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Abstract

The production of Venerupis decussata relies on wild seed collection, which has

been recently compromised due to recruitment failure and severe mortalities. To

address this issue and provide an alternative source of seed, artificial spawning and

larval rearing programs were developed. However, hatchery-based seed

production is a relatively new industry and it is still underdeveloped. A major hurdle

in the European clam seed production is the control of spawning and reproduction,

which is further hindered by the impossibility of obtaining fertile gametes by gonadal

‘‘stripping’’, as meiosis re-initiation is constrained to a maturation process along the

genital ducts. In the present study, oocytes were collected from 15 females and

microarray analyses was performed to investigate gene expression profiles

characterizing released and stripped ovarian oocytes. A total of 198 differentially

expressed transcripts between stripped and spawned oocytes were detected.

Functional analysis carried out on these transcripts highlighted the importance of a

few biological processes, which are most probably implicated in the control of

oocyte competence. Significant differences were observed for transcripts encoding

proteins involved in meiosis progression (e.g. dual specificity phosphatase

CDC25), WNT signalling (e.g. frizzled class receptor 8, wingless-type MMTV

integration site family member 4), steroid synthesis (e.g. progestin and adipoQ

receptor family member 3, cytochrome P450-C17), mRNA processing (e.g. zinc

finger protein XlCOF28), calcium regulation (e.g. regucalcin, calmodulin) and

ceramide metabolism (ceramidase B, sphingomyelinase). This study provides new

information on transcriptional profiles putatively associated with ovarian egg
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infertility, and suggests potential mechanisms regulating early oocyte development

in clams. Genes which were differentially expressed between stripped and

spawned oocytes might have a pivotal role during maturation process in the

gonadal duct and could be interesting targets for further functional studies aiming to

make ovarian oocytes fertilizable.

Introduction

The grooved carpet shell Venerupis decussata is a native European bivalve species

and, although its global aquaculture production is still relatively low in Europe

(4.137 tons in 2011) [1], it has a high economic value. V. decussata production is

economically important in many Mediterranean countries, mainly Portugal, Italy

and Spain. However, due to the difficulties in broodstock conditioning and larval

rearing [2] the culture of this species relies mainly on natural recruitment of seed,

it is therefore limited by its availability and would greatly benefit from hatchery-

produced spat.

Among the major hurdles reported in hatchery production of this species,

spawning control and gamete quality are the most important issues. Notably,

spawning success in the European clam is not predictable, with frequent failures

to induce gametes emission. Moreover, this cannot be overcome by stripping, a

practice for collecting oocytes before egg emission, widely used in some bivalve

species (e.g. in cupped oysters), where stripped eggs can be fertilized. The

impossibility to obtain fertile gametes by gonadal stripping in V. decussata clearly

suggests the existence of a maturation process along the genital ducts. Indeed,

meiotic progression in germ cells is not regulated in the same manner across

molluscan species. While full-grown oocytes of all bivalves are blocked in ovaries

at prophase I stage, some crucial differences are observed in spawned eggs. In

bivalves such as Spisula or Barnea spawned oocytes are arrested at prophase I and

fertilization occurs at this stage leading to meiosis re-initiation [3–5]. In contrast,

bivalves such as Venerupis and Crassostrea [6] exit from prophase I and undergo

germinal vesicle breakdown (GVBD) after spawning and then are further blocked

at the first metaphase (metaphase I). The release from metaphase I is naturally

triggered by fertilization or can be artificially induced. However in both cases, it

seems that an increase in intracellular [Ca2+] has a pivotal role in meiosis re-

initiation [7–9]. Although both Venerupis and Crassostrea oocytes encounter two

blockages during meiosis I, their meiotic progression is not regulated in the same

way. Naturally spawned oyster oocytes, like in Venerupis, are blocked at

metaphase I and wait for fertilization to re-enter meiosis. Although oyster oocytes

isolated from ovaries (stripped) are still at prophase I, their suspension in seawater

permits GVBD and progression up to metaphase I, thus allowing fertilization by

sperm [10]. On the opposite, stripped and hydrated oocytes from Venerupis
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remain blocked at prophase (prior to GVBD) and cannot be fertilized. The

molecular determinants of this crucial difference are still unknown.

To date, the mechanisms controlling oocyte maturation in V. decussata have

been scarcely studied [2]. Conversely, in other bivalves meiosis in female gametes

was extensively analysed and a few major factors regulating oocyte maturation

processes were identified. Notably, it was demonstrated that serotonin (5-HT),

thought to be the natural inducer of oocyte maturation in bivalves [11], triggers

germinal vesicle breakdown (GVBD) in vitro when added to Spisula, Barnea,

Venerupis philippinarum or Crassostrea isolated prophase I oocytes [6, 8, 10, 12–

15]. Moreover, it has been suggested that in V. philippinarum, the mechanisms by

which 5-HT promotes GVBD involve an increase in intracellular [Ca2+], which is

thought to be mediated in turn by inositol 1,4,5-trisphosphate receptors (IP3r)

and specific 5-HT receptors [8, 16–17]. Despite these studies pointed out a few

interesting factors driving meiosis progression in bivalves, little is known on cell

signalling during gamete maturation and spawning induction in these species. Up

to date, only few gene expression and proteomic studies have been carried out in

bivalve oocytes mainly for quality purpose e.g. [18–19] and a comprehensive

picture of the molecular processes characterizing their maturation is still lacking.

Remarkably, when talking about gene expression and mRNA in oocytes, an

interesting point should be taken into account. At prophase I, immature oocytes

show a prominent nucleus (the germinal vesicle), which contains de-condensed

chromatin [20], thus oocytes at this stage are transcriptionally active until meiosis

resumption, when transcription is generally thought to cease [21]. However,

translation of the stored pool of mRNAs continues throughout the final stages of

meiosis [22] to synthetize proteins that are crucial for supporting not only oocyte

maturation (meiotic maturation), but also the phase prior to zygote-embryonic

genome activation [23–25].

