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Abstract. In this paper, a mixed model for studying ground vibration generated from surface
railway tracks is presented. A ballasted track with nonlinear resilient components is modelled
in the time domain using the Finite Element method. The ground is modelled as a linear homo-
geneous half-space in the wavenumber domain for faster computation. The interaction between
the track and the ground is incorporated into the track model through a lumped parameter
model representing the vertical dynamic stiffness of the ground. The coefficients of the compo-
nents of the lumped parameter model are obtained by curve fitting of the transfer function of the
half-space for a load applied at its origin.
The coupled equation of motion for the track/ground system is formulated with excitation from
a stationary point load- consisting of static and dynamic parts- acting at the centre of the rail.
The coupled equation is solved by numerical integration. The calculated interaction forces at
the ballast/ground interface from the space-time domain track model are Fourier transformed
to the wavenumber domain and used as excitation to the ground model in order to calculate
free-field surface vibration of the ground.
Results are presented for the vertical dynamic stiffness for the ground, and for the track and
ground displacement in the vicinity of the track and in the free-field. A comparative study
between the mixed formulation with the lumped parameter model for the ground, and a fully
coupled wavenumber domain model is conducted for linear parameters. Using the fully cou-
pled model as a benchmark, it is observed that the inclusion of the lumped parameter ground
model in the track model gives good estimation of the transmitted forces, and hence ground
vibration, both in the near and far fields. Finally, the effect of nonlinear track components is
briefly investigated for different levels of static preload.
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1 INTRODUCTION

The numerical modelling of ground vibration from surface railways has been the focus of
much research over the years. When linear parameters are used for the track and ground, the
modelling can be readily done in the frequency-wavenumber domain, e.g. [1, 2]. However, time
domain techniques such as Finite Element (FE) and Boundary Elements (BE) are necessary
for this problem when nonlinear components and/or complex irregular geometries are to be
modelled, e.g. [3]. The use of FE and BE methods can be very costly indeed in terms of the
computational hardware and the time required for the simulations. This is mainly due to the
large number of elements required to discretise the ground.

An alternative, which is widely used in soil-structure interaction problems, e.g. vibration of
machine foundation on a half-space, is to represent the ground as approximate lumped param-
eter models consisting of spring, dashpot and mass elements. This approach has been applied
to ground vibration from surface trains in [4, 5]. The lumped parameter model was formu-
lated based on Lysmer’s analogue fitting which, due to its simplicity, is mostly accurate for
modelling the asymptotic values of the dynamic stiffness at low and high frequencies, without
capturing mid frequency fluctuations. A systematic approach for formulating consistent lumped
parameter models with real, frequency independent coefficients, to represent an unbounded soil
medium was presented in [6, 7]. In this approach, each dynamic stiffness component in the fre-
quency domain; e.g. the vertical stiffness due to a vertical load, can be represented in discrete
form as a rational fraction. This is subsequently decomposed into singular, first- and second-
order parts, depending on the nature of the roots of the rational fraction. These models can
provide a high degree of accuracy when sufficiently high order of approximating polynomials
are used. They also have the advantage of being incorporated in standard FE/BE routines which
allows nonlinear parameters to be included in the structure.

In this paper, a mixed space-time and wavenumber-frequency domain approach for predict-
ing ground vibration is presented. In Section 2, a lumped parameter model for a halfspace sub-
jected to a rectangular loading is formulated by fitting the vertical dynamic stiffness calculated
in the wavenumber-frequency domain. This model is then used in a time domain nonlinear FE
model of a railway track, presented in Section 3, in order to calculate the dynamic track/ground
interaction forces. Once these forces are obtained, they can be transformed to the wavenumber
domain and used as input for predicting surface ground vibration in the far-field. The proce-
dure for doing this is briefly discussed in Section 4. Results are presented in Section 5 which
show the validity of the method and the influence of track nonlinearity on the predicted ground
vibration.

