

Mediterranean Journal of Hematology and Infectious Diseases

Original Article

Detection of Antinuclear Antibodies Targeting Intracellular Signal Transduction, Metabolism, Apoptotic Processes and Cell Death in Critical COVID-19 Patients

Gheyath K. Nasarallah^{1,2,h}, Aisha D. Fakhroo^{3,h}, Taushif Khan⁴, Farhan S. Cyprian⁵, Fatima Al Ali⁴, Manar M.A. Ata⁴, Sara Taleb⁶, Hadeel T. Zedan^{1,2}, Duaa W. Al-Sadeq^{1,5}, Fathima H. Amanullah¹, Ali A. Hssain⁷, Ali H. Eid⁵, Laith J. Abu-Raddad⁸, Abdullatif Al-Khal⁷, Asmaa A. Al Thani^{2,3}, Nico Marr⁹ and Hadi M. Yassine^{2,3*}.

¹ Biomedical Research Center, Qatar University, Doha, Qatar.

²Department of Biomedical Sciences, College of Health Sciences-QU health, Qatar University, Doha, Qatar.

³ Research and Development Department, Barzan Holdings, Doha, Qatar.

- ⁴ Research Branch, Sidra Medicine, Doha, Qatar.
- ⁵ Basic Medical Science Department, College of Medicine-QU Health, Qatar University, Doha, Qatar.

⁶ Genomics and Precision Medicine, Hamad Bin Khalifa University, Doha, Qatar.

- ⁷ Hamad Medical Corporation, Doha, Qatar.
- ⁸ Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar.
- ⁹College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.

[^] Both authors equally contributed.

Competing interests: The authors declare no conflict of Interest.

Abstract. Background and Objectives: The heterogeneity of the coronavirus disease of 2019 (COVID-19) lies within its diverse symptoms and severity, ranging from mild to lethal. Acute respiratory distress syndrome (ARDS) is a leading cause of mortality in COVID-19 patients, characterized by a hyper cytokine storm. Autoimmunity is proposed to occur as a result of COVID-19, given the high similarity of the immune responses observed in COVID-19 and autoimmune diseases. Here, we investigate the level of autoimmune antibodies in COVID-19 patients with different severities. Results: Initial screening for antinuclear antibodies (ANA) IgG using ELISA revealed that 1.58% (2/126) and 4% (5/126) of intensive care unit (ICU) COVID-19 cases expressed strong and moderate ANA levels, respectively. An additional sample was positive with immunofluorescence assays (IFA) screening. However, all the non-ICU cases (n=273) were ANA negative using both assays. Samples positive for ANA were further confirmed with largescale autoantibody screening by phage immunoprecipitation-sequencing (PhIP-Seq). The majority of the ANA-positive samples showed "speckled" ANA pattern by microscopy and revealed autoantibody specificities that targeted proteins involved in intracellular signal transduction, metabolism, apoptotic processes, and cell death by PhIP-Seq; further denoting reactivity to nuclear and cytoplasmic antigens. Conclusion: Our results further support the notion of routine screening for autoimmune responses in COVID-19 patients, which might help improve disease prognosis and patient management. Further, results provide compelling evidence that ANA-positive individuals should be excluded from being donors for convalescent plasma therapy in the context of COVID-19.

Keywords: Autoimmunity; ANA; ICU; COVID-19; Coronavirus.

Citation: Nasarallah G.K., Fakhroo A.D., Khan T., Cyprian F.S., Al Ali F., Ata M.M.A., Taleb S., Zedan H.T., Al-Sadeq D.W., Amanullah F.H., Hssain A.A., Eid A.H., Abu-Raddad L.J., Al-Khal A., Al Thani A.A., Marr N., Yassine H.M. Detection of antinuclear antibodies targeting intracellular signal transduction, metabolism, apoptotic processes and cell death in critical COVID-19 patients. Mediterr J Hematol Infect Dis 2022,14(1): e2022076, DOI: <u>http://dx.doi.org/10.4084/MJHID.2022.076</u>

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>https://creativecommons.org/licenses/by-nc/4.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Correspondence to: Hadi M. Yassine, M.Sc., Ph.D. Tel: +974 4403 6819. E-mails: hyassine@qu.edu.qa

Introduction. The severity of COVID-19 is diverse, with a wide range of symptoms characterized from mild to lethal. A robust immune response is usually initiated upon viral infections, involving both the innate and adaptive immune systems to irradicate the virus.¹ Typically, viruses evade these immune responses through one of the following mechanisms; (1) Molecular Mimicry, (2) bystander activation, and (3) epitope spreading.^{1,2} In COVID-19 patients, several immunological impacts have been observed, including hyper-immune response, abnormal cytokine/chemokine production, T cells hyperactivation, increased monocytes, macrophages, and neutrophils count.^{1,3} The cytokine storm (i.e., abnormal cytokine secretion) is associated with fatality in COVID-19 patients, who usually experience a hyper-pro-inflammatory immune response leading to ARDS.^{1,3} These COVID-19 immune responses are quite similar to those observed in autoinflammatory and autoimmune conditions.^{1,4} It is known that infectious diseases trigger autoimmunity, specifically through molecular mimicry, and several viruses have been associated with autoimmune diseases.^{1,5,6} For example, enteric viruses have been associated with type 1 diabetes, and herpesviruses infections have led to the development of several autoimmune disorders, including multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis.^{1,6,7,8} In addition, mice infected with murine coronavirus developed immune-mediated encephalomyelitis.9 Further, rhinovirus and coronavirus were shown to be the highest frequently detected pathogens in patients with psoriasis flares following respiratory tract infections.¹⁰

