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Abstract: This study addresses thermal transportation associated with dissipated flow of a Maxwell
Sutterby nanofluid caused by an elongating surface. The fluid passes across Darcy–Forchheimer
sponge medium and it is affected by electromagnetic field applied along the normal surface. Appro-
priate similarity transforms are employed to convert the controlling partial differential equations into
ordinary differential form, which are then resolved numerically with implementation of Runge–Kutta
method and shooting approach. The computational analysis for physical insight is attempted for
varying inputs of pertinent parameters. The output revealed that the velocity of fluid for shear
thickening is slower than that of shear thinning. The fluid temperature increases directly with Eckert
number, and parameters of Cattaneo–Christov diffusion, radiation, electric field, magnetic field,
Brownian motion and thermophoresis. The Nusselt number explicitly elevated as the values of
radiation and Hartmann number, as well as Brownian motion, improved. The nanoparticle volume
fraction diminishes against Prandtl number and Lewis number.

Keywords: Sutterby fluid; Darcy–Forchheimer; electric field; nanofluid; Maxwell fluid; Cattaneo–
Christov diffusion

1. Introduction

The fluids whose viscosity varies non-linearly because of applied stress are referred to
as non-Newtonian fluids. Examples of some of these liquids in real-life are ketchup, semen,
honey, wax, jellies, etc. Over the last several years, research concerning non-Newtonian
fluids has been greatly enhanced owing to their functional effects for technology and
manufacturing processes. Analysis on change of viscosity, and thus the behavior of non-
Newtonian fluids, was conducted by Shende et al. [1]. The heat transmit by forced
convection of a non-Newtonian liquid in a fractional constitutive version boundaries
based on a pipe was examined by Chang et al. [2]. For the result of non-Newtonian
fluid flow, simulations for the time-lattice for Boltzmann process paradigm were taken
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by Bisht et al. [3]. Abu et al. [4] analyzed the viscous blend of non-Newtonian fluid in
the presence of turbulent flow along with vapor bubble growth. The radiative flow deep
research with MHD in signification of non-Newtonian fluids by incorporating the most
recent version of the heat flow rate model. By using the modified version of the heat
flow rate model, the radiative flowing deep analysis with magnetohydrodynamic on the
nature of non-Newtonian fluids was taken by Sohail et al. [5]. Examples of researchers
work on non-Newtonoan fluid subject to various types of geometries can be found in [6–9].
The porous media engagement has significant wide range of applications in the zone
of heat transfer design, geothermal, geophysics, under ground water system, recovery
system of crude oil, and units of energy storages [10,11]. Ali et al. [12] analyzed the
Darcy–Forchheimer medium impacts on the dynamic of nanofluid flow.

The rheological phenomena of non-Newtonian viscosity varying with yields time elas-
tic results pertaining to polymer methods as well as polymer melt. Sutterby fluid, which sig-
nifies constitutive equations for extremely polymer aqueous solutions, is one of the most cru-
cial non-Newtonian fluids. To facilitate economic output efficiency, the Sutterby fluid that
defines the strictly viscous behavior of the non-Newtonian is known. Scholars are putting
their efforts to reveal the properties of Sutterby fluid such as Akram et al. [13], who studded
deeply in the presence of electromagnetic fields the Sutterby fluid model which is blood-
based graphene oxide nanofluid flows through capillary. Salahuddin et al. [14] examined
the dynamics of Sutterby fluid subject to catalytic parabolic surface. Hayat et al. [15] exam-
ined the impact of fluid stream from Sutterby and found that it is prone to homogeneous-
heterogeneous as well as nonlinear radiation transformations. Nawaz et al. [16] discussed
the function of hybrid nanoparticles throughout the thermal efficiency of ethylene glycol,
the Sutterby fluid. Thermal and energy stratified flow analysis of Sutterby nanofluid with
zero mass flux status was taken by Mir et al. [17]. Sabir et al. [18] examined the conse-
quences of heat radiation and inclined magnetic force on the Sutterby fluid employing the
Cattaneo–Christov thermal gradient scheme.