2 MODELLING OF THE GROUND

The ground is modelled here as a homogeneous elastic half-space in the wavenumber-frequency
domain. The excitation is a harmonic load distributed over a rectangular area and centred about
the origin of the half-space. The wavenumber-frequency domain representation of the vertical
dynamic stiffness of the ground is presented in Section 2.1. The approximate lumped parameter
model for this dynamic stiffness function is formulated in Section 2.2.

2.1 Wavenumber-domain modelling of the ground

Figure 1 shows a 3D model of a half-space that represents the ground. A harmonic rectan-
gular load, centred at the origin, acts on the halfspace with dimensions 2a and 2b in the x and y
directions respectively. The formulation for this problem was presented in [1].
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x

y z

 

a

b

Figure 1: Ground modelled as a 3D half-space and subjected to a rectangular load.

The distributed force on the rectangular area is defined as F0(x, y)eiωt, where F0(x, y) is
related to the total force, Fg, by

F0(x, y) =

{
Fg/4ab, |x| < a and |y| < b,

0, elsewhere
. (1)

The complex amplitude of the displacement of the ground in the wavenumber domain can
be expressed as

Ũg(ξ, γ, ω) = H̃g(ξ, γ, ω)Fg
sin ξa sin γb

ξaγb
, (2)

where H̃g(ξ, γ, ω) is the displacement of the ground at the origin due to the total force, Fg,
concentrated at the origin. H̃g(ξ, γ, ω) is given by [8]

H̃g(ξ, γ, ω) =
1

µ

[
η3 (ξ2 + γ2 − η21)

(ξ2 + γ2 + η21)
2 − 4η1η3 (ξ2 + γ2)

]
, (3)

where η1 = −
√
ξ2 + γ2 − ω2/v2s , η3 = −

√
ξ2 + γ2 − ω2/v2p; for <(η1) ≤ 0 and <(η1) ≤ 0,

v2p = (λ + 2µ)/ρ, v2s = µ/ρ; with vp and vs being the compressional and shear wave speeds
respectively, λ and µ the Lamé constants and ρ the soil density.

By transforming Eq. (2) from the wavenumber to the space domain using double inverse
Fourier transforms, the displacement in the space domain is obtained as

ug(x, y, ω) =
Fg
4π2

∞w

−∞

∞w

−∞

H̃g(ξ, γ, ω)
sin ξa sin γb

abξγ
ei(ξx+γy)dξdγ. (4)

The vertical dynamic stiffness kg(x, y, ω) is the ratio of the input force to the displacement and
can therefore be written as

kg(x, y, ω) =
4π2

∞r

−∞

∞r

−∞
H̃g(ξ, γ, ω)

sin ξa sin γb

abξγ
ei(ξx+γy)dξdγ

. (5)
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In the next section, the lumped parameter model that approximately models the dynamic
stiffness function in Eq. (5) will be formulated.

2.2 Lumped parameter representation of the ground

The objective of this section is to formulate a lumped parameter model with spring and
dashpot components having real frequency independent coefficients [6, 7], to approximately
model the dynamic stiffness function in Eq. (5). Suppose that Eq. (5) can be represented in
discrete form as the sum of its singular part, K̄s(iω), and the remaining regular part, K̄r(iω.
The singular part, K̄s(iω) = k0 + iωc0, describes its asymptotic value at high frequencies. The
regular part, K̄r(iω) can be expressed as a rational fraction with numerator having order one
less than the denominator. Hence, the discrete dynamic stiffness, K̄(iω) can be summarised as

K̄(iω) = k0 + iωc0︸ ︷︷ ︸
singular part

+
1 + p1(iω) + p2(iω)2 + · · ·+ pM−1(iω)M−1

1 + q1(iω) + q2(iω)2 + · · ·+ qM(iω)M︸ ︷︷ ︸
regular part

(6)

where pi and qi are the 2M − 1 unknown real coefficients to be determined by numerical curve
fitting. The regular part, K̄r(iω) can be alternatively represented using a partial fraction expan-
sion as

