) (13)

The weekly revenue of DC charging stations highly
depends on the hourly price of energy that is sold to PEVs
and to the grid during peak demands. Moreover, the average
weekly expenditure is a function of hourly electricity price
during low demands when DC charging stations charge their
ESSs with lower prices. To find the investment rate of return
for DC charging stations (IRRC), (13) is substituted in (12)
and the PROFC=0 is solved for DR. Then the profitability
index of DC charging stations is achieved from the following
equation.

PITC (t) =
IRRC (t)

DR
(14)

Then, by substituting the profitability index in (15), the S-
shaped function of DC charging stations and consequently
their investment rate is obtained.

SSFDC (t) =
ADC

1+ e−(BDC×PITC(t)+CDC)
(15)

IRCS (t) = SSFDC (t)× (RRC (t)+ NNCS (t)) (16)

To calculate the investment rate of DC charging stations,
the needed number of DC charging stations and retired rate of
charging stations are required, which can be obtained through
the following equations.

RRC (t) =
TCS (t)
TAGEC

(17)

NNCS (t) = max
[
0,
TEV (t)
CST

−TCS (t)
]

(18)

In 2020, the number of connectors in DC charging stations
of the United States was 13627 [39] and the total number
of DC charging stations in this country was 5263 [39], [40].
Moreover, it is estimated that there will be 15 million active
light-duty PEVs in this country by 2030 and 27500 DC
connectors are needed tomeet the demand for charging (about
10621 DC charging stations) [39]. Therefore, it can be stated
that the fixed value of CST is one station for 1412 light-duty
PEVs.
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Equation (15) depicts the S-shaped investment function for
DC charging stations. The features of this function depend on
saturation level (ADC) and its other fixed parameters (BDC
and CDC). Parameters ADC, BDC, and CDC should satisfy
the following condition [10].

1 =
ADC

1+ e−(BDC+CDC)
(19)

The investment behavior of companies in DC charging
stations is similar to the investment behavior in wind units
to a high extend. Due to the small size of DC charging
stations and their environmental advantages, the permission
and construction of these stations do not have a long process
compared to the technologies such as HC units. Since com-
panies plan to construct or get permits in a short period, other
companies do not access information of competitors timely.
Therefore, some investment over-reaction in charging sta-
tions is inevitable similar to the wind units. Secondly, in addi-
tion to well-experienced companies that are constructing DC
charging stations, there are small and inexperienced compa-
nies that are active in this field. These small companies are
influenced by the decisions of well-known companies. In this
situation, a herding behavior may be seen. Thirdly, the short
construction times and the incentives for building charging
infrastructures encourage companies to begin new projects or
be involved in several projects, simultaneously [41]. Based
on these facts, the saturation level (ADC) for DC charging
stations is set approximately high, similar to the wind units.
Therefore, by choosing the value of 3.3 for ADC, the values
equal to 1.8 and -2.7 for BDC and CDC, satisfy the condition
of (19) [22].

H. EXPANSION OF ELECTRIC VEHICLES FLEET
Many factors affect the purchasing of electric vehicles. The
effect of some of these factors on purchasing behavior and
adoption of electric vehicles in California were studied in [42]
through the logit regression model. These factors are depicted
in Table 2 (see the Appendix), and (20) represents the proba-
bility of purchasing new electric vehicles by customers each
week.

PROB (t) =
1

1+ e
−(COVA+

∑
k
LCOEkZk)

(20)

Since our focus is on investigating the effect of DC charg-
ing stations on the investment decisions in the electricity mar-
ket, the average values that are shown in Table 2 were used
for most of the factors (except charging station per capita,
gas, and electricity price). More details about these average
amounts, their range, and the associated interpretations are
provided in [42].

The amount of DC charging stations per capita is described
through (21) [42].