Beside gamete maturation, several factors are still limiting hatchery production

of V. decussata. The absence of established methods for larval rearing, a scarce

knowledge on the best hatching practices to improve metamorphosis synchro-

nization and settlement are only a few additional issues about European clam seed

production which is an activity far from being completely technically controlled.

In this context, the improvement of knowledge on broodstock management and

gamete maturation processes is a key step to improve seed production of this

emerging bivalve species.

In the present study, we sampled 15 females in the main production area of V.

decussata in Portugal, Ria de Aveiro (Western coast of Portugal). For 10 of them,

mature oocytes were collected by spawning induction whereas oocytes from the

five remaining females were collected through gamete stripping. Microarray

analysis was performed on these samples by using a custom oligonucleotide

microarray containing 51,678 probes representing unique contigs described and

used in de Sousa et al. [26]. The main objective of the present work was to

investigate gene expression profiles characterizing released oocytes and ovarian

oocytes obtained by stripping providing new information on transcriptional

profiles putatively associated with ovarian egg infertility.
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Methods

Ethics statement

The European clam is not considered as an endangered or protected species in any

Portuguese or international species catalogue, including the CITES list (www.

cites.org). The European clams from Ria de Aveiro (40 4̊29N 08 4̊09W) were

produced and captured with the permission of DGRM (Direçaõ-Geral de

Recursos Naturais, Segurança e Serviços Marı́timos) and APA (Agencia

Portuguesa do Ambiente).

Biological samples and RNA isolation

Clams were sampled in Ria de Aveiro (Western coast of Portugal) and

conditioned in common garden from May 2013 to June 2013 (one month) in the

experimental bivalve hatchery of the Portuguese Institute of Sea and Atmosphere

(IPMA) in Tavira, Portugal, to accelerate their gonad development under

common rearing facilities. Food regime consisted of a mix diet of three

microalgae, 1/3 Isochrysis galbana (clone T-ISO), 1/3 Skelectonema costatum (Ria

Formosa autochthones clone) and 1/3 Chaetoceros calcitrans.

Released oocytes were obtained by thermal stimulation to induce spawning of

females, consisting on exposure to alternate cycles of 29 C̊ (1 hour) and 5 C̊ (30

minutes) [27]. As each female begun to spawn, it was removed from the spawning

tank and transferred to an individual spawning beaker with filtered seawater at the

same temperature [27]. Once spawning was completed, the obtained oocytes were

gently washed into a clean glass. From each female, 20 000 oocytes were taken for

preservation. The remained oocytes of each female spawning were mixed with a

sperm suspension (from 7 males) by gentle agitation, aiming at obtaining around

10 spermatozoids by oocyte in a microscopic view [27–28]. Moreover, the D-

larval rate (ratio between the number of D-larvae at 48 h post fertilization and the

number of incubated eggs) of each eggs batch was registered.

In addition, gonads from five females were dissected and oocytes were collected

through a practice known as ‘‘gamete stripping’’. As the name indicates, this

procedure involves removal of gametes from gonad tissue. Briefly, fully ripe

gonads were slashed repeatedly with a scalpel and washed with filtered seawater to

harvest the gametes.

The spawned/stripped oocytes were collected and filtered in a 40 mm sieve. The

oocytes were transferred into an Eppendorf tube and, after a short spin, the

seawater was removed. To remove salts, the pellet of oocytes was re-suspended

with a solution of ammonium formate (3% w/v), which was immediately

removed after a short spin. Then the oocytes were included in 1,5 ml of Extract all

solution (Eurobio) and preserved in liquid nitrogen until RNA isolation.

RNA was purified by following the manufacturer instructions and a DNAse

treatment was carried out through RTS DNAse Kit (MO-BIO). Samples

concentration was measured in a NanoDrop ND-1000 spectrophotometer and the

RNA quality was assessed through the Bioanalyzer 2010 instrument (Agilent).
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Labeling and microarray hybridization

Microarray experiments were performed by using an Agilent microarray platform

obtained in a previous study [26], which included a total of 59,951 probes, 85.7%

out of them were annotated by blastx (cut off e-value of ,1.0 E-5) searches

against high quality proteins of UniProtKB/SwissProt (release 2013_07 - June 26,

2013), Danio rerio, Gasterosteus aculeatus, Drosophila melanogaster, Homo sapiens,

Strongylocentrotus purpuratus, Ciona intestinalis, Caenorhabditis elegans and Lottia

gigantea available on Ensembl Genome Browser (release 72, June 2013),

Crassostrea gigas (http://oysterdb.cn/) [29]. and Daphnia pulex v1 (http://genome.

jgi-psf.org/Dappu1/Dappu1.home.html). Probe sequences and other details on

the microarray platform can be found in the GEO database (http://www.ncbi.nlm.

nih.gov/geo/) under accession number GPL17766.

Microarray experiments were carried out on a total of 15 samples

corresponding to unfertile stripped oocytes and spawned oocytes. Sample labeling

and hybridization were performed according to the Agilent One-Color

Microarray-Based Gene Expression Analysis protocol with the Low Input Quick

Amp Labeling kit. Refer to de Sousa et al. [26] for details about labeling and

hybridization procedures.

Data acquisition, correction and normalization

Hybridized slides were scanned at 2 mm resolution using an Agilent G2565BA

DNA microarray scanner. Each slide was scanned two times at two different

sensitivity levels: XDR Hi 100% and XDR Lo 10%. The two generated images were

analysed together, data were extracted and background subtracted using the

standard procedures provided in the Agilent Feature Extraction (FE) Software

version 10.7.3.1. To evaluate goodness and reliability of spot intensity estimates

the software returns a series of spot quality measures. All control features

(positive, negative, etc.), except for Spike-in (Spike-in Viral RNAs), were excluded

from subsequent analyses.