K̄r(iω) =
M∑
l=1

Al
iω − sl

, (7)

where sl and Al are the poles and corresponding residues of K̄r(iω). Note that for a stable
system, each sl should have a negative real part, and this condition can be achieved by adopt-
ing an iterative procedure in the curve fitting routine. The poles of K̄r(iω) can be all real, all
complex conjugate pairs or a combination of these. A real pole results in a first-order approx-
imation term with corresponding real coefficients whereas a pair of complex conjugate poles,
when added together, form a second-order term with real coefficients. For J complex conjugate
pairs and the remaining M − 2J real poles, the dynamic stiffness for the generalised lumped
parameter model can be written in parallel form that includes all the sub components as

K̄(iω) = k0 + iωc0 +
J∑
l=1

β1liω + β0l
(iω)2 + α1liω + α0l

+
M−2J∑
l=1

Al
iω − sl

, (8)

The coefficients of the second-order term are as follows

α0l =

j+1∏
i=j

si, α1l = −
j+1∑
i=j

si, β0l = −(Ajsj+1 + Aj+1sj), β1l =

j+1∑
i=j

Ai,

where j ∈ {1, 3, · · · , 2J − 1} and j + 1 form a pair of complex conjugates of poles and of
corresponding residues at those poles.

Figure 2 shows the generalised lumped parameter model, with the components marked (I),
(II) and (III) being the singular part, first-order terms and second-order terms of the regular part
respectively. The coefficients of the first and second order terms are derived in [6] as being
related to the poles and residues of K̄r(iω) as follows

k1,l =
Al
sl
, c1,l = −Al

s2l
, k2,j = −β0l

α0l

, c2,j =
α0lβ1l − α1lβ0l

α2
0l

,

k2,j+1 =
β0l(−α0lβ1l + α1lβ0l)

2

α2
0l(α0lβ2

1l − α1lβ0lβ1l + β2
0l)
, c2,j+1 =

β2
0l(−α0lβ1l + α1lβ0l)

α2
0l(α0lβ2

1l − α1lβ0lβ1l + β2
0l)
.
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)III() II(I)(
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Jk 2,22,2c

1,2c

1,2k

1,2k

2,2k

1,1k

1,1c

1,1k

JMc 2,1 

JMk 2,1 

JMk 2,1 

Figure 2: Lumped parameter ground model approximation for a half-space

The force-displacement relationship of the generalised lumped parameter model can be ex-
pressed in matrix form as {

Fg
}

=
[
Cg
] {
U̇g
}

+
[
Kg

] {
Ug
}
, (9)

where

Kg =



k0 −k1,1 · · · −k1,M−2J −k2,1 0 · · · · · · −k2,2J−1 0
−k1,1 k1,1

... . . .
−k1,M−2J k1,M−2J
−k2,1 k2,1

0 k2,2
... . . .
... . . .

−k2,2J−1 k2,2J−1
0 k2,2J


,

Cg =



c0
c1,1

. . .
c1,M−2J

c2,1 −c2,1
−c2,1 c2,1 + c2,2

. . . . . .

. . . . . .
c2,2J−1 −c2,2J−1
c2,2J−1 c2,2J


,

and
{
Ug
}T

=
{
u0, u1, · · · , uM−2J , uM−2J+1, · · · · · · , uM

}
, with u0 being the dis-

placement at the ground surface and the remaining variables are internal degrees of freedom.
Equation (9) can be directly used in coupling a structure to the ground, as will be described for
the case of a railway track in the next section.
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3 SPACE-TIME DOMAIN MODELLING OF THE TRACK

3.1 Model description

Figure 3 shows a model of a ballasted railway track. The model consists of rail discretely
supported on sleepers via railpads. The sleepers are resting on ballast which is in turn resting on
the ground. The rail is modelled as an Euler-Bernoulli beam of mass, mr, per unit length and