CSPC (t) =
10000× TCS(t)

POP(t)
(21)

The initial population is 331002651 and its annual growth
rate is 0.5 %/year [43]. Gas and electricity prices are consid-
ered as the random variables with the expected values equal to
3.832 $/gallon and 14.6 cents/kWh; and standard deviations
equal to 0.069 and 1.5, respectively [42].

There are various incentives to accelerate the deployment
of electric vehicles in the United States. The effect of three
types of them comprised of individual credit, high-occupancy
vehicle (HOV) lane access, and electric vehicle supply equip-
ment (EVSE) subsidies are considered in this paper. The
individual credit policy is a tax credit or rebate that is con-
sidered for purchasing a new vehicle. It varies at federal and
state levels [44]. In this paper, the amount of this incentive
is 7500 $ at the federal level and 2500 $ at the state level
(totally 10000 $) [45]. By implementation of the HOV lane
access incentive, electric vehicles receive permission that
allows them to drive in carpool lanes even if they do not
carry the required minimum number of passengers. The HOV
lane access is based on the density of traffic in vehicles per
lane per hour and it is assumed that the average vehicle
density is 983 vehicles per HOV lane per hour [44]. Another
incentive is EVSE Subsidies for electric vehicle charging
infrastructures that are installed in private or public places
[44]. A rebate equal to 6000 $ and a subsidy up to 60000 $
were considered for Level 2 EVSEs and for the investment
cost of DC charging stations, respectively [46]. As the output
power of most of the installed DC charging stations in the
United States is 50 kW [39], it is assumed that the output
power of all installed DC charging stations is 50 kW. Hence,
there is a rebate equal to 1200 $/kW for the investment cost
of DC charging stations in (12). The results of [44] present
that by increasing 1000$ in individual credit, the registration
of electric vehicles will rise 2.6% and by increasing 1000 $ in
EVSE Subsidies, the registration will increase 1.9%. For the
rise per unit of HOV, the registration will increase by 0.04%.
Therefore, the probability of purchasing new electric vehicles
after implementing incentives is obtained from the following
equation.

PROBA (t)

= PROB (t)× (1+ 0.0259×
ICI
1000

+ 0.000473

×HOV+ 0.0196×
EVSES
1000

) (22)

The total number of light-duty vehicles, number of PEVs,
and fossil fuel electric vehicles (conventional vehicles) are
considered as the stock variables. The growth rate of light-
duty vehicles production is obtained from historical data.
It can be extracted from a normal distribution function. The
standard deviation and expected value of this function are
10% and 11%, respectively. The initial number of light-duty
vehicles is 194,348,815 [47] and the initial number of PEVs
is 1,700,000 [48]. The production rate of light-duty vehicles
is obtained from the following equation.

ALDV (t) = GRLDV (t)× TLDV (t) (23)
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Then, the total number of PEVs is calculated through the
following equation.

TEV (t+1t) = TEV (t)+AEV (t)−RREV (t) (24)

AEV (t) = PROBA (t)× ALDV (t) (25)

RREV (t) =
TEV (t)
TREV

(26)

Then, the total number of conventional vehicles is calcu-
lated through the following equations.

TCV (t+1t) = TCV (t)+ACV (t)−RRCV (t) (27)

ACV (t) = (1− PROBA (t))× ALDV (t) (28)

RRCV (t) =
TCV (t)
TRCV

(29)

Then, the total number of light-duty vehicles is calculated
through the following equation.

TLDV (t+1t) = TCV (t+1t)+ TEV (t+1t) (30)

I. DEVELOPMENT OF DC CHARGING STATIONS
In this paper, it is assumed that the number of DC charging
stations and PEVs varies weekly. To model the development
of DC charging stations stock and flow structure is used.
In the system dynamics approach, different time delays can
be modeled by cumulating the difference between inflow and
outflow of a process in the related stock variables [10]. The
time required for the construction of generation units and
installation of charging stations are the main time delays in
this paper. the under-construction DC charging stations and
the number of installed charging stations were considered
as the stock variables. The relation between the number of
under-construction DC charging stations and its flow vari-
ables is depicted below.