The fluorescence values were normalized by performing a quantile normal-

ization in R statistical software. Statistical analyses were performed on 31,862 out

of 59,951 probes with signal higher than background in at least 5 out of 15 target

samples. A log base 2 transformation was applied to all expression values and

finally the parametric Combat algorithm [30] was implemented in R in order to

adjust for the known between-experiments batch effect (i.e. different microarray

slides). Normalized data were deposited in GEO archive under accession number

GSE58906.

Data analysis

A Principal Component Analysis (PCA), using the TMeV 4.5.1 (TIGR

MULTIEXPERIMENT VIEWER) [31] was applied, to assess the distribution of

the studied groups. In addition, in order to find out the probes which most

affected the Principal Component 1 (PC1) and Principal Component 2 (PC2)
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variance, the eigenvector values of each component were retrieved. To our

knowledge, a generally accepted threshold to retain the most significant

eigenvectors does not exist, thus for both PCs the whole set of probes was sorted

in descending order by the absolute eigenvector values, and the first 5% of probes

was arbitrary selected (a total of 1,593 probes).

Statistical tests implemented in the program Significance Analysis of

Microarray (SAM) were used to identify differentially expressed probes between

the stripped oocytes and the t spawned oocytes.

Only the differentially expressed probes showing a significant variation (False

Discovery Rate (FDR) ,1.5%; Fold change (FC).1.5) have been selected.

A more systematic, functional interpretation of significant genes was then

obtained through enrichment analysis using the Database for Annotation,

Visualization, and Integrated Discovery (DAVID) software [32]. ‘‘KEGG

Pathway’’, ‘‘Biological process’’ (BP), ‘‘Molecular function’’ (MF) and ‘‘Cellular

component’’ (CC) annotation categories were used by setting the gene count

equal to 3 and the ease value equal to 0.1. Because DAVID database contains

functional annotation data for a limited number of species, it was necessary to link

the V. decussata transcripts with sequence identifiers that could be recognized in

DAVID. This process was accomplished using UniProtKB/SwissProt feature

identifiers corresponding to each probe. These identifiers were used to define a

‘‘gene list’’ and a ‘‘background’’ in the bioinformatic tool DAVID, corresponding

to differentially transcribed clam genes and to all the transcripts that were

represented on the array, respectively.

Results

Principal component analysis

A Principal Component Analysis (PCA) was applied to the selected gene

expression dataset (31,862 probes, see Methods) for the 15 oocytes samples. As

shown in Figure 1, a distinct clustering of three different groups of samples was

observed. The group of spawned oocytes was clearly separated into 2 sub-groups,

which also differ from their D larval rates, defined and already employed

successfully as a good proxy of oocyte quality [19]. Therefore we then considered

three groups for further analysis: stripped oocytes (STR), spawned oocytes with

low hatching rate (LHR, 5%–21% of D-larval rate) and spawned oocytes with

medium hatching rate (MHR, 40%–47% of D-larval rate). STR, LHR and MHR

eggs were clearly separated along the Principal Component 1 (x axis), which

explained 29% of the variation. The expression profiles were also separated along

the Principal Component 2 (y axis, 11% of the variation), but in this case STR and

LHR oocytes did not show a marked divergence in expression patterns, while the

separation of MHR eggs was remarkable. Notably, the expression patterns of the

five stripped oocytes appeared to be similar, while spawned eggs of the two groups

seemed less homogeneous.
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Finally, the PCA outcome allowed the identification of the probes which

maximally contributed to the PC1 or PC2 variance. Among the 1,593 probes (5%

out of the total amount of probes) with the highest PC1 eigenvector values, 990

were annotated against the UniProtKB/SwissProt database and represented 852

unique genes. With regards to the PC2, 925 out of the 1,593 probes with the

highest load were annotated and a total of 826 unique genes were recovered. The

lists of probes with the highest PC1 and PC2 eigenvector values were reported in

Table S1, together with their putative annotation against UniProtKB/SwissProt

database.

Comparison between spawned and stripped oocytes

In order to compare gene expression profiles between V. decussata oocytes, a two-

class unpaired SAM test was carried out (FDR,1.5%; FC.1.5). Only the

differentially expressed probes showing a significant variation (False Discovery

Rate (FDR) ,1.5%; Fold change (FC).1.5) in both comparisons (LHR vs STR;

MHR vs STR) have been selected. The number of significant probes obtained for

each comparison and those that were significant in both analyses are summarized

in Figure 2. The detailed lists of significant probes in each analysis are reported in

Table S2. Since the goal of this study was the analysis of molecular signatures

characterizing stripped and spawned oocytes, rather than quality of spawned

Figure 1. Principal Component Analysis. Spawned and stripped oocytes are identified by prefixes SP and ST, respectively. Different circles highlight the
three groups considered for further analysis. Principal Component 1 (PC1) and Principal Component 2 (PC2) correspond to X axis and Y axis, respectively.

doi:10.1371/journal.pone.0113925.g001
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oocytes (see discussion), the comparison between LHR and MHR oocytes was not

carried out.