Severe COVID-19 patients have been suspected of developing autoimmunity. Several reports have suggested a link between SARS-CoV-2 infection and Kawasaki-like disease, acute inflammation of the blood vessels affecting children.^{5,11} Moreover, patients with severe COVID-19 pneumonia reported neutralizing IgG autoantibodies against type I IFNs.¹² In addition, other autoantibodies, such as anti-platelet autoantibodies (APA), were reported in COVID-19 patients, leading to immune thrombocytopenia.¹³ Accordingly, critically ill COVID-19 patients may experience elevated levels of other autoimmune antibodies, including antinuclear antibodies (ANA).^{14,15} High levels of ANA have been previously associated with several autoimmune disorders, such as lupus erythematosus (SLE) and rheumatoid arthritis (RA).¹⁶ This study investigates whether COVID-19 severe outcome could be associated with autoimmunity. We measured ANA levels in blood sera samples collected from COVID-19 patients with

different clinical severities (i.e., ICU "Severe" vs. Non-ICU "Mild or Asymptomatic"). We report a higher frequency of ANA in severe COVID-19 cases, suggesting a possible contribution of COVID-19 to autoimmunity and exacerbated disease outcome.

Method.

Sample Collection and Ethical Compliance. This study was approved by the IRB committees of Hamad Medical Corporation (MRC-01-20-145) and Qatar University (QU-IRB 1289-EA/20). Informed consent was obtained from all patients per the approved protocol, and informed consent was obtained from next of kin in case of death. The samples' numbers in table 1 are only identifiable to the researchers and are not related to the national nor the medical IDs of the patients. Sera samples were collected from COVID-19 patients at different clinical stages and classified into two groups; (1) mild/asymptomatic (non-ICU, n=273), (2) Severe/Critical (ICU, n=126). Out of the 126 ICU patients, only 80 had sera extracted at different time points, assuming that ICU admission was on Day 1. For those with repetitive samples, at least twotime points were tested, and positive results were reported. All methods were performed following the relevant guidelines and regulations.

ANA IgG ELISA assay. All samples [mild/asymptomatic (non-ICU, n=273) & Severe/Critical (ICU, n=126)] were initially screened by ELISA. Sera samples were diluted 1:101 in sample diluent (DILSPE), and ELISA was performed using an ANA Screening IgG kit (DIA.PRO, Italy) according to the manufacturer's standards. The cutoff value was calculated as negative control (OD450nm) + 0.250. Samples with cut of value (S/Co) <0.8, S/Co (0.8-1.1), S/Co>1.1 were considered negative "normal", equivocal "moderate" and positive "abnormal" respectively. Note that samples that tested positive and equivocal were repeated in triplicates with mean and standard deviation calculated.

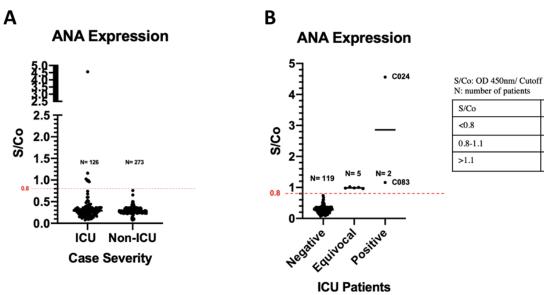
ANA HEp-2 IFA Assay. All ICU patients' sera (n=126) and an equivalent number of randomly selected non-ICU sera (n=121) were subjected to Indirect Fluorescent Antibody (IFA). A technique was performed using the AccuDiagTM ANA HEp-2 IFA kit (Diagnostic Automation/Cortez Diagnostics, US) according to the manufacturer's standards. A positive reaction is indicated by the presence of any pattern of nuclear apple-green staining observed at a 1:40 dilution based on a 1+ to 4+ scale of staining intensity (+1 weak \rightarrow +4 strong). Samples were regarded as positive if they tested positive with either ELISA or IFA test. These samples were then

 Table 1. Demographic Data of COVID-19 Patients with Moderate-to-Abnormal ANA Level.