Nanofluids are possible heat storage liquids with enhanced thermos-physical char-
acteristics, so analytical platforms for optimized illustrations may be associated through
heat trading activity. Study nowadays in the domain of nanomaterials has quickly evolved
influencing to its extensive deployments in various areas, due to its wide range uses, such
as thermal transportation. Many intellectuals have paid too much attention to the new
aspects in this domain. Mahdavi et al. [19] extensively reviewed nanofluid jet refrigerating
fluid motion and heat transition assessment on a hot exterior with variable roughness.
Stability analysis of nanofluids was carried out by Chakraborty et al. [20]. Esfe et al. [21]
explored nanofluids streamline for enhanced oil recovery in kind of a heterogeneous
two-dimensional anticline geometry. Swaim et al. [22] demonstrated a comprehensive
inspection into the impacts of accelerating heating source across an inclined magnetic flux.
Many researchers also explored nanofluids in different areas [23–27].

It is possible to find strong energy throughout the domain of nanofluids. They can also
be used to determine the effects of calming stress. A description of fluids of the pressure
pattern, viz., the model of Maxwell will predict stress relief and has become much more
general instead. The research of Maxwell flow of nanofluid has grown substantially in
latest generations leading to several applications in engineering including medical pro-
cesses. Sharma et al. [28] numerically studied the Maxwell nanofluid graphene flows past
a uniformly stretched sheet. Maxwell base fluid stream including magnetohydrodynamic
dissipative and radiative graphene was taken by Hussain et al. [29]. Abro et al. [30]
analyzed the thermophysical characteristics of Maxwell nanofluids with normal kernel
through fractional derivatives. A mathematical and statistical approach to the effect of
radiative heat flux in Maxwell flow of viscoastic fluid over a chemically reacted spiraling
disc was carried out by Ahmad et al. [31]. Microstructure-like substantial flowing along
with bio-convection with inertial properties of Magnetohydrodynamic suspended SWCNT-
and MWCNT-dependent Maxwell nanofluid examined by Shah et al. [32]. Ali et al. [33] re-
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viewed gyrotactic microorganisms Falkner–Skan flow of Maxwell nanofluid with activation
energy above a wedge.

From the above literature the authors discovered that the thermal distribution for
transportation of Darcy–Forchheimer Maxwell Sutterby nanofluid flow in the availability
of Cattaneo–Christov heat transition and electromagnetic field is rarely taken into account.
Furthermore, the use of convective boundary conditions and bio-convection of microbes
enhances to the innovation of this research. Because of the pairing and higher order non-
linearity of the governing boundary value problem, arithmetical findings are achieved by
conducting the Runge–Kuttta strategy code with shooting notion on the Matlab program.
The findings are affirmed as a specific situation of prior findings.

2. Mathematical Formulation

By considering dissipated Darcy–Forchheimer multi-slip constraints over a time-
independent flow of Maxwell Sutterby nanofluid. A two-dimensional electro- and mag-
netohydrodynamic boundary with the presence of Lorentz force [34] and incompressible
Maxwell Sutterby fluid is defined as F = σm(E f + (J1 ∗ B0)).

A base is extended with velocity Uw(x) = a1x along boundary. On the surface of
the layer, a constant Tw temperature is provided in vertical direction, a magnetic flux of
intensity B0 is imposed upon this flow (see Figure 1). According to the above-mentioned
assumption, the governing equations are [35–37]

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

=
ν

2
∂2u
∂y2 (1 +

Sb2
c

2
(

∂u
∂y

)2) +
σmB0

ρ
(E f − B0u)− ν

k′
u (2)

−λ1[u2 ∂2u
∂x2 + v2 ∂2u

∂y2 + 2uv
∂2u

∂y∂x
]−

C∗F
√

k′

ν
u2,

u
∂T
∂x

+ v
∂T
∂y

=
k1

ρCp

∂2T
∂y2 +

ρpCp

ρC
[DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2] (3)

+
µ

ρCp
(

∂u
∂2

)2 − 1
ρCp

∂qr

∂y
+

σ2

ρCp
(uB0 − E f )

2 − τ1B∗,

u
∂C
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+ v
∂C
∂y

= DB
∂

∂y
∂C
∂y

+
DT
T∞

∂

∂y
∂T
∂y

. (4)

B∗ = [u
∂u
∂x

∂T
∂x

+ v
∂v
∂x

∂T
∂x

+ u
∂v
∂x

∂T
∂x

+ v
∂u
∂y

∂T
∂x

+ 2uv
∂2T
∂x∂y

+ u2 ∂

∂x
∂T
∂x

+ v2 ∂

∂y
∂T
∂y

].