A comparison between significant probes in the two analyses allowed us the

identification of a set of 439 transcripts (1.4% of all probes) that were

differentially expressed between stripped and spawned oocytes, irrespective of D-

larval rate. Except for one probe (lacking putative annotation), which showed an

opposite trend of expression in the two comparisons (expression higher in STR

than in LHR and lower in STR than in MHR), all significant variations reported

for the remaining 438 probes had concordant direction (Figure 2). A putative

UniProtKB/SwissProt accession ID was obtained for 235 out of 439 probes,

corresponding to 198 unique genes (see Table S2), which were differentially

expressed between the two oocyte conditions (stripped and spawned). Among the

shared Differentially Expressed Genes (DEGs), important transcripts encoding

regulators of sex steroids synthesis and activity, such as a progestin and adipoQ

receptor family member 3 (PAQR3) and steroid 17-alpha-hydroxylase/17,20 lyase

(CYP450-C17), were expressed at a higher level in the stripped oocytes.

Interestingly, also a putative vitellogenin (VG) was expressed only in released

oocytes. Moreover, gene expression of enzymes involved in the metabolism of

ceramide showed significant variation. Sphingomyelin phosphodiesterase and

neutral ceramidase B were expressed at a higher level in stripped oocytes, while a

putative sphingomyelinase transcript was more abundant in spawned oocytes. A

further interesting result was observed also for putative translin-associated protein

X and oocyte zinc finger protein XlCOF28, whose mRNA level was higher and

lower in ovarian oocytes, respectively. In addition, the mRNA levels of

nucleoporin 37 (NUP37) and U8 snoRNA-decapping enzyme, both involved in

mRNAs processing, were higher in stripped than in released oocytes.

Figure 2. Differential expression analysis. Number of Differentially Expressed (DE) probes in the two
comparisons (LHR vs STR in dark grey; MHR vs STR in light grey), determined through a two-class unpaired
SAM. Arrows specify the way in which mRNA expression is different: green arrow ‘‘Q’’and red arrow ‘‘q’’
mean lower and higher expression in STR oocytes, respectively. Venn diagrams show the number of DE
probes shared between the two comparisons. STR: stripped oocytes; LHR: low hatching rate oocytes; MHR:
medium hatching rate oocytes.

doi:10.1371/journal.pone.0113925.g002

A Microarray Study on Clam Oocytes

PLOS ONE | DOI:10.1371/journal.pone.0113925 December 3, 2014 8 / 24



Putative homologs of C. gigas calcium-activated chloride channel regulator 4

(two probes), regucalcin, and calmodulin were more abundant in stripped

oocytes, while sodium/calcium exchanger 3 (NCX3) had a higher expression level

in spawned oocytes.

As expected, mRNA profiles of genes regulating cell cycle progression were

subjected to great variation. Notably, five probes encoding CDC25 (M-phase

inducer phosphatases - MPIP) and a MPIP-like protein were expressed at a higher

extent in released oocytes.

Finally, differential expression analysis also highlighted the importance of WNT

signalling pathway. Frizzled 8 (FZD8), four-jointed protein (FJ) and wingless-type

MMTV integration site family member 4 (WNT4) transcripts were found to be

more abundant in released oocytes, suggesting a significant over-representation of

WNT signal activities in female gametes after spawning. Figure 3 reports a

schematic view of the WNT pathway (as known in Drosophila) and highlights the

putative components whose mRNA was expressed at higher extent in V. decussata

released oocytes.

In order to obtain a global picture that describes the main molecular pathways

differentiating stripped and spawned oocytes, all putative annotated DEGs were

used to define a gene list for functional annotation with DAVID. Enrichment

analysis showed 7 CC terms, 16 BP terms, 9 MF terms and 1 KEGG to be

significantly over-represented (Table 1). The only significant KEGG pathway was

‘‘ribosome’’ (dme03010), represented by three transcripts, more abundant in the

stripped oocytes, 60S ribosomal protein L3, 60S acidic ribosomal protein P1 and

40S ribosomal protein S9. ‘‘Mitotic cell cycle’’ (GO:0000278), ‘‘translation’’

(GO:0006412), ‘‘WNT receptor signaling pathway’’ (GO:0016055) and ‘‘depho-

sphorylation’’ (GO:0016311) were the most represented among enriched BP terms

with a fold enrichment (FE).2. With regard to CC terms, one of the most

represented ones was ‘‘ribonucleoprotein complex’’ (GO:0030529), which in

oocytes is most likely involved in the storage and compartmentalization of

incompletely polyadenylated mRNAs. Significant MF terms concerned activities

that are classically involved in cell cycle regulation such as peptidase

(GO:0008233) and phosphatase (GO:0016791) activities, and molecular functions

that contribute to structural integrity like ‘‘structural molecule activity’’

(GO:0005198) and ‘‘structural constituent of ribosome’’ (GO:0003735).

Discussion

Gene expression analysis and evaluation of DEGs comparing oocytes before and

after spawning pointed out significant results and provided a first overview on

transcriptome changes that are correlated with stripped oocytes infertility. The

PCA applied to the selected gene expression dataset clearly emphasized three

different clusters for the 15 oocyte samples, stripped and spawned oocytes, this

latter being divided into two sub-groups. When looking at these two sub-groups,

the subsequent D larval rates obtained by fertilization of the remaining oocytes for
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each female that spawned, appeared clearly different, less than 21% for the sub-

group named low hatching rate (LHR) and higher than 40% for the other one,

named with medium hatching rate (MHR). These limits of D larval rates for

defining oocyte quality are similar to those already considered in a proteomic-

based analysis of oocyte quality in the Pacific oyster C. gigas [19]. Such a result

urges the need of further molecular studies on oocyte quality which are actually

on-going in a larger set of samples (de Sousa J., unpublished data). Here the

attention has been focused on the analysis of molecular signatures characterizing

stripped and spawned oocytes, no matter the quality. For the sake of clarity, the

most important processes that were found to have a prominent role in

differentiating stripped and spawned oocytes will be discussed separately.

Meiosis progression

Significant enrichment of BP term ‘‘Mitotic cell cycle’’ (FE52.14) clearly

demonstrated that among the 198 annotated DEGs between stripped and spawned

oocytes, several transcripts were implicated in the regulation of meiosis

progression. Indeed, mitosis and meiosis share several steps in their respective

processes and thus regulatory molecules are mostly the same in both types of cell

division.