SCDR (t) =
UCCS (t)
TDEV

(31)

UCCS (t+1t) = UCCS (t)+IRCS (t)−SCDR (t) (32)

RRC (t) =
TCS (t)
TAGEC

(33)

TCS (t+1t) = TCS (t)+SCDR (t)−RRC (t) (34)

J. DEVELOPMENT OF GENERATION CAPACITY
The modeling of the development of generation units is sim-
ilar to the development of DC charging stations. The under-
construction and installed generation capacity are considered
as stock variables in MW. The investment rate that was
calculated in section F, the construction rate of technology,
and the retired rate of capacity are flow variables. A detailed
description of generation capacity development can be found
in [10].

IV. SIMULATION RESULTS
The data of the United States’ power system and transporta-
tion system was used as a case study to assess the intro-
duced model. In addition, through this model, the effects
of incentives on the deployment of PEVs and investment
decisions in the electricity market can be studied from the

policymaker’s perspective. The features of the electric power
system are illustrated in Table 3 and the characteristics of
the DC charging stations and Tesla model 3 are shown in
Table 4 (see the Appendix). The generation of electricity by
hydroelectric power plants in the United States is about 7%
of the total generation. This percentage has a falling trend
and will reach 5% by 2050 [30]. Since this technology is
not the dominant renewable technology by 2050 compared
to the wind and solar technologies, the generation of this
type of technology was neglected in this paper. Secondly,
their operation is subjected to different scheduling processes,
and investment in this technology depends on many sophisti-
cated rules. By ignoring this type of technology, the model
is simplified without the loss of its general features. The
time horizon is 30 years and begins from 2020. Furthermore,
MATLAB software was utilized for the simulations. In order
to simulate and analyze the behavior of the electricity market
and PEV adoption under various conditions, three different
cases are introduced as follows.
1. Wind capacity incentive and PEVs deployment incen-

tives are implemented in the system.
2. Wind capacity incentive in the first case increases but

PEV deployment incentives are not changed compared
to case 1.

3. Wind capacity incentive in the first case is not changed
but PEV deployment incentives are increased compared
to case one.

A. CASE 1
In this case study, the production tax credit for wind units is
20 $/MWh. Due to the planning of the European Union and
developed countries to reach carbon neutrality by 2050, the
incentive is just considered for wind units. Because of the
environmental reasons and zero marginal costs, these units
are attractive choices for investors and policy-makers. The
amount of incentive for purchasing a new PEV is 10000 $,
the HOV lane access is 983 vehicles per HOV lane per hour.
The rebate for Level 2 charging stations is 6000 $ and a rebate
equal to 1200 $/kW is considered for the investment cost of
DC charging stations.

Fig. 3 (a) shows the average electricity price in each week
in the first case. Fig. 3 (b) shows the installed conventional
capacity, reserve margin, and weekly electricity demand.
As shown in Fig. 3, electricity price increases when reserve
margin decreases and it declines when reserve margin rises.
In other words, as the electricity generation exceeds the con-
sumption, there will be a falling trend for the price, and the
rising trend of price is revealed in reverse situations. Fig. 3 (c)
shows the installed capacity of each technology. Due to the
lower investment cost of CCGTs compared to HC units and
their lower emission, companies tend to invest in these units
more than HCs. Accordingly, in contrast to HCs; the installed
capacity of CCGTs has a rising trend by 2050. Although the
investment cost of wind units is comparatively high, they
are desirable for investors. This is because; these units do
not have any pollution, their marginal cost is zero and the
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FIGURE 3. Behavior of the electricity market in case 1. (a) Electricity price.
(b) Capacity, reserve margin, and demand. (c) Installed capacity (d) Share
of each technology in total capacity.

considered incentive guarantees part of their revenue. Since
GTs cover their costs during the peak load, companies usually
invest in this technology during scarcity events. Therefore,
the investment in these units is low. Fig. 3 (d) shows the
portion of installed capacity of each technology to the total
installed capacity. Based on this Fig. wind technology will be
the most popular technology in the United States by 2050.
By comparing Fig. 3 (a) and 3 (d), as the percentage of
installed wind capacity increases, due to the stochastic nature
of these units, the fluctuation of electricity price increases,
while due to their negligible marginal cost, the weekly aver-
age price decreases.