Sample #	Gender	Age	Nationality	Comorbidities	Clinical Outcome	ANA detection/ Status	
C020	М	Early 60's	Bangladeshi	-	Deceased	IFA	
C024	М	Early 50's	Indian	Hypertension	Alive	ELISA/ Abnormal	
C047	М	Early 40's	Filipino	-	Alive	ELISA/ Moderate	
C083	М	Early 60's	Filipino	DM2, gouty arthritis	Alive	ELISA/Abnormal	
F003	М	Mid 70's	Indian	Hypertension	Deceased	ELISA/ Moderate	
F004	М	Mid 50's	Qatari	DM, Hypertension, Ischemic heart disease/First degree heart block,	Alive	ELISA/ Moderate	
F026	М	Late 40's	Filipino	Hypertension, ESRD, Dyslipidemia, hyperuricemia	Deceased	ELISA/ Moderate	
F057	М	Late 50's	Sri Lankan	DM, Hypertension, CAD, Dyslipidemia	Deceased	ELISA/ Moderate	

DM: Diabetes Mellitus, ESRD: End-Stage Renal Disease, CAD: Coronary Artery Disease.

subjected to PhIP-Seq analysis.


Phage Immunoprecipitation-Sequencing (PhIP-Seq) and Peptide Enrichment Analysis. PhIP-Seq and peptide enrichment analysis were performed as previously described¹⁷ using the T7 Human ORF 90mer library, a phage display library expressing 90-aa protein fragments tiling through the human proteome with a 45-aa overlap.¹⁸ The T7 Human ORF 90mer Library was obtained from S. Elledge (Brigham and Women's Hospital and Harvard University Medical School, Boston, MA, USA). In brief, we imputed $-\log_{10}(P)$ values as described previously¹⁷ by fitting a zero-inflated generalized Poisson model to the distribution of reading counts obtained from the tested samples following immunoprecipitation; then we regressed the parameters for each peptide sequence based on the read counts obtained from an input library sample (i.e., prior to immunoprecipitation). These $-\log_{10}(P)$ values were considered peptide enrichment scores and reflected a quantitative measure for the presence of autoantibody specificity in a given sample. A peptide enrichment score of ≥ 2.3 was considered statistically significant. We also removed peptides from the downstream analysis enriched in mock-IP samples, which served as negative controls. We only considered peptides significantly enriched in at least two test samples. We then computed log odds ratios (LOD) for all retained peptides (n = 328)to identify autoantibody specificities that were differentially enriched between ICU patients and asymptomatic COVID-19 cases. Peptides with a $|LOD| \ge$ ln(1.5) were considered differentially enriched (n = 79).

Gene Set Enrichment Analysis. Of the 79 differentially

enriched peptides, 62 were derived from coding sequences with a defined gene annotation (Entrez) and were considered for gene enrichment analysis. We used the Molecular Signatures Database (MSigDB) for this analysis as previously described.¹⁹ Out of the 62 queried genes, 42 were found to be significantly enriched (*P*-value < 10^{-5} and FDR q-value < 0.05) in one of the 20 gene sets.

Detection of Shared Linear B Cell Epitopes. To test for shared linear B cell epitopes between the identified autoantigens and SARS-CoV-2 antigens, we built a pairwise distance matrix that captured the maximum size of linear sequence identity of amino acids between the 79 differentially enriched human 90 aa peptides and 17 reference sequence of SARS-CoV2 proteins in UniProtKB (<u>https://covid-19.uniprot.org;</u> used for analysis not to deposit the data) as previously described.²⁰ A linear sequence identity of 7 amino acids or more was considered a shared linear B cell epitope.

Results. ANA antibodies were screened in non-ICU (n=273) and ICU (n=126) COVID-19 patients using ANA IgG ELISA. All of non-ICU patients (n=273) tested negative; (S/Co<0.8) with an average of 0.286 (+/-0.073). On the other hand, 7/126 ICU patients (~5.6%) reported a S/Co value of >0.8, showing moderate to high ANA levels (**Figure 1a**). Four percent of the ICU patients (5/126) tested equivocal (S/Co: 0.8-1.1, moderate ANA level), whereas 1.58% (2/126) tested positive (S/Co>1.1, abnormal ANA level) (**Figure 1b**). The positive samples, C024 and C083, had a S/Co value of 4.561 and 1.159, respectively (**Figure 1b**). To confirm the presence of ANA, IFA was performed using HEp-2

S/Co	Interpretation
<0.8	Negative "Normal"
0.8-1.1	Equivocal
>1.1	Positive "Abnormal"

Figure 1. ANA ELISA levels of the COVID-19 Patients. (A) Sera samples of ICU (n=126) and non-ICU (n=273) COVID-19 patients; and (B) sera samples of ICU COVID-19 patients (n=126). Samples were tested at 1:101 dilution.