Figure 3. WNT signaling pathway. Binding of WNT4 to the receptor FZD8 and LRP6 leads to inhibition of
beta-catenin degradation. Beta-catenin in turn interacts with members of the TCF/Lef-1 family of transcription
factors to co-activate target gene transcription. WNT components whose mRNA was more abundant in clam
released than in stripped oocytes are marked with a red star next to the gene symbol. LRP6: low density
lipoprotein receptor-related protein 6; CK1: casein kinase 1; GSK3: glycogen synthase kinase 3; APC:
adenomatous polyposis coli; TCF: transcription factor.

doi:10.1371/journal.pone.0113925.g003
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Several proteins are involved in the regulation of prophase I arrest in ovarian

oocytes, the most crucial factor being the maturation promoting factor (MPF)

[33]. MPF is a key G2/M phase regulator in eukaryotic cells and is composed by

Table 1. Enrichment analysis.

BP terms Count P-val FE

GO:0016055,Wnt receptor signaling pathway 6 0 6.02

GO:0009310,amine catabolic process 5 0.01 5.98

GO:0006470,protein amino acid dephosphorylation 6 0.01 4.1

GO:0016311,dephosphorylation 6 0.03 3.55

GO:0006414,translational elongation 4 0.03 5.78

GO:0046395,carboxylic acid catabolic process 5 0.03 4.09

GO:0016054,organic acid catabolic process 5 0.03 4.09

GO:0009063,cellular amino acid catabolic process 4 0.04 5.29

GO:0051329,interphase of mitotic cell cycle 4 0.04 5.29

GO:0051325,interphase 4 0.04 5.18

GO:0051187,cofactor catabolic process 3 0.05 8.11

GO:0006412,translation 8 0.05 2.32

GO:0000278,mitotic cell cycle 8 0.08 2.14

GO:0000279,M phase 8 0.09 2.07

GO:0000226,microtubule cytoskeleton organization 5 0.09 2.93

GO:0009066,aspartate family amino acid metabolic process 3 0.1 5.65

CC terms Count P-val FE

GO:0022626,cytosolic ribosome 4 0 11.18

GO:0005576,extracellular region 15 0.01 2.13

GO:0005840,ribosome 7 0.01 3.54

GO:0044445,cytosolic part 5 0.02 4.51

GO:0044421,extracellular region part 8 0.04 2.43

GO:0033279,ribosomal subunit 4 0.05 4.89

GO:0030529,ribonucleoprotein complex 10 0.09 1.82

MF terms Count P-val FE

GO:0005198,structural molecule activity 12 0 3.06

GO:0003735,structural constituent of ribosome 7 0 4.91

GO:0004725,protein tyrosine phosphatase activity 6 0.01 4.93

GO:0004721,phosphoprotein phosphatase activity 7 0.01 3.64

GO:0070011,peptidase activity, acting on L-amino acid peptides 10 0.04 2.15

GO:0016831,carboxy-lyase activity 3 0.04 8.92

GO:0008233,peptidase activity 10 0.05 2.04

GO:0016791,phosphatase activity 7 0.06 2.44

GO:0004175,endopeptidase activity 7 0.07 2.43

KEGG pathways Count P-val FE

dme03010:Ribosome 3 0 30.13

Enriched GO terms (Biological Process BP, Molecular function MF and Cellular Component CC) and KEGG pathway in the set of significant probes in both
comparisons (STR vs LHR and STR vs MHR). Genes count (Count), p value (P-val) and fold enrichment (FE) of significantly enriched terms are reported.

doi:10.1371/journal.pone.0113925.t001
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CDC2 kinase (known also as CDK1) and cyclin B [34]. MPF is induced during

meiosis resumption and its activity is regulated by phosphorylation of CDC2

kinase. CDC2 kinase is activated when M-phase inducer phosphatase (CDC25)

dephosphorylate threonin-14 and tyrosine-15 sites [35–37], leading, in turn, to

MPF activation and meiosis resumption. In this study, a total of six probes coding

for CDC25 or CDC25-like proteins was reported to be more abundant in released

oocytes, suggesting a prominent role of these phosphatases in the resumption of

meiotic cell cycle progression in V. decussata. The controlling function of CDC25

phosphatases in the meiosis I progression has been proposed in a wide range of

species e.g. [38–41]. In mouse, both CDC25A and CDC25B were demonstrated to

be critical for meiotic maturation and metaphase I spindle formation in oocytes

[42]. CDC25B2/2 knockout female mice are sterile because their oocytes cannot

exit developmental arrest at meiosis prophase 1 [43], whereas CDC25A2/2 mice

exhibit early embryonic lethality [44], indicating that both proteins are required

for the control of oocyte meiotic cell cycle and embryonic mitotic cell cycle,

respectively. Interestingly, when injected into Xenopus laevis oocytes, mRNAs

encoding frog homologs of mammalian CDC25A and CDC25C can induce

nuclear envelope breakdown [45]. In C. gigas genome (http://oysterdb.cn/) seven

CDC25 genes are reported, while in the European clam the number of CDC25

isoforms is still unknown. However the findings reported here suggest that in V.

decussata CDC25 family members may be crucial for both control and induction

of meiotic maturation.

The importance of cell-cycle proteins was also suggested by the observed

expression levels of CDC20, which is implicated in meiosis regulation, being the

activating subunit of the anaphase-promoting complex/cyclosome (APC/C).