 

tPP i
10 e

 

ru

   

su

 

rr EIm ,

bbb ckm ,,

pp ck ,

x

sm

Ground layer

gu

 

Figure 3: Model of a ballasted railway track on supporting ground layer, excited by a
moving vehicle on irregular rail surface

bending stiffness, EI . The railpads are modelled as nonlinear with preload dependent stiffness
and damping, kp and cp respectively. The sleepers are modelled as lumped masses, ms, having
only vertical translation. At each sleeper position, the ballast is modelled as having a mass, mb,
consistently distributed between the sleeper and ground nodes, stiffness and damping, kb and
cb respectively. The lumped parameter model formulated in the previous section to represent
the ground is coupled to the each sleeper node, with the assumption that there is no coupling
through the ground. It should be noted that appropriate scaling of the lumped parameter model
needs to be done to correctly account for the sleeper spacing.

3.2 Equation of motion of the track/ground model

The differential equation for the coupled track/ground model is given byMr 0 0
0 Ms + Mss

b Msg
b

0 Mgs
b Mgg

b


Ür

Üs

Üg

+

Crr
p Crs

p 0
Csr
p Css

p + Css
b Csg

b

0 Cgs
b Cgg

b


U̇r

U̇s

U̇g


+

Kr + Krr
p Krs

p 0
Ksr
p Kss

p + Kss
b Ksg

b

0 Kgs
b Kgg

b


Ur

Us

Ug

 = −


Fr
0

Fg

 ,

(10)

where M{·}, C{·}, K{·} and U{·} are the global mass, damping and stiffness matrices and dis-
placement vector of the track components indicated by the subscripts, r, s, b and g, for the rail,
sleeper, ballast and ground respectively. The superscripts on the other hand designate cross-
coupling between these components. Fr is the external nodal force vector of the rail due to
the excitation force and Fg is the interaction force vector at the ballast/ground interface. Fg
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contains the forces at all the ground nodes, each node represented by Eq. (9). Since the ground
displacements are also unknowns, direct substitution of Fg results in a modification to the global
damping and stiffness matrices of the track/ground model.

3.3 Nonlinear railpad and ballast properties

As stated earlier, the railpad and ballast properties are modelled as generally nonlinear with
preload dependent stiffness and damping. The static force-displacement behaviour of the rail-
pad and ballast can be approximated by polynomials of degree α and β respectively,

fps(ups) = kp,1ups + kp,2u
2
ps + · · ·+ kp,αu

α
ps (11a)

fbs(ubs) = kb,1ubs + kb,2u
2
bs + · · ·+ kb,βu

β
ps, (11b)

where fps, ups and kp,1 · · · kp,α are the static force (in Newton), displacement (in metre) and
stiffness coefficients of the railpad respectively. fbs, ubs and kb,1 · · · kb,β are the corresponding
values for the ballast. For the railpad, the values of the non-zero coefficients are kp,1 = 20.0
MN/m, kp,3 = 3.94× 106 MN/m3, kp,5 = −1.78× 1012 MN/m5 and kp,7 = 3.28× 1018 MN/m7

[9], and for the ballast, kb,1 = 22.75 MN/m and kb,3 = 2.6× 108 MN/m3 [10]. Note that when
the track is fully unloaded, the railpad and ballast possess unloaded stiffnesses of kp,1 and kb,1
respectively.

3.4 Solution of the coupled equation of motion

Under the action of the static load, the preloads and hence the preloaded stiffness of the
railpads and ballast are calculated by solving the nonlinear static equivalent of Eq. (10) using
a Newton-Raphson iterative routine. These are then used as input values for the dynamic part
of the problem, defined by Eq. (10). The solution for the track and ground displacements
and the interaction forces at the ballast/ground interface are obtained by progressive numerical
integration.

The calculated interaction forces at the ballast/ground are then used as input to calculate
ground vibration in the far-field. This process is described in the next section.