Fig. 4 (a) and 4 (b) illustrate the total number of installed
DC charging stations and the total number of PEVs in the
United States, respectively in case 1. Fig. 4 (a) and 4 (b) reveal

FIGURE 4. Electric vehicle adoption in case 1. (a) Number of DC charging
stations. (b) Number of PEVs. (c) Probability of buying PEVs. (d) ESS
capacity and consumption of PEVs.

the rising trend of PEV and DC charging stations’ growth.
Due to (16) and (18), the number of PEVs influences the
investment rate of DC charging stations. Since the number
of PEVs was low from 2020 to 2024, the investment in DC
was not considerable. Therefore, the number of DC charg-
ing stations had a falling trend. As the number of PEVs
increased after 2024, the investment in the DC charging sta-
tion increased. Moreover, the targeted ratio of plug-in electric
vehicles to DC charging station is another factor that influ-
ences the investment in DC charging stations. Fig. 4 (c) shows
the probability of purchasing new PEVs. As shown in this
Fig., the implementation of state and federal incentives for the
electrification of the transportation system has a remarkable
effect on purchasing behavior of people. By increasing the
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gas price and DC charging station per capita, the willingness
to buy PEVs increases. The increase in the price of electricity
that is sold to drivers by DC charging stations has a negative
effect on the adoption of PEVs.

On the other hand, when the price of electricity (Fig. 3 (a))
which is sold to DC charging stations by the grid increases,
the profit of DC charging stations decreases and this will lead
to lower investment in DC charging infrastructures which in
turn reduces the DC charging station per capita and reduces
the willingness of purchasing PEVs. Fig. 4 (d) depicts the
weekly capacity of ESSs in charging stations and the weekly
consumption of PEVs that are charged in DC charging sta-
tions. The first one is a function of the number of DC charging
stations, and the second one depends on the number of PEVs.

B. CASE 2
In this case, all incentives of the first case are implemented but
the wind capacity incentive increase to 30 $/MWh. Fig. 5 (a)
shows the average electricity price in each week in the second
case. Fig. 5 (b) shows the installed conventional capacity,
reserve margin, and weekly electricity demand. Fig. 5 (c)
illustrates the installed capacity of each technology. Fig. 5 (d)
shows the share of each type of technology.

Since the amount of wind incentive increased, companies
were encouraged to invest in wind capacity more than in
case 1. In 2050, the installed wind capacity in cases 1 and 2
was about 560 GW (39.2%) and 662 GW (43.9%), respec-
tively. As the installed wind capacity rises, the average price
decreases, and its fluctuations increase. The average price in
case 1 was 99.77 $/MWh and it decreased to 99.57 $/MWh
in case 2. The standard deviation of the price reached from
2.06 $/MWh in case 1 to 2.34 $/MWh in case 2.

Fig. 6 (a) and 6 (b) illustrate the total number of installed
DC charging stations and the total number of PEVs in the
United States, respectively in case 2. By increasing the
amount of wind capacity incentive in case 2, the total num-
ber of installed DC charging stations and the total number
of PEVs at the end of time horizon grew from 38227 and
53.7 million in case 1 to 41477 and 57.84 million in case 2.
By raising the percentage of wind capacity, electricity price
declines and this will lead to amplifying the gained profit
of DC charging stations. Therefore, the expansion of this
type of station will be accelerated, and by increasing the
charging station per capita, the probability of purchasing
PEVs rises. The average probability of purchasing PEVs
(after the implementation of PEV deployment incentives)
during 30 years in cases 1 and 2 was 8.11% and 8.17%,
respectively. Fig. 6 (c) shows the probability of purchasing
new PEVs. Fig. 6 (d) depicts the weekly capacity of ESS in
charging stations and the weekly consumption of PEVs that
are charged in DC charging stations. The capacity of ESSs
influences the load leveling and this can mitigate the price
fluctuations but since the capacity of ESSs, in this case, is not
considerable compared to the generation of wind units, the
effect of load-leveling is not tangible compared to case 1.