CDC20 initiates sister-chromatid separation by ordering the destruction of two

key anaphase inhibitors, cyclin B1 and securin, at the transition from metaphase

to anaphase, much like mitosis in somatic cells [46]. Despite SAM analysis did not

show any significant variations between the two experimental groups, an ad hoc

T-test, that allows estimating differences without doing any kind of correction

(e.g. FDR), demonstrated that two probes encoding a CDC20-like protein were

significantly more expressed in thermally-induced released oocytes (data not

shown), thus suggesting an important role of this transcript in determining oocyte

competence on fertilization. Notably, in mice it has been reported that CDC20

may be required for anaphase onset during the first meiosis, thus raising also the

possibility that CDC20 insufficiency may be a cause of infertility in otherwise

healthy females [47–48]. Likewise, during bovine oocyte maturation, CDC20

down-regulation significantly reduced the rate of first polar body emission [49].

In invertebrates the role of CDC20 has not been studied so far except for

Drosophila. In fact, fruit-fly cortex, a member of gene CDC20/fizzy protein family,

was found to be required to complete oocyte meiosis and cooperates with CDC20

in cyclin destruction and anaphase progression in meiosis I and II [50–51]. The

putative functioning of CDC20 has not been explored in molluscan oocytes and

the over-expression of this transcript in released clam oocytes hints its importance

to allow meiosis progression after fertilization.
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WNT signalling pathway

A crucial role in the molecular processes that differentiate stripped and spawned

oocytes could also be proposed for a few members of the WNT signalling pathway

(GO:0016055), which plays a crucial function in controlling genetic programs of

embryonic development and adult homeostasis [52]. Recently, in mammals WNT

pathway signalling has been implicated in ovarian development, oogenesis, and

early development. Multiple WNT signalling pathway genes are expressed in

mouse oocytes and pre-implantation stage embryos, as revealed by microarray

analyses [53–54], and this has led to the hypothesis that WNTs may function in

early cell fate determination events [53]. However, other studies indicate that

WNT signalling pathways are likely not functional in the early embryo [55],

raising the possibility that expression of WNT signalling genes in oocytes and

early embryos are most likely related to functions in oogenesis (e.g., oocyte growth

or maturation) [56]. In the present study the expression levels of three probes

putatively encoding a WNT proteins receptor, frizzled 8 (FZD8), were more

abundant in released oocytes. Such evidence might suggest that FZD8 expression

supports WNT signalling pathway activation by favouring the recognition of

WNT proteins (Figure 3). Moreover, a putative ortholog of oyster WNT4 was less

abundant in female gametes extracted from mature gonads, in comparison with

released oocytes. Notably, mice null for WNT4 exhibit sex reversal and a reduced

number of oocytes in new-born ovaries [57]. In the same species, ovaries of

WNT4-mutant females were characterized by a scarce amount of oocytes, which

were in the process of degenerating [58], and 80% of WNT4 deficient germ cells

failed to enter meiosis [59]. Finally a putative FJ encoding transcript was

significantly (FDR,1.5%) more expressed in spawned than in stripped oocytes (

Figure 3). The role of FJ has been poorly investigated in both vertebrates and

invertebrates. However, a few studies focusing on FJ have been performed in D.

melanogaster, where it has been demonstrated that this protein directly interacts

with WNT4 and they act synergistically to induce planar polarity during early

development [60–61]. Considering the lack of functional information concerning

FJ, it is difficult to propose a specific role of this gene in V. decussata. Nevertheless

it can be suggested that its expression in oocyte is probably linked to oocytes

competence on fertilization.

Moreover, expression levels of a further gene involved in the regulation of

WNT-mediated signal, the dishevelled segment polarity protein 3 (DVL3),

provided additional information to elucidate the role of this pathway in clam

oocytes. Ad hoc T-test (pval,0.05) demonstrated that a putative DVL3 transcript

was higher in released oocytes, suggesting the importance of this molecule in

bivalve oocyte maturation. The protein encoded by DVL3 gene is implicated in

transduction signal (Figure 3) conveyed by various WNT genes and, in Xenopus

oocytes, its expression has been reported to be extremely important for

transduction of canonical WNT signals after fertilization [62]. To conclude, the

hypothesis that in V. decussata oocytes the amount of mRNAs encoding proteins
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involved in WNT signalling could be extremely important to complete oocyte

maturation and fertilization is a matter of concern for future investigations.

Sex steroids and vitellogenin

In the present study, changes in mRNA levels were reported also for putative

PAQR3 and CYP450-C17, which were both more abundant in ovarian oocytes.

Progestin and adipoQ receptor family is a group of G protein-coupled receptors

including membrane progesterone receptors (mPRs) that mediate a variety of

rapid cell surface-initiated progesterone actions in the reproductive system

involving activation of intracellular signalling pathways. While cytochrome P450-

C17 is an enzyme involved in the synthesis of 17b-estradiol (E2) during

steroidogenesis. Despite in invertebrates there have been conflicting lines of

evidence concerning the existence of enzymes necessary to synthesize vertebrate

steroids and related nuclear receptors [63], several studies suggested a role of E2

and progesterone in gonadal development, oocytes maturation and spawning in

several bivalve species [64–71]. Consistent with these studies, here it was

demonstrated that significant variations of transcripts involved in sex steroids

synthesis and activity occur during V. decussata oocytes maturation. In particular

higher levels of PAQR3 and CYP450-C17 mRNAs in ovarian oocytes may be

associated to higher E2 synthesis and progesterone activity in comparison with

released oocytes. These data let us thinking that maturation stimuli by sex steroids

are especially higher before the spawning event and most probably take part to the

molecular processes inducing oocytes emission and restarting of meiosis in V.

decussata. In agreement with such hypothesis, previous studies indicate that sex

steroids have a pivotal role in the pre-spawning stage since they have stimulatory

effects on gamete release in Patinopecten yessoensis and Placopecten magellanicus

[71–73].