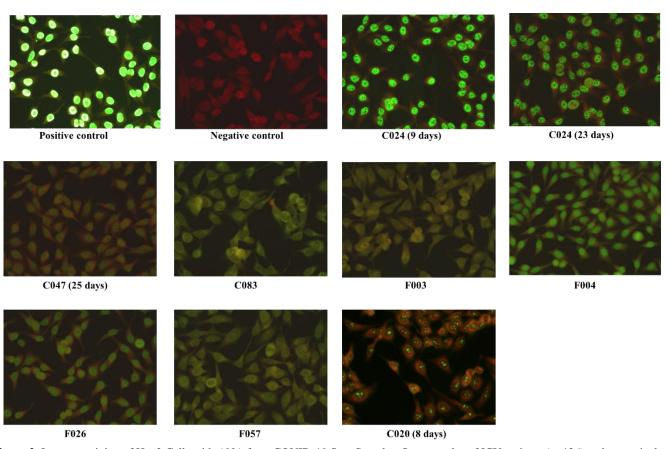
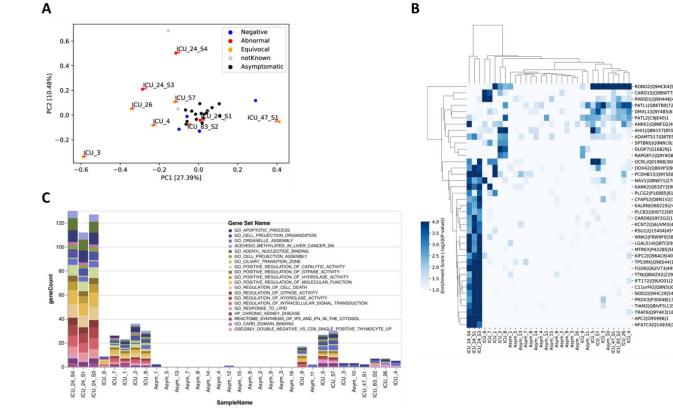



Figure 2. Immunostaining of Hep2 Cells with ANA from COVID-19 Sera Samples. Sera samples of ICU patients (n=126) and an equivalent number of randomly selected non-ICU patients sera (n=121) were subjected to Indirect Fluorescent Antibody (IFA). HEp2 cells were used as a substrate to detect ANA antibodies in human serum. Samples were tested at 1:40 dilution. Note that # of days corresponds to the time of sample collection, assuming ICU admission is day 1.

cells on all ICU and an equivalent number of non-ICU samples (Figure 2). An additional sample (C020) tested strongly positive for IFA. The majority of the samples (C024, F026, F004, and C047) showed a "speckled"

ANA pattern (Figure 2). In addition to nuclear ANA level, cytoplasmic ANA level was observed in samples F003, F004, C020, F057, and C083 (Figure 2). Samples F057 and C083 showed a "punctate nuclear envelope" ANA pattern (Figure 2). All patients who tested equivocal/positive for ANA are males within the age range of 41-75 years (Average= 55 years) (Table 1). In relation, 71.4% of the ANA-positive patients (5/7) are co-diagnosed with hypertension, and the mortality rate was 42.9% (3/7), specifically the samples F003, F026, and F057 that showed moderate ANA Level (Table 1). Diabetes was also common among ANA-positive patients, accounting for 42.8% of patients (3/7), including patient C083, which exhibited abnormal ANA levels. Finally, we performed a large-scale autoantibody screen of the ANA-positive (C024, C083) and five equivocal sera samples using phageimmunoprecipitation sequencing.9,12 Randomly selected ANA-negative samples obtained from ICU patients with COVID-19 (n = 7) and from asymptomatic COVID-19 cases (n = 15) were assayed for comparison. Principal component analysis of the peptide enrichment scores confirmed that most ANA-positive and equivocal samples of ICU cases clustered separately from the asymptomatic COVID-19 cases, except for the day 9 sample of C024 and the sample collected from C83 on day 17 after ICU admission (Figure 3A). We identified 79 autoantibody specificities that were differentially enriched in ICU patients in comparison to the asymptomatic COVID-19 cases (Supplementary Table 1), allowing a clear separation of critical versus asymptomatic COVID-19 cases by hierarchical clustering (except for one asymptomatic case) (Figure **3B**). Interestingly, our unbiased screen revealed autoantibody specificities against several known autoantigens present in AAgAtlas 1.0, a human autoantigen database,²¹ including nuclear proteins such as the DEAD-Box Helicase 42 (DDX42) and Mtr4 Exosome RNA Helicase (MTREX), as well as proteins involved in immune defenses and cellular signaling, such as Immunoglobulin Superfamily DCC Subclass Member 1 (DCC) and Ras Suppressor Protein 1 (RSU1). To functionally characterize the self-antigens that were being targeted in critically ill COVID-19 patients, we performed a gene set enrichment analysis using the Signatures Database (MSigDB)¹¹ and Molecular

Figure 3. Autoantibody profile of selected cases assessed by PhIP-Seq. (**A**). Principal component analysis of the peptide enrichment scores reflecting autoantibody-autoantigen interactions in ICU patients and asymptomatic COVID-19 cases. The color core indicates the ANA status. (**B**). Heatmap plot showing the binding profile of the 79 differentially enriched (DE) peptides in ICU cases versus asymptomatic cases, with hierarchical clustering. Each row indicates a human peptide (90mer, start position is indicated relative to the UniProtKB entry), and each column represents a sample. The color gradient for each cell of the heatmap plot represents the peptide enrichment score ($-\log_{10}(P)$ value) for a given antigenic peptide and sample. A $-\log_{10}(P) \ge 2.3$ was considered significantly enriched; * Represents known autoantigens with an entry in the human autoantigen database (AAgAtlas 1.0). (**C**). Stacked bar plot showing the results of a gene set enrichment analysis of the peptide shown in (**B**). The color code indicates the gene sets from the Molecular Signatures Database (MSigDB) for which at least one DE peptide was enriched (*P*-value < 10⁻⁵ and FDR q-value < 0.05). Samples are sorted as shown in (**B**) according to hierarchical clustering.