FIGURE 5. Behavior of the electricity market in case 2. (a) Electricity price.
(b) Capacity, reserve margin, and demand. (c) Installed capacity. (d) Share
of each technology in total capacity.

C. CASE 3
In this case, wind capacity is the same as case 1, but all
of the incentives for deployment of PEVs increased 10%.
Fig. 7 (a) and 7 (b) illustrate the total number of installed DC
charging stations and the total number of PEVs in the United
States, respectively in case 3. Fig. 7 (c) shows the probability
of purchasing new PEVs. Fig. 7 (d) depicts the weekly capac-
ity of ESS in charging stations, and the weekly consumption
of PEVs that are charged in DC charging stations. By growing
the incentives, in this case, the average probability of pur-
chasing PEVs during 30 years rose to 9.22%. Accordingly,
the total number of installed DC charging stations and the
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FIGURE 6. Electric vehicle adoption in case 2. (a) Number of DC charging
stations. (b) Number of PEVs (c) Probability of buying PEVs. (d) ESS
capacity and consumption of PEVs.

total number of PEVs increased compared to case 1 and
reached 50485 and 70.96 million, respectively by 2050. As a
result, the capacity of ESSs and the weekly consumption
of PEVs at DC charging stations increased from 133 and
117 GWh in 2050 in case 1 to almost 176 and 154 GWh
in case 3, respectively. Therefore, as the capacity of ESSs
has a considerable effect on load leveling, the hourly load
profile was leveled in case 3 more than in case one. In case 3,
the standard deviation of the hourly load profile before and
after load-leveling was 129.3 and 97.53 GW during the time
horizon, while in case 1, it was 124.31 and 93.95 GW before
and after load leveling.

Fig. 8 (a) shows the average electricity price in each week
in the third case. Fig. 8 (b) shows the installed conventional

FIGURE 7. Electric vehicle adoption in case 3. (a) Number of DC charging
stations. (b) Number of PEVs. (c) Probability of buying PEVs. (d) ESS
capacity and consumption of PEVs.

capacity, reserve margin, and weekly electricity demand.
Fig. 8 (c) and 8 (d) illustrate the installed capacity and
percentage of each technology, respectively. The average
electricity price during the time horizon in cases 1 and 3
was 99.77 $/MWh and 99.65 $/MWh, respectively. As the
installed wind capacity in case 3 is more than in case 1,
the average electricity price, in this case, is lower than in
case 1 too.

The intensity of valley filling in hourly load profile highly
depends on the capacity of ESSs (the black curve in Fig. 7 (d))
and the intensity of peak shaving depends on the remaining
energy of ESSs that is not consumed (difference of the black
and green curves in Fig. 7 (d)). The valley filling feature of
ESSs prevents price fluctuations and decreases the benefit
fluctuations. Between 2020 to 2040, the standard deviation of
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FIGURE 8. Behavior of the electricity market in case 3 (a) Electricity price
(b) Capacity, reserve margin, and demand (c) Installed capacity (d) Share
of each technology in total capacity.

price is 2.01 in case 3, which is lower than the price standard
deviation in case 1 in a similar period (2.08). This reduces
the investment risk of wind units and motivates companies
to invest in this technology. As a result, in case 3, installed
wind capacity increases between 2040 to 2050 more than
in case1. This leads to lower prices in case 3 compared to
case 1 from 2040 to 2050 (compare Fig. 3 (a) and Fig. 8 (a)).
Although reducing the investment riskmotivates the investors
to invest in conventional units too, these technologies cannot
compete with wind technology. Therefore, the growth rate
of wind units will be more than that of conventional units.