Here, u and v represent the component of velocity in x- and y-direction, respectively;
the flow deportment index is S; b2

c represents consistency index; σm is the magnetic perme-
ability; ρ signifies density; electric field strength is E f ; C∗F symbolizes Forchheimer quantity;
T represents temperature; C indicates solutal density; k1 represents thermal conductivity; Cp

signifies specific heat; τ1 is heat relaxation time; qr = (−4T3
∞σm

3k∗∗ ) ∂
∂y T4 denotes radiative heat

flux; C represents nanoparticles concentration; and Brownian motion constant is viewed by
DB and the thermophorsis constant is expressed by DT .

The model’s boundary situations are given below.

u = Uw + N0
∂u
∂y

, v = 0, T = Tw(x) + k0
∂T
∂y

, C = Cw(x) + k2
∂C
∂y

, as y = 0,

u→ 0, T → T∞, C → C∞, as y→ ∞.

 (5)

Here, Uw = a1x, a1 > 0 denotes stretching velocity, T∞ symbolizes ambient tempera-
ture, slip length is N0, Cw designates wall concentration, C∞ denotes ambient concentration,
and k0 signifies heat jump length and k2 depicts the density jump length.
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Using the similarity variables [33]

η =

√
a
ν

y, ψ =
√

aνx f (η), θ(η) =
T − T∞

Tw − T∞
, φ(η) =

C− C∞

Cw − C∞
. (6)

Substituting relation (6) in Equations (2)–(4), we get

f ′′′ − 2 f ′2 + 2 f f ′′ − β( f 2 f ′′′ − 2 f f ′ f ′′)− S
2

ReDe f ′′2 f ′′′ + 2Ha2(E1 − f ′)− 2Kp f ′ − 2F∗1 f ′2 = 0, (7)

1
Pr

(1 +
4
3

Rd)θ′′ + f θ′ + Nbθ′φ′ + Ntθ′2 − b( f 2θ′′ + f f ′θ′) + Ec f ′′2 + EcHa2( f ′ − E1) = 0, (8)

φ′′ + PrLe f φ′ +
Nt
Nb

θ′′ = 0. (9)

where transformed boundary conditions (5),

f (0) = 0, f ′(0) = 1 + δ f ′′, θ(0) = 1 + βθ′, φ(0) = 1 + γφ′, at η = 0,

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0, as η → ∞.

}
(10)

The non-dimensional factors are listed in the preceding order:
β = λa is Maxwell fluid Deborah number, Ha =

√
σm
ρ B0 is the magnetic parameter,

Re = ax2

ν is the Reynolds number, Deborah number is De = b2a2, electric parameter

is E1 =
E f

xaB0
, porosity parameter is Kp = ν

k′a , inertia parameter is F∗1 =
C∗F√

k′
, Prandtl

number is Pr = ν
α , radiation parameter is Rd = 16T3

∞σm
3k∗∗κ , Ec = a2x2

Cp(Tw−T∞)
denotes Eckert

number, b = τ1a is the constant of thermal relaxation, Nb =
ρpCp
αρC DB(Cw − C∞) and

Nt = ρpCpDT(Tw−T∞)
αρCT∞

are Brownian motion and thermophoresis parameter, Lewis number
is Le = ν

DB
.

Figure 1. Problem description.