including all of the 79 putative autoantigens for which we had found autoantibodies to be differentially enriched among the tested ICU cases when compared to asymptomatic COVID-19 cases. This analysis confirmed that autoantibodies in ICU patients primary targeted intracellular proteins involved in intracellular signal transduction, metabolism, apoptotic processes, and cell death. Autoimmune responses were primarily observed in samples with moderate and high ANA levels, particularly in the samples of patient C024 with the highest ANA measurements, which appeared to increase over time (**Figure 3C** and **Supplementary Table 2**).

Discussion. COVID-19 disease progression may pass through up to four different phases. The first phase is characterized by an initial viral infection phase that is usually mild or asymptomatic in approximately 80% of patients. The host-virus interactions then delineate the progression of the disease. Some patients progress to a second phase, characterized by a hyper-immune response (i.e., cytokine storm). A state of hypercoagulability occurs in the third phase.¹ In combination, they may lead to organ damage in the fourth phase, which is usually mediated by the host's innate immune system.^{1,5,14} In this present study, we assessed the generation of antinuclear autoimmune antibodies (ANA) in critically ill COVID-19 patients to better understand the disease prognosis and pave the way for the possible use of immunomodulatory drugs for the treatment of these patients. It is worth noting that several immunomodulatory drugs have been proven to be effective in relieving COVID-19 symptoms, such as tocilizumab.1

Interestingly, ANAs were exclusively observed in ICU COVID-19 patients (8/126, 6.34%), which suggests a potential correlation between COVID-19 severity and ANA production. In other words, SARS-CoV-2 infection may have triggered the production of ANA autoantibodies leading to possible cases of autoimmunity in severely ill COVID-19 patients. However, the mechanism is yet to be studied. Only one patient (C24) had a high level of ANA as tested by ELISA. We tested this patient's samples at different time points, and all were highly positive (**Figure 2**). It was inapplicable to follow up with this patient to see the ANA titer levels after he was discharged from the hospital.

Immunological dysregulation, including the production of autoimmune antibodies, has been previously described in COVID patients,12,22,23 In one study, Pascolini et al. reported the presence of antiplatelet autoantibodies (APA) in three COVID-19 patients suffering from immune-mediated thrombocytopenia. Such antibodies were not detected in our samples when using the PhIP-Seq assay. In general, viral infections trigger autoimmunity through one of the following mechanisms, (1) molecular mimicry, (2) bystander activation, and (3) epitope spreading.^{2,5,6} In molecular mimicry, viruses display antigens structurally similar to self-antigens activating a cross-reactive immune response against both self and non-self-antigens. During bystander activation, a non-specific hyper antiviral immune response characterized by a proinflammatory environment causes the release of selfantigens from damaged tissues, which are then presented antigen-presenting by cells (APC), triggering autoreactive T cells and autoimmunity. One example is HIV, which mimics the human T-cell receptor (TCR) to a great extent where autoantibodies are produced.²⁴ In support of this mechanism, our large-scale autoantibody screen of selected patients by PhIP-Seq revealed several known and novel autoantigens among ICU cases, particularly those with moderate and high ANA responses. An in-depth analysis of these autoantibody specificities confirmed that these autoimmune responses were primarily directed against intracellular proteins and, therefore, likely as a consequence of extensive tissue damage during disease progression. Of note, the patient with the highest ANA serum levels and most robust autoantibody responses as assessed by PhIP-Seq (a 53year-old male with Indian nationality) had a clinical history of hypertension but was otherwise previously healthy.

Similarly, epitope spreading is characterized by the release of more self-antigens activating autoreactive T cells that eventually spread to other autoreactive T cells (i.e., the diversification of epitope specificity). A recent study identified cross-reactive epitopes between SARSchaperones.25 CoV-2 human molecular and Bioinformatics analysis showed that a family of heat shock proteins (Hsp70) shared antigenic epitopes with SARS-CoV-2, capable of inducing autoimmunity against endothelial cells through the process of molecular mimicry.²⁵ Thus, a similar mechanism may apply to ANA production, where cross-reactive epitopes between SARS-CoV-2 and nuclear antigens may exist. However, none of the autoantigens we identified in this study shared linear B cell epitopes with any of the SARS-CoV-2 protein reference sequences (Supplementary Figure 1).