TABLE 1. Factors affecting social welfare in each case.

In case 3, the installed wind capacity by 2050 was about
576 GW (39.4%), while it was 560 GW (39.2%) in case 1.

The social benefit resulting from the implementation of
policies was assessed in these three cases. There are different
criteria for evaluating the social benefit. Some of these cri-
teria were used in this paper to measure the social benefits.
One of these criteria is the difference between the benefit
of consumer and generation cost or the difference between
the benefit of electricity generating companies and electricity
market price [49]. The second measure is the variable called
the expected demand not supplied. It happenswhen the gener-
ation capacity is lower than electricity demand [50]. Further-
more, the environmental benefits were assessed by defining
two variables. The first one is the ratio of the produced CO2
in the electricity market to total electricity generation and the
second one is the ratio of the produced CO2 in the trans-
portation system to the number of total vehicles comprised
of electric and fuel-based vehicles. It is assumed that the
average emission of fuel-based vehicles is 130 gr CO2 per
kilometer [51]. Table 1 depicts the related data for each case.

The first item is the average difference between the benefit
of electricity generating companies (wind and conventional
units) and electricity price each week. The higher value
of this item shows higher social benefit. More benefits for
generation companies along with low electricity prices for
consumers guarantee the benefit of both sides of the market.
Since the percentage of wind capacity in case 2 is higher,
cheaper electricity is provided for consumers. By comparing
this value in case 3 (5.1373) with its value in case 1 (5.1361),
it can be stated that the policy actions in the transportation
system can influence the social benefits in the electricity
market.

The expected demand not supplied in case 2 is higher
than the two other cases because of the intermittent behav-
ior of wind units. Based on the data of the third item, the
ratio of CO2 production to total generated electricity has a
reverse relation with the penetration of wind units. In addi-
tion, the data of the fourth item for case 3 shows that more
deployment of EVs in the transportation system reduces the
emission in this sector. The data relating to CO2 emission in
Table 1 shows that any incentive policy for wind capacity in
the electricity market or electrification of the transportation
system influences the emission in other sectors.
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FIGURE 9. Simulation results for different values of wind capacity
incentive. (a) Wind capacity. (b) Share of wind capacity. (c) Number of
PEVs. (d) Number of DC charging stations.

V. SENSITIVITY ANALYSIS
To analyze the effect of wind capacity incentive on PEV
deployment and the effect of incentives related to the elec-
trification of the transportation system on decision making in
the electricity market, the sensitivity analysis was conducted.
In addition, the effect of gas price as an external factor was
studied.

In the first analysis, the development of wind capacity,
installed DC charging stations, and PEV adoption were inves-
tigated under three different values of wind capacity incentive
equal to 0, 20, 30, and 40 $/MWh. Fig. 9 (a), 9 (b), 9 (c),

and 9 (d) illustrate the installed wind capacity, portion of
wind capacity, total number of active PEVs on roads, and total
number of active DC charging stations, respectively.

Based on Fig. 9, as the amount of wind capacity incentive
increased the tendency for investment in this technology
increased. By rising the share of wind units in the generation,
the benefits of companies for installation of DC charging
stations grew and this led to the rising of the charging sta-
tions per capita. Consequently, this will encourage people to
purchase new PEVs. It can be stated that any incentive for
encouraging the development of wind capacity can accelerate
the deployment of PEVs indirectly.