The physical quantities are signified as follows [38]:
C fx (skin friction coefficient), Nux (local Nusselt number), and Shx (local Sherwood

number) are given below:

C fx =
τw

ρU2w
, Nux =

xqw

k1(Tw − T∞)
, Shx =

xqm

DB(Cw − C∞)
,
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where τw, qw, and qm denotes shear stress, surface heat flux and surface mass flux are given
by (at y = 0),

τw = −µ[(1 + β)
∂u
∂y

+
Sb2

c
3

(
∂u
∂y

)3], qw = −k1
∂T
∂y

, qm = −DB
∂C
∂y

When we solve these quantities utilizing the assigned similarity transformation, we get

C f (Rex)
−1/2 = −[(1 + β)( f ′′(0) +

S
3

ReDe f ′′(0)3)], Nux(Rex)
−1/2 = −θ′(0), Shx(Rex)

−1/2 = −φ′(0),

where, (Rex) =
xUw

ν signifies the local Reynolds number.

3. Solution Procedure

Numerical scheme is coded in Matlab software to get the graphical and tabular output.
First-order scheme with just some factor implemented as shown below [39–42]:

s′1 = s2
s′2 = s3
s′3 = (−1)[−2s2

2 + 2s1s3 − β(s2
1ds3 − 2s1s2s3)− S

2 ReDes2
3s′3 + 2Ha2(E1 − s2)− 2Kps2 − 2F∗1 s2

2]
s′4 = s5
s′5(

1
Pr (1 +

4
3 Rd)) = (−1)[s1s5 + Nbs5s7 + Nts2

5 − b(s2
1θ′′ + s1s2s5) + Ecs2

3 + EcHa2(s2 − E1)]
s′6 = s7
s′7 = −PrLes1s7 − Nt

Nb ds5

along with the boundary conditions:

s1 = 0, s2 = 1 + δs2, s3 = h, s4 = 1 + βs4, s5 = g, s6 = 1 + γs6, s7 = i, at η = 0
s2 → 0, s4 → 0, s6 → 0 as η → ∞.

The unknown initial conditions s3, s5, s7, are allotted arbitrary values to begin the
computational methodology once the solution validates the boundary conditions, these
values are finalized.

4. Results and Discussion

The numerical procedure, as described in the above section, yielded a solution of the
controlling equations. The dependent physical variables like temperature of fluid θ(η),
velocity f ′(η), nanoparticle volume fraction φ(η), Nusselt number −θ′(0), skin friction
factor − f ′′(0) and Sherwood number −φ′(0). For appropriate variations of influential
factors, the variable attitude of these parameters has been calculated. The current arithmetic
coding is ascertained because there appears to be a satisfactory agreement between the
current and previously existing outcomes (see Table 1).

Table 1. The comparative outputs for − f ′′(0).

Ha Ibrahim and Negera [35] Sajid et al. [38] Present Results

0.0 1.2105 1.1706 1.1917
0.3 1.3578 1.3393 1.3485
0.5 1.4478 1.4408 1.4456
1.0 1.6504 1.6677 1.6545

The graphs in Figures 2–10 are sketched for two cases of Sutterby fluid parameter S
(S = −0.5, S = 0.5). Note that S > 0 is related to shear thickening and S < 0 indicates
shear thinning. Note that the velocity f ′(η) for shear thinning is faster than that for shear
thickening. Figure 2 displays the influence of Maxwell parameter β and electric parameter
E1 on − f ′(η). Both of these parameters have the potential to increase the flow speed. The
impacts of porosity parameter Kp, Hartmann number Ha and inertia parameter F∗1 on
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velocity f ′(η) are plotted in Figure 3. It is reviewed that the flow become faster when Ha is
slightly intensified but it decelerates against the augmented values of Kp and F∗1 . Physically,
the existence of the resistive force in the form of Lorentz force is due to the inclusion of
enhancing external magnetic field and leads to deceleration of the velocity, but an opposite
behavior is perceived for temperature distribution, and the porous medium interaction
makes the fluid more viscous, which slows down the velocity. Figure 4 presents the varying
pattern of fluid velocity when Deborah number De and Reynolds number Re are enhanced.
Note that these parameters directly increase the velocity f ′(η) for shear thinning but retard
the flow for shear thickening. The viscoelastic effects generate the resistance force which
cause the profile of velocity to decline. Figure 5 displays a lowering of the fluid temperature
θ(η) against Pr and an increase in θ(η) when radiation parameter Rd is promoted in value.
The results in this figure can be explained on the basis of physical nature of the parameters
Pr and Rd. The Prandtl number is related inversely to thermal diffusivity, its higher values
are responsible for the diminishing temperature distribution. The large inputs of radiation
parameter Rd means incremented radiative mode of heat and hence rise in temperature
is attained.
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Figure 3. Velocity variation with Kp, Ha and F∗1 .