In terms of comorbidities, hypertension was common among patients who showed ANA levels, specifically in deceased patients (F003, F026, and F057). Thus, this may suggest a potential link between hypertension and ANA level. However, a more extensive cohort study is needed to validate this hypothesis. Autoimmune diseases such as lupus and RA have increased risk for hypertension and cardiovascular disease.²⁶ Therefore, we speculate that hypertension may act as a risk factor promoting a pro-inflammatory environment, possibly leading to autoimmunity through bystander activation. Although these samples showed moderate ANA levels, it is inconclusive because extra time points of the samples are needed to check ANA level change over time. The second most common comorbidity was diabetes, specifically patient C083, who experienced both type 2 diabetes and abnormal ANA level. Type 2 diabetes is suspected to be an autoimmune condition given the presence of circulating autoantibodies against β cells;²⁷ thus, this may contribute to abnormal ANA levels (i.e., risk factor).

Furthermore, ANA level was confirmed using IFA, where HEp-2 cells were immunostained with ANA expressed in sera samples. ANA level comes in different patterns depending on the antigens to which ANA binds. According to the results, most positive/equivocal samples showed speckled patterns suggesting potential antigens such as n-RNP, Sm, and SSB/La.²⁸ Interestingly, only one patient had a detectable ANA level with a speckled pattern. Further, one sample (C020) showed a nucleolar pattern. Previous studies have shown a correlation between ANA nucleolar pattern and systemic sclerosis.²⁹ According to the study, a nucleolar pattern of ANA was associated with pulmonary fibrosis (i.e., lung scarring) (P<0.01), suggesting a critical organ involvement with a decreased chance of survival in systemic sclerosis patients.

Regarding COVID-19, a similar association was observed between the presence of the ANA reactivity with nucleolar pattern and severe COVID-19 disease.^{14,15} Further, in a small study by Chang et al.,³⁰ autoantibodies were detected in moderate and critical cases of COVID-19. The study involved 47 PCR-confirmed COVID-19 hospitalized patients. The total ANA positive rate was 21.3%, which is higher than our study but lower than other studies, as reported in their discussion. Interestingly, similar to our findings, ANA titers were mostly weak (Median 1:40), showing 50% nucleolar and 30% speckled staining. While 9.1% (1/11) of their patients with autoantibodies and 8.3% (3/36) of patients without autoantibodies died, almost 50% of ANApositive patients in our study died. It is worth noting that ANA positivity in our study was confirmed with largescale autoantibody screening by phage immunoprecipitation-sequencing (PhIP-Seq), which revealed autoantibody specificities that predominantly targeted proteins involved in intracellular signal transduction, metabolism, apoptotic processes, and cell death by PhIP-Seq.

Unlike other studies, we did not detect neutralizing anti-cytokine (IFN) antibodies in the PhIP-Seq assay, as reported.12,31 Their study¹² identified previously individuals with titers of neutralizing high autoantibodies against type I IFN- α 2 and IFN- ω in about 10% of patients with severe COVID-19 pneumonia. We selected only ANA-positive samples for further screening with PhIP-Seq, which could be the reason for the negative outcome. Further, with our PhIP-Seq screen, we have a limited ability to detect autoantibodies that

target conformational epitopes (due to the smaller size of peptides, 90 aa in length, that are being used for phage display) which may have limited the sensitivity.

Screening randomly selected pre-pandemic samples (n=2655) from Oatar Blood Bank donors (unpublished results) revealed ten samples with abnormal ANA levels (~0.38%). Among these positive ANA samples, 5 (50%) were positive for documented viral infections (Supplementary Table 3). Four samples (A, B, C, and D) tested positive for B19 Virus IgG, two samples (A and E) for WNV (West Nile Virus) IgG, and one sample (A) for Dengue virus. B19 virus has been associated with several autoimmune diseases, such as rheumatoid arthritis, systemic lupus, antiphospholipid syndrome, systemic sclerosis, and vasculitides.³² It has also been shown to induce cross-reactive autoantibodies utilizing molecular mimicry between parvovirus VP1 protein and host proteins (e.g., human cytokeratin and transcription factor GATA 1).³² Likewise, WNV infection has been reported to promote autoimmune conditions, including myasthenia gravis (MG), through the process of molecular mimicry.³³ In addition, several studies have shown cross-reactivity between antibodies directed against dengue virus nonstructural protein 1 (NS1) and human platelets/endothelial cells damaging them.³⁴ As observed, molecular mimicry and autoimmunity are common among these viruses, suggesting a similar mechanism taking place during SARS-CoV-2 infection.

Conclusions. This study sheds light on a potential relationship between COVID-19 and autoimmunity, particularly ANA production. Nevertheless, some limitations are associated with this study. First, the sample size is relatively small, and a larger-scale study may be needed. Second, some of the sera samples were only taken at one-time points, which makes it harder to explore ANA change over time. Third, people are admitted to ICU mostly seven days after infection, so the time points of the ICU samples are calculated from their admission to the ICU rather than the beginning of the infection. Thus, the acute vs. convalescent phase inconsistency of the ICU and non-ICU samples may affect the accuracy of the results. Still, this study provides a closer insight into the immunological progression of the disease and its prognosis. Therefore, we propose including the screening for autoimmune antibodies as a routine test for COVID-19 patients.