Another interesting finding was the significant change in expression of a

putative vitellogenin (VG) transcript, whose expression was over the threshold of

fluorescence (see section 2.3) only in released oocytes. Vitellogenins are the major

precursors of egg-yolk proteins, vitellins (VNs). Vns, stored in developing oocytes,

are required for oocyte growth and maturation [74–75] and traditionally regarded

as the energy reserve for nourishment of developing embryos [64, 76–77]. To date,

a full length sequence characterization of VG has been provided only for a few fish

[78–79] and crustacean species [80–81]. In addition, compared with its extensive

research in adults, data on VG expression during development are insufficient and

limited to some insects and crustaceans [82–84]. In molluscs, VG expression levels

were mainly evaluated in the gonadal tissue [65–67, 85–87]. In bivalve molluscs

there is no direct evidence on VG synthesis, and it is still unclear whether the

synthesis of a major yolk protein occurs in oocytes (auto-synthesis) [88–89] or in

auxiliary cells (hetero-synthesis) [65–67, 85, 90]. The fact that in the present study

VG mRNA was detected only in the spawned oocytes, favours the hypothesis that

in V. decussata VG is synthesized through an auto-synthetic pathway. Moreover,

based on de Sousa et al. [26], who reported a high expression of this VG transcript
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through all gonadal stages with mRNA increase over the time course of the

gametogenesis, we could legitimately suppose that in this species also a hetero-

synthesis occurs. Most probably exogenously-synthetized VG protein is

transferred into oocytes, where it functions as energy reserve.

Notwithstanding the fact that the importance of VG as energy reserve has been

demonstrated mainly at a protein level, VG mRNA stores in released oocytes

could play a pivotal role, probably by providing a stock of transcripts ready to be

translated into functional protein. Thus it can be hypothesized that these reserves

may be crucial for released oocytes viability. Besides playing a role in the

formation of yolk protein during early development, VG mRNA in oocytes might

perform pleiotropic functions, including immune defence reactions [91–94].

Likewise, VG transcript, detected only in fertilizable released oocytes, might be an

important resource in oocytes of V. decussata since it could be translated as a

maternal factor and then possibly providing a sort of immune defence prior to

embryonic gene activation and during early embryonic development. The absence

of VG mRNA in stripped oocytes indicates that VG transcription in clam oocyte

initiates after ovulation. Similar results have been recently obtained by Li and co-

workers [95], who demonstrated that, in Chlamys farreri, VG mRNA is expressed

during early development and that the highest levels occur in released oocytes and

fertilized eggs.

Anyhow, since the site of VG synthesis in V. decussata remains to be further

clarified and major regulations likely occur at the protein level, it is premature to

draw general conclusions about the role of VG in released oocytes.

mRNA processing

The mechanism supposedly involved in the retention of VG mRNA requires the

activity of RNA-binding proteins, which are known to function as translational

repressors in the cytoplasm of several eukaryotic cells [96–97]. This mechanism is

considered to be crucial in oocytes since, during oogenesis, maternal mRNAs are

synthesised and stored in a translationally dormant form and are activated either

upon re-entry into meiotic division or after fertilisation [23–24]. During oocyte

maturation and early embryogenesis in Xenopus, translin, a RNA-binding protein,

was demonstrated to play a major role to repress maternal mRNA translation

[98]. Notably in the present study, a translin-associated protein X, which is

involved in nuclear transport of translin in mice [99–100], was expressed in all

oocytes conditions and was particularly abundant in stripped oocytes. The

relevance of mRNA translation in oocytes was demonstrated also by the

significant variation reported for a putative homolog of the Xenopus oocyte zinc

finger protein XlCOF28, whose mRNA amount was more abundant in spawned

oocytes. The Xenopus zinc finger protein XlCOF28 belongs to the family of C2H2

zinc finger proteins, which are known to function as RNA-binding molecules

[101]. Noteworthy, it has been recently reported that proteins belonging to this

family are required for regulation of maternally supplied mRNAs during

oogenesis, oocyte to embryo transition, and early embryogenesis in both
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vertebrates and invertebrates [102–103]. Based on these multiple lines of evidence,

it can be hypothesized that C2H2 zinc finger proteins take part to the mechanisms

that regulate mRNA silencing in V. decussata oocytes.

Calcium regulation

A further interesting result concerns the differential expression of several

transcripts involved in calcium (Ca2+) signalling. Calcium ions are the most

common second messengers in animal cells [104] and their transient elevations

regulate numerous cell functions. There has been a long-standing debate as to

whether Ca2+ signals are required for oocyte meiosis and numerous conflicting

studies argue that the relationship between Ca2+ and oocyte maturation is

complex, possibly due to fine regulation via very constrained levels of Ca2+
[20, 105]. The role that external calcium, through voltage-gated channels, might

play in the induction of GVBD was first reported in molluscs that are both

fertilized at the PI stage [14, 106–107], or undergo the second arrest in MI

[3, 108]. It was soon recognized that also calcium influx from intracellular

storages plays a crucial role in almost all species studied independently from their

peculiar meiotic arrest [8, 107, 109]. In particular, the interplay between external

and internal calcium currents is evident in Venerupis, where a serotonin-induced

surge of intracellular calcium was shown to trigger maturation even in the absence

of external calcium [8]. In the present study, the differences in the amount of

mRNA encoding putative calcium-activated chloride channel regulator 4 was an

additional clue for assessing that the regulation of intracellular Ca2+ plays an

important role in V. decussata oocytes maturation. Likewise, a putative sodium/

calcium exchanger 3 (NCX3) was reported to be more abundant in released

oocytes. The Na+/Ca2+ exchanger proteins represent an antiporter system that

utilizes the electrochemical gradient of Na+ to catalyze Ca2+ extrusion from the

cytosol or organelle matrix. NCX proteins explore the electrochemical gradient of

Na+ to mediate Ca2+ fluxes in exchange with Na+ either in the Ca2+ efflux

(forward) or Ca2+ influx (reverse) mode, whereas the directionality depends on

ionic concentrations and membrane potential [110]. Despite NCX is considered

one of the most important cellular mechanisms for removing Ca2+, it should be

noted that under special circumstances and in some types of cells, including

oocytes, the transporter might operate in the ‘‘Ca2+ entry’’ mode and play a

critical role in mediating calcium influx rather than efflux [111]. Accordingly to

the reverse mode, the higher mRNA levels of a putative NCX reported in clam

released oocytes (compared to stripped oocytes) could be an important requisite

to allow Ca2+ influx, thus favouring release from metaphase I and fertilization.