From Figure 6, it is depicted that the temperature increases when Nb and Nt increase.
The faster Brownian movement and thermophorsis strengthen the thermal distribution.
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The nanoparticles traveled from hot region to cold region due to thermophoretic force,
and heat transfer rate is increased at the boundary surface. Similarly, faster movement
of tiny particles raised the Brownian force, which boosts the base fluid temperature. In
Figure 7, the plots for boosted temperature distribution are delineated with growing inputs
of Cattaneo–Christov parameter b and Hartmann number Ha. A similar improved pattern
of θ(η) are sketched in Figure 8, when Eckert number Ec and electric parameter E1 are
enhanced. The nanoparticle volume fraction φ(η) diminishes against Nb, but it enhances
with higher values of Nt as noticed from Figure 9. Figure 10 reveal that the nanoparticle
volume fraction φ(η) declines significantly against the growing values of Pr and Le. Table 2
identifies the skin friction coefficient − f ”(0), which declines with expanding Hartmann
number Ha as well as Maxwell fluid factor β and although intensifies effectively with S, Re,
De, Kp and F∗1 . The electric parameter E1 does not make any mentionable effects on− f ′′(0).
The Nusselt quantity −θ′(0) enhances as the factors Rd, Ha as well as Nb are raised, but
lowers when the variables Pr, b, Ec, E1 and Nt are expanded, as revealed in Table 3. Table 4
portrays the accelerated advancement of the Sherwood quantity −φ′(0) if the values of Le
as well as Nt are improved, and it lessens if the values of Pr as well as Nb are expanded.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f
(

) 0.4 0.5

0.4

0.42

De = 0.1, 1, 2

S = -0.5

S = 0.5

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f
(

)

S = -0.5

S = 0.5

Re = 0.1, 1, 2

Figure 4. Velocity variation with De and Re.

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

1.2

(
)

S = -0.5

S = 0.5

Pr = 3, 4, 5

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

(
)

S = -0.5

S = 0.5

Rd = 1, 1.5, 2

Figure 5. Temperature variation with Pr and Rd.

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

(
)

S = -0.5

S = 0.5

Nb = 0.3, 0.5, 0.7

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

(
)

S = -0.5

S = 0.5

Nt = 0.3, 0.5, 0.7

Figure 6. Temperature variation with Nb and Nt.



Nanomaterials 2022, 12, 1834 8 of 13

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

1.2

(
)

S = -0.5

S = 0.5

b = 0.5, 1.5, 2.5

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

(
)

S = -0.5

S = 0.5

Ha = 0.01, 0.2, 0.3

Figure 7. Temperature variation with b and Ha.

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

(
)

S = -0.5

S = 0.5

Ec = 0.1, 0.3, 0.5

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

(
)

S = -0.5

S = 0.5

E
1
 = 1, 6, 10

Figure 8. Temperature variation with Ec and E1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(
)

S = -0.5

S = 0.5

Nb = 0.3, 0.5, 0.7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(
)

S = -0.5

S = 0.5

Nt = 0.3, 0.5, 0.7

Figure 9. Concentration variation with Nb and Nt.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(
)

S = -0.5

S = 0.5

Pr = 3, 4, 5

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(
)

Le = 3, 4, 5

S = -0.5

S = 0.5

Figure 10. Concentration variation with Pr and Le.
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Table 2. Results for − f ′′(0).