Acknowledgment. The authors would like to thank all the nurses and staff who facilitated the sample collection.

Statement of Ethics. This study was approved by IRB committees of Hamad Medical Corporation (MRC-01-20-145), Sidra Medicine (IRB Protocol #: 1511001953), and Qatar University (QU-IRB 1289-EA/20). In addition, we have received written informed consent from the

participants.

Funding Sources. This study was supported by funds from QNRF, grant # NPRP11S-1212-170092.

Authors' contribution. HMY and GKN designed the study. ADF, TK, FA, MMA, HTZ, DWA, and FHA ran the experiments. FSC, ST, and AHH collected samples. AHE, LAR, AA, AAA, and NM helped in logistics and

References:

- Rodríguez, Y., Novelli, L., Rojas, M., De Santis, M., Acosta-Ampudia, Y., Monsalve, D. M., ... & Gershwin, M. E. (2020). Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. Journal of autoimmunity, 114, 102506. <u>https://doi.org/10.1016/j.jaut.2020.102506</u> PMid:32563547 PMCid:PMC7296326
- Fujinami RS, von Herrath MG, Christen U, Whitton JL. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease.. Clin Microbiol Rev. 2006 Jan;19(1):80-94. <u>https://doi.org/10.1128/CMR.19.1.80-94.2006</u> PMid:16418524 PMCid:PMC1360274
- Pierce CA, Preston-Hurlburt P, Dai Y, Aschner CB, Cheshenko N, Galen B, Garforth SJ, Herrera NG, Jangra RK, Morano NC, Orner E, Sy S, Chandran K, Dziura J, Almo SC, Ring A, Keller MJ, Herold KC, Herold BC. Immune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Sci Transl Med. 2020 Oct 7;12(564):eabd5487.

https://doi.org/10.1126/scitranslmed.abd5487

PMid:32958614 PMCid:PMC7658796

4. Metzemaekers M, Cambier S, Blanter M, Vandooren J, de Carvalho AC, Malengier-Devlies B, Vanderbeke L, Jacobs C, Coenen S, Martens E, Pörtner N, Vanbrabant L, Van Mol P, Van Herck Y, Van Aerde N, Hermans G, Gunst J, Borin A, Toledo N Pereira B, Dos Sp Gomes AB, Primon Muraro S, Fabiano de Souza G, S Farias A, Proenca-Modena JL, R Vinolo MA; CONTAGIOUS Consortium, Marques PE, Wouters C, Wauters E, Struyf S, Matthys P, Opdenakker G, Marques RE, Wauters J, Gouwy M, Proost P. Kinetics of peripheral blood neutrophils in severe coronavirus disease 2019. Clin Transl Immunology. 2021 Apr 29;10(4):e1271. https://doi.org/10.1002/cti2.1271

PMid:33968405 PMCid:PMC8082714

- Galeotti, C., & Bayry, J. (2020). Autoimmune and inflammatory diseases following COVID-19. Nature Reviews Rheumatology, 1-2. <u>https://doi.org/10.1038/s41584-020-0448-7</u> PMid:32499548 PMCid:PMC7271827
- Smatti, M. K., Cyprian, F. S., Nasrallah, G. K., Al Thani, A. A., Almishal, R. O., & Yassine, H. M. (2019). Viruses and autoimmunity: a review on the potential interaction and molecular mechanisms. Viruses, 11(8), 762. <u>https://doi.org/10.3390/v11080762</u> PMid:31430946 PMCid:PMC6723519
- Jun HS, Yoon JW. The role of viruses in type I diabetes: two distinct cellular and molecular pathogenic mechanisms of virus-induced diabetes in animals. Diabetologia. 2001 Mar;44(3):271-85. <u>https://doi.org/10.1007/s001250051614</u> PMid:11317656
- Vaughan JH, Nguyen MD, Valbracht JR, Patrick K, Rhodes GH. Epstein-Barr virus-induced autoimmune responses. II. Immunoglobulin G autoantibodies to mimicking and nonmimicking epitopes. Presence in autoimmune disease. J Clin Invest. 1995 Mar;95(3):1316-27. <u>https://doi.org/10.1172/JCI117782</u> PMid:7533789 PMCid:PMC441471
- Pewe, L. & Perlman, S. (2002). Cutting edge: CD8 T cell-mediated demyelination is IFN-γ dependent in mice infected with a neurotropic coronavirus. The Journal of Immunology, 168(4), 1547-1551. <u>https://doi.org/10.4049/jimmunol.168.4.1547</u> PMid:11823480
- Sbidian, E., Madrange, M., Viguier, M., Salmona, M., Duchatelet, S., Hovnanian, A., ... & Bachelez, H. (2019). Respiratory virus infection triggers acute psoriasis flares across different clinical subtypes and genetic backgrounds. British Journal of Dermatology, 181(6), 1304-1306. <u>https://doi.org/10.1111/bjd.18203</u>

supervision. All authors read and approved the manuscript.