Despite in pig oocytes it has been demonstrated that Ca2+ entry through a Na+/

Ca2+ exchanger did not induce meiotic resumption from metaphase II [112], the

role of this antiporter system in bivalves has not been studied yet and we cannot

exclude that in other species it can act differently. Moreover, even if we suppose a

forward mode (Ca2+ efflux) of NCX, the relevance of this system does not became

secondary, since intracellular calcium variations are key regulators affecting
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oocytes development and fertilization. Therefore, to evaluate NCX functioning in

V. decussata and confirm its importance during oocyte maturation, more specific

studies are needed.

Conversely, homologs of C. gigas regucalcin and calmodulin showed higher

expression levels in ovarian oocytes. Calmodulin and regucalcin are calcium-

binding proteins that are supposed to contribute to meiosis regulation [113–114]

and their mRNA variation suggests an involvement in maintaining calcium

homeostasis in immature oocytes. Notably, regucalcin might function as

transcriptional regulator and its over-expression in NRK52E cells was demon-

strated to repress the expression of L-type Ca2+ channel and Ca2+-sensing

receptors [115]. This evidence is of particular interest since L-type Ca2+ channels

are thought to be specifically involved in meiosis re-initiation [20]. Indeed, a high

level of regucalcin in stripped oocytes might be implicated in maintaining meiosis

blocked at prophase I stage, thus hampering fecundation by sperm. Despite little

is known about the molecular regulation of intracellular Ca2+ occurring during

oocytes maturation in bivalves, these preliminary results pointed out a few

important genes possibly involved in such a complex mechanism.

Ceramide metabolism

Finally, another metabolic process potentially implicated in oocyte maturation in

V. decussata was the regulation of ceramide levels. Ceramide is a signal

sphingolipid thought to influence oocyte maturation and quality. The enzymes

controlling the metabolism of ceramide in oocytes have been poorly studied in

molluscs and only recently sequences of genes associated with ceramide

metabolism and signalling have been investigated in the Pacific oyster [116].

Conversely, in vertebrates quite a few studies have been focused on the role of

ceramide in oocytes and two main hypotheses have been suggested [117]. First, it

has been proposed that the generation of ceramide is part of the signal

transduction pathway activated in response to progesterone, and that its increase

is likely functionally important in the resumption of meiotic cycle [118–120].

Second, it has been recently demonstrated that ceramide induces default apoptosis

in oocytes and has a central role in age-related decrease of egg quality [121–122].

In the present study, at least three enzymes involved in ceramide metabolism were

found to be differentially expressed between stripped and spawned oocytes. A

ceramide synthase, less abundant in ovarian oocytes, a ceramidase B and a

sphingomyelinase, both less abundant in released oocytes. Since no data are

available on normal ceramide homeostasis in bivalve oocytes, a comprehensive

interpretation of the reported mRNA changes is particularly challenging in

association with oocytes maturation and competence development.
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Conclusions

To conclude, gene expression analysis allowed the identification of important

mechanisms that could have a key role in the process of bivalve oocyte

development. Differences in mRNA expression of some important genes have

been detected providing a more comprehensive picture of key processes affecting

V. decussata oocyte maturation and competence acquisition. Noteworthy,

transcripts for which the expression level was subjected to significant changes after

spawning were those encoding proteins involved in cell cycle progression, calcium

regulation and WNT signalling. These biological processes most likely play a

major role in female gamete maturation and competence acquisition. While

suggestive, the obtained results would require further validation through

experimental manipulation of the highlighted signalling pathways. In perspective,

functional studies could represent an interesting field to be explored. Gene

functions are primarily assessed on the basis of altered phenotypes associated with

gene disruption or protein inactivation. Recent studies carried out in C. gigas,

demonstrated that the in vivo functional inactivation of proteins through

polyclonal antibody injection [123] or RNA interference [124–125] could provide

important information to unravel gene functions in bivalves. Nonetheless,

pharmacological stimulators and disruptors, inferred from the experience

achieved in most studied vertebrate species, can be employed to address the role of

a gene and chiefly test for improvement of hatchery practices.

Supporting Information

Table S1. Principal Component 1 and Principal Component 2 highest eigenvector

values. The table lists the 1,593 probes (5% out of the total amount of probes)

with the highest eigenvector values in both PC1 and PC2. The eigenvector values

and the putative annotation against UniProtKB/SwissProt database are also

reported.

doi:10.1371/journal.pone.0113925.s001 (XLSX)

Table S2. Significance Analysis of Microarray (SAM). List of annotated probes

that were differentially expressed (FDR ,1.5%; FC.1.5) in both the two

comparisons LHR vs STR oocytes and MHR vs STR oocytes with the

corresponding fold change value. Shared significant probes between the two

comparisons were also summarized. Colors identify transcripts more abundant in

spawned (green) and stripped oocytes (red). Putative annotation against

UniProtK/SwissProt and Pacific oyster databases of each probe are specified.

doi:10.1371/journal.pone.0113925.s002 (XLSX)
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