4 FREE-FIELD GROUND VIBRATION CALCULATION

Using the computed displacement and its derivatives, the interaction forces at the ballast/ground
interface can also be computed. For this problem, all sleeper and ground nodes vibrate with the
same frequency as the load. Therefore it is sufficient to consider only the complex amplitude of
the interaction force in the space-time domain. This is given as

Fg(xs) = |Fg(xs, t)| = |CU̇g + KpUg|. (12)

The non-zero forces of Fg(xs) occur at the ground nodes that are coupled to the sleepers, with
the internal nodes of the lumped parameter model being zeros. These non-zero forces are as-
sembled in a new vector, F̄g(xs), with size 2ns + 1 × 1, where ns and xs are the number of
sleepers and sleeper positions respectively. It is convenient to convert F̄g(xs) into a piecewise
continuous function, F̄ ′g(x), using linear interpolation functions.

The spatial Fourier transformation of F̄ ′g(x) to the wavenumber domain can be obtained from

ˆ̄F ′g(ξ) =

∞w

−∞

F̄ ′g(x)e−iξxdx. (13)

7
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The complex amplitude of the ground displacement in the wavenumber domain is therefore
given by

Ũ ′g(ξ, γ, ω) = H̃g(ξ, γ, ω) ˆ̄F ′g(ξ)
sin γb

γb
. (14)

Finally, the corresponding displacement in the space-time domain is obtained by applying the
double inverse Fourier transformation as follows

u′g(x, y, ω) =
1

4π2

∞w

−∞

∞w

−∞

H̃g(ξ, γ, ω) ˆ̄F ′g(ξ)
sin γb

γb
ei(ξx+γy)dξdγ. (15)

In the next section, numerical results will be presented to show the validity of this approach
and to investigate the effect of nonlinear track properties on ground vibration.

5 RESULTS AND DISCUSSION

Section 5.1 presents the result of the lumped parameter model approximation of the ground
dynamic stiffness. The lumped parameter model is then used to study nonlinear track dynamics.
Results for this application are given in Section 5.2 while free-field ground displacements are
presented in Section 5.3.

5.1 Dynamic stiffness of the LPM

The following parameters are used for the ground: ρ = 1800 kg/m3, vs = 245 m/s and
vp = 750 m/s and damping ratio of 5%.

The vertical dynamic stiffness from Eq. (5) is computed using b = 1.35 m and a = 0.724 m.
For the lumped parameter model approximation, polynomials of order 6 and 7 for the numerator
and denominator respectively are used. This results in one real and three pairs of complex
conjugate poles, hence the regular part of the lumped parameter model consists of one first-
order and three second-order terms. These are then arranged in parallel with the singular part
of the spring, k0 = −12.853 and dashpot, c0 = 2.569. The values of the coefficient of the
components of the lumped parameter model are given in Table 1.

Table 1: Coefficients of the components of the lumped parameter model

j k1,j c1,j k2,j k2,j+1 c2,j c2,j+1

1 -16.290 -1.142 1.755 -0.381 -0.110 0.077

3 2.524 -0.141 0.108 -0.106

5 1.821 -0.067 -0.118 0.109

Figure 4 shows the real and imaginary parts of the dynamic stiffness, normalised against the
static stiffness, K0. It shows a comparison between the semi-analytical and lumped parameter
model representations. A dimensionless frequency has been adopted, ω̄ = ωh/vs, where ω̄ = 1
corresponds to≈ 54 Hz. h is a characteristic length, taken as the smaller of the rectangular load
dimensions a and b. It can be seen that the lumped parameter model is a good representation of
the computed dynamic stiffness of the half-space.

8
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Figure 4: (a) Real and (b) imaginary parts of the dynamic stiffness of a half-space sub-
jected to rectangular harmonic load. Comparison between the semi-analytical and lumped
parameter models

5.2 Track and ground vibration

Table 2 contains the track parameters used in the computation of the track dynamic response
and, together with the lumped parameter model model, the ground response.