Data Availability Statement. All data are provided in this manuscript either in the main text or in the supplemental files. Inquiries about additional information can be requested directly from the corresponding author.

PMid:31150103 PMCid:PMC7161746

- 11. Verdoni, L., Mazza, A., Gervasoni, A., Martelli, L., Ruggeri, M., Ciuffreda, M., ... & D'Antiga, L. (2020). An outbreak of severe Kawasakilike disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. The Lancet. <u>https://doi.org/10.1016/S0140-6736(20)31103-X</u>
- Bastard, P., Rosen, L. B., Zhang, Q., Michailidis, E., Hoffmann, H. H., Zhang, Y., ... & Manry, J. (2020). Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 370(6515). <u>https://doi.org/10.1126/science.abd4585</u> PMid:32972996 PMCid:PMC7857397
- Pascolini, S., Granito, A., Muratori, L., Lenzi, M., & Muratori, P. (2021). Coronavirus disease associated immune thrombocytopenia: causation or correlation? Journal of Microbiology, Immunology, and Infection, 54(3), 531.

https://doi.org/10.1016/j.jmii.2020.08.006 PMid:32859531 PMCid:PMC7434403

- Gagiannis D, Steinestel J, Hackenbroch C, Schreiner B, Hannemann M, Bloch W, Umathum VG, Gebauer N, Rother C, Stahl M, Witte HM, Steinestel K. Clinical, Serological, and Histopathological Similarities Between Severe COVID-19 and Acute Exacerbation of Connective Tissue Disease-Associated Interstitial Lung Disease (CTD-ILD). Front Immunol. 2020 Oct 2;11:587517. https://doi.org/10.3389/fimmu.2020.587517 PMid:33123171 PMCid:PMC7566417
- Pascolini S, Vannini A, Deleonardi G, Ciordinik M, Sensoli A, Carletti I, Veronesi L, Ricci C, Pronesti A, Mazzanti L, Grondona A, Silvestri T, Zanuso S, Mazzolini M, Lalanne C, Quarneti C, Fusconi M, Giostra F, Granito A, Muratori L, Lenzi M, Muratori P. COVID-19 and Immunological Dysregulation: Can Autoantibodies be Useful? Clin Transl Sci. 2021 Mar;14(2):502-508. https://doi.org/10.1111/cts.12908 PMid:32989903 PMCid:PMC7536986
- Grygiel-Górniak, B., Rogacka, N. & Puszczewicz, M. (2018). Antinuclear antibodies in healthy people and non-rheumatic diseases-diagnostic and clinical implications. Reumatologia, 56(4), 243. <u>https://doi.org/10.5114/reum.2018.77976</u> PMid:30237629 PMCid:PMC6142026
- Mohan D, Wansley DL, Sie BM, Noon MS, Baer AN, Laserson U, Larman HB. Publisher Correction: PhIP-Seq characterization of serum antibodies using oligonucleotide-encoded peptidomes. Nat Protoc. 2019 Aug;14(8):2596. Erratum for: Nat Protoc. 2018 Sep;13(9):1958-1978. <u>https://doi.org/10.1038/s41596-018-0025-6</u> PMid:30190553 PMCid:PMC6568263
- Xu GJ, Shah AA, Li MZ, Xu Q, Rosen A, Casciola-Rosen L, Elledge SJ. Systematic autoantigen analysis identifies a distinct subtype of scleroderma with coincident cancer. Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7526-E7534. <u>https://doi.org/10.1073/pnas.1615990113</u> PMid:27821747 PMCid:PMC5127349
- Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015 Dec 23;1(6):417-425. <u>https://doi.org/10.1016/j.cels.2015.12.004</u> PMid:26771021 PMCid:PMC4707969
- 20. Khan T, Rahman M, Al Ali F, Huang SS, Ata M, Zhang Q, Bastard P, Liu Z, Jouanguy E, Beziat V, Cobat A, Nasrallah GK, Yassine HM, Smatti MK, Saeed A, Vandernoot I, Goffard JC, Smits G, Migeotte I, Haerynck F, Meyts I, Abel L, Casanova JL, Hasan MR, Marr N. Distinct antibody repertoires against endemic human coronaviruses in children and adults. JCI Insight. 2021 Jan 26:144499.

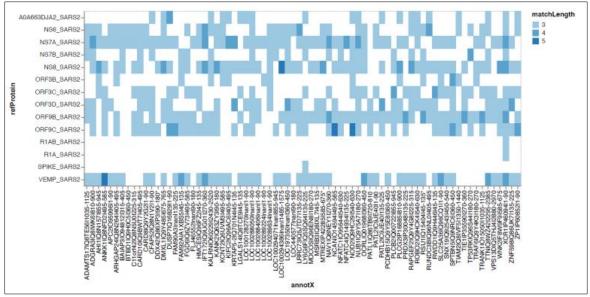
https://doi.org/10.1172/jci.insight.144499 PMid:33497357 PMCid:PMC7934927

- 21. Wang D, Yang L, Zhang P, LaBaer J, Hermjakob H, Li D, Yu X