Ha S Re De β E1 Kp F∗1 − f ′′(0)

0.01 0.5 0.5 0.5 0.1 1.0 0.1 0.3 1.0792
0.03 1.0780
0.05 1.0758
0.01 0.1 1.0191

0.3 1.0486
0.5 1.0792
0.5 0.5 1.0792

0.7 1.1109
0.9 1.1440
0.5 0.5 1.0792

1.0 1.1610
1.5 1.2522
0.5 0.0 1.1889

0.1 1.0792
0.2 0.9685
0.1 1.0 1.0792

2.0 1.0790
3.0 1.0788
1.0 0.1 1.0792

0.2 1.1209
0.3 1.1608
0.1 0.1 1.0359

0.2 1.0579
0.3 1.0792

Table 3. Results for −θ′(0).

Rd Pr b Ec Ha E1 Nt Nb −θ′(0)

1.0 3.0 0.5 0.5 0.01 1.0 0.5 0.5 0.0408
2.0 0.0831
3.0 0.0985
1.0 1.0 0.1063

2.0 0.0773
3.0 0.0408
3.0 0.1 0.0517

0.3 0.0462
0.5 0.0408
0.5 0.1 0.1875

0.3 0.1145
0.5 0.0408
0.5 0.01 0.0408

0.03 0.0416
0.05 0.0429
0.01 1.0 0.0408

3.0 0.0403
5.0 0.0387
1.0 0.1 0.0921

0.3 0.0647
0.5 0.0408
0.5 0.1 0.1075

0.3 0.0709
0.5 0.0408
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Table 4. Results for −φ′(0).

Le Pr Nb Nt −φ′(0)

3.0 3.0 0.5 0.5 1.6124
4.0 1.8410
5.0 2.0313
5.0 1.0 1.1343

2.0 1.6545
3.0 2.0313
3.0 0.1 2.2199

0.3 2.0662
0.5 2.0313
0.5 0.1 1.9574

0.3 1.9925
0.5 2.0313

5. Conclusions

The electro-magnetohydrodynamic boundary layer transport of Maxwell Sutterby
nanofluid with multi-slip conditions across an extending sheet is explored. A brief descrip-
tion of the significant findings is as follows:

• The velocity gradient enhanced as the magnitude of β, E1 and Ha elevated, although
it dropped significantly as the valuation of Kp and F∗1 extended.

• It is worth mentioning that the velocity field uplifted for De and Re when Sutterby
parameter S take negative values and decrease when Sutterby parameter is positive.

• Temperature goes up if the magnitudes of Rd, Nb, Nt, b, Ha, Ec as well as E1 upsurge,
whereas it drops as the valuation of Pr grows.

• The concentration distribution for Nb, Pr and Le reveals a declining trend while
upsurge with higher Nt.

• Skin friction reduces when Ha and β takes higher values. Furthermore, it escalates in
direct proportion to S, 4Re, De, kp and F∗1 .

• The Nusselt number explicitly elevated as the values of Rd, Ha as well as Nb improved.
The inverse attitude of Pr, b, Ec, E1 and Nt is revealed.

• The Sherwood quantity falls for Pr as well as Nb while surging for Le and Nt.
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Nomenclature

List of Symbols
u, v velocity components
x, y Cartesian coordinates
S flow deportment index
b2

c consistency index
σm magnetic permeability
E f electric field strength
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C∗F Forchheimer quantity
T temperature
C solutal density
k1 thermal conductivity
Cp specific heat
τ1 heat relaxation time
qr radiative heat flux
g gravity acceleration
S deportment index
b2 consistency index
Pr Prandtl number
Rex Reynolds number
h f heat transfer coefficient
DB Brownian motion
De Sutterby Deborah number
Nr buoyancy ratio
DT thermophorsis coefficient
Dm microorganism diffusivity coefficient
cb chemotaxis constant
Wc swimming speed of cell
Rb bio-convection Rayleigh number
Pr Prandtl number
Gr Grashoff number
M magnetic field
Nb Brownian motion parameter
Nt thermophoresis parameter
Sc Schmidt number
Le Lewis number
Greek Symbols
ρ fluid density
λ1 Maxwell parameter
α thermal diffusivity
τ ratio of heat capacity of nanofluid
Subscripts
p Nanoparticles
w On the wall
∞ Ambient
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