In the second analysis, the development of wind capac-
ity, installed DC charging stations, and PEV adoption were
investigated under different values of PEVs deployment
incentives. If it is assumed that the total PEVs deployment
incentive in the first case was equal to X, the effect of
incentives equal to 1.1×X and 1.2×X were investigated.
Fig. 10 (a), 10 (b), 10 (c), and 10 (d) illustrate the installed
wind capacity, portion of wind capacity, total number of
active PEVs on roads, and total number of active DC charging
stations, respectively. By rising the number of PEVs and DC
charging stations, the capacity of ESSs increased. ESSs play
an important role in valley filling of hourly load profile and
therefore prevent the reduction of electricity market prices.
This led to more profits for wind units. Consequently, it can
be claimed that any incentive for deployment of PEVs or
expansion of DC charging stations can encourage companies
to invest in wind capacity, indirectly.

In the third analysis, the effect of gas price was investigated
on simulation results. Unlike our assumption, gas price varies
over time and it is not fixed. The gas price not only affects the
marginal cost of CCGTs and GTs but also influences the pur-
chasing behavior of the masses regarding PEVs. In the first
case, the gas price of conventional vehicles was different from
the gas price of generation units. In this section, it is assumed
that gas prices increase up to 5% and 10% compared to the
price in the first case. Fig. 11 shows the simulation results
for this analysis. As shown in this Fig., by rising gas prices,
the tendency for investment in wind capacity and purchasing
PEVs increased. The sensitivity of PEVs deployment to gas
price is much higher than the sensitivity of wind capacity
investment to gas price.

VI. VALIDATION
In this paper, to assess the validity of the presented model, the
obtained results were comparedwith the result of other papers
and authentic existing reports. Fig. 12 shows the capacity
factor of wind units and their average each week. The first
week of this Fig. corresponds to the first week of January.
The historical data related to the capacity factor of the Los
Vientos wind farm reveals that the capacity factor varied
approximately between 0.2 and 0.6 [52]. These statistical data
confirm the findings of this paper.

In this paper, the existing models of [10] and [22] were
extended and completed. The general aspects of the market
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FIGURE 10. Simulation results for different values of PEV deployment
incentive. (a) Wind capacity. (b) Share of wind capacity. (c) Number of
PEVs. (d) Number of DC charging stations.

behavior in the mentioned papers are in agreement with the
market behavior in the proposed model of this paper. For
example, there is an inverse relationship between electricity
price and reserve margin. In addition, a fewmonths after each
price jump, a new boom cycle is seen on the investment wave
of technologies. Moreover, CCGTs are the dominant con-
ventional technology in these papers since they have lower
costs and higher profitability. To assess the validity of the
simulation results of this paper, they can be compared with
the annual energy outlook in 2021 that explores long-term
energy trends in the United States by 2050 [30]. It is estimated
that gas-based generation technologies comprised 36% of

FIGURE 11. Simulation results for different values of gas price. (a) Wind
capacity. (b) Share of wind capacity. (c) Number of PEVs. (d) Number of
DC charging stations.

the total generation in the United States by 2050. In this
regard, the share of renewable energy resources, nuclear
power plants, and HC units reaches 42%, 11%, and 11%,
respectively [30]. The findings of this paper (Fig. 3 (d)) show
that gas-based technologies comprise about 38.7% of the total
generation capacity by 2050. The share of renewable energies
at the end of 2050 is approximately 39.2% and the percentage
of units that supply the baseload (HCs) is almost 22.1%.
The percentage of wind capacity does not reach the expected
amount (42%); this is because all federal and state renewable
incentives were not considered in our model.
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FIGURE 12. Capacity factor of wind units in case 1.

FIGURE 13. Annual demand growth rate.

Fig. 13 shows the annual electricity demand growth rate
during the time horizon. The red curve represents the calcu-
lated demand growth rate in this model and the blue curve
shows the forecasted demand growth rate by the annual
energy outlook report [30].

Moreover, it is forecasted that the total number of PEVs
will reach 15 million by 2030 [39] and 50 million by
2050 [53]. The estimated number of DC connectors to meet
the charging demand of 15 million PEVs in 2030 is almost
13627 (10621 DC charging stations) [39]. The simulation
results in this paper show that the total number of PEVs
reached about 14.2 million by 2030 and 53.7 million by 2050.
To meet the charging demand 10766 and 38227 DC charging
stations were installed by 2030 and 2050, respectively.