Table 2: Track parameters used in the numerical study

Rail Railpad Sleeper Ballast

mr = 60.21 kg/m ζp = 0.125 ms = 250 kg/m mb = 870 kg/m

EIr = 6.4 MN m2 ζb = 0.50

Figure 5 shows the variation of the rail, sleeper and ground displacement amplitude and
phase at the driving point with frequency for a unit load at the rail. The results obtained using
the lumped parameter model are compared with those of the semi-analytical procedure for linear
track parameters. For this calculation, the rail is modelled using 240 elements, each of length
0.3 m, 121 sleepers and therefore same number of ground nodes. Good agreement between the
two methods can be observed. At low frequencies, the rail displacement is about 6.1 dB larger
than the sleeper and 18.5 dB than the ground displacement. Resonances can be seen to occur
for the sleeper/ballast at around 48-60 Hz and for the rail at around 220 Hz. The fluctuations in
the ground displacement due to the width of the ballast can also be seen.

Results are now presented to show the effect of track nonlinearity for static loads of 0, 50,
87.5 and 125 kN. The stiffness of the railpad and ballast increases significantly with preload.
Figure 6 shows the amplitude and phase of the rail, sleeper and ground displacements at the driv-
ing point, plotted against frequency for these preload levels. The effect of increasing stiffness of
the railpad and ballast, which is a direct consequence of the preload dependence, is apparent in
the figure with lower amplitudes and increased resonance frequencies observed with increase in
static load. Also the preload dependence of the railpad and ballast results in higher interaction
forces at the ballast/ground interface and consequently leads to larger ground displacements
over a wide range of frequencies. Since the ground is linear, however, the peaks in the ground
displacement occur at approximately the same frequencies for all preload levels.
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Figure 5: Displacement amplitude and phase of the rail (—,◦), sleeper (-·-,�) and ground
(· · · ,*), plotted against excitation frequency. Comparison between track on half-space [2]
(lines) and on lumped parameter model for the ground (markers).

5.3 Free-field ground vibration

Finally, using the interaction forces at the ballast/ground interface, free-field ground vibra-
tion can be calculated in accordance with the procedure in Section 4.

Figure 7 shows the ground displacement amplitude at x = 0 plotted against distance away
from the track for the preload levels specified above, for a load oscillating at (a) 10 Hz and (b)
120 Hz. For the case in (a), it can be seen that the ground displacement consistently increases
with increase in the preload level, as is the case in Fig. 6, with maximum differences of up to 4
dB observed. For the higher frequency case in (b), however, this is not the case. The equivalent
nonlinear stiffness of the track foundation affects the load distribution on the halfspace. This
results in different levels of excitation of the ground, resulting in differences of up to 2.3 dB
between the ground displacements for the linear nonlinear cases.

6 CONCLUSIONS

This paper presents a mixed formulation involving both space-time and wavenumber-frequency
domain techniques applied to the study of ground vibration from surface trains. The track is
modelled in the time domain in order to include nonlinear track elements, and the ground in
the wavenumber domain. For the purpose of calculating the track/ground interaction forces in
the space-time domain, the ground is represented by a layer of consistent lumped parameter
model consisting of frequency independent stiffness and damping components. The calculated
interaction forces are then transformed to the wavenumber domain and used as input to study
ground vibration in the far field. For the example case presented, the lumped parameter model
shows good comparison with the fully coupled track-ground model. The effect of nonlinearity
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Figure 6: Displacement amplitude and phase of the rail, sleeper and ground, plotted against
excitation frequency for preload levels of 0 kN —, 50 kN -·-, 87.5 kN - - -, 125 kN · · · .

on ground vibration has been found to be significant in the vicinity of the track as well as in the
far field, with differences of up to 4 dB observed between the linear and the highly nonlinear
cases.
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