VII. CONCLUSION
The main contribution of this paper was to demonstrate that
any incentive policy to accelerate the deployment of PEVs
or expansion of DC charging stations influences the wind
capacity investment in the electricity market. Furthermore,
the implementation of incentive policies for the development
of wind capacity affects the deployment of PEVs. To reach
this goal, the system dynamic approach was used to model
the purchasing behavior of EV consumers and the behavior
of companies in the investment in DC charging stations. Then
this proposed model was combined with the previous model
of the electricity market to study the coupled electricity mar-
ket and transportation system. The mathematical formulation
of various federal and state incentive policies was embedded

FIGURE 14. Hourly PEVs charging coefficients [54].

FIGURE 15. Load coefficients in each week.

FIGURE 16. Average hourly electricity load coefficients for days of each
season in Texas [31].

in the proposed model. In addition, the economic evaluation
of DC charging stations development was conducted by the
NPV method. A positive feedback loop was added to the
former dynamic models of the electricity market to show
the relation of cause and effect variables in the causal loop
diagram of investment in DC charging stations and purchas-
ing behavior of drivers.

The data of the transportation system and electricitymarket
in the United States was used as a case study and three
scenarios were examined. In order to assess the validation of
the model, the simulation results of this paper were compared
with the information of authentic reports and results of other
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FIGURE 17. Supply curves of technologies [33].

FIGURE 18. Hourly coefficients of wind speed for each season [35].

FIGURE 19. The output power curve of 87 Siemens SWT 108 2.3
turbines [56].

papers. The simulation results revealed that the implemen-
tation of wind capacity incentive policies accelerated the
deployment of PEVs and investment in DC charging stations.
On the other hand, incentives that were considered to encour-
age drivers to purchase PEVs or the development of charging
infrastructures had a positive effect on the development of
wind capacity too. The sensitivity analysis depicted that by
increasing the gas price, companies were encouraged to invest
in wind capacity. This even extremely affected the purchasing
behavior of drivers. Generally, it can be stated that the EV
adoption and development of DC charging stations highly

TABLE 2. Factors affecting the purchasing of electric vehicles in
California [42].

TABLE 3. The electric power system characteristics.

depend on some parameters and assumptions such as gas
price and the targeted ratio of PEVs to DC charging station.

For future works, the effect of development in the technol-
ogy of PEVs, batteries, charging stations, and the maturity
of their technology on the whole system can be investi-
gated. Secondly, the effect of the rising share of RES and
electric vehicle adoption on the ESS market can be studied.
Thirdly, some of the generation technologies were neglected
in the electricity market such as photovoltaic panels, nuclear
power plants, hydroelectric power plants, and pumped stor-
age power plants, which could have a considerable effect on
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TABLE 4. The fast DC charging station and tesla Model 3 characteristics.

TABLE 5. Constant values.

TABLE 6. Hourly load data set.

price and load profile. Fourthly, different pricing strategies
and charging strategies in DC charging stations influence
simulation results, which can be studied in future works.
Finally, the expansion of transmission lines and distribution
systems can be included in future works to provide a more
comprehensive model for policymakers.

APPENDIX
The hourly and weekly coefficients, functions, and data sets
are represented in this section.

TABLE 7. Hourly wind speed data set.

TABLE 8. Weekly load data set.

The first week in Fig. 15 is the first week of January and
the amount of peak value in the first year is 740 GW [55]. The
consumption of the transportation system was not considered
in the first year peak value and load profile of Fig.15.

In this paper, the technical data of Siemens turbines (model
SWT 108 2.3) of Los Vientos Wind Farm in Texas are con-
sidered [52].

The initial values, coefficients, constant values and data
set that were used in the paper are provided in the following
tables.
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TABLE 9. Wind turbine capacity factor data set.

TABLE 10. Fossil fuel units capacity factor data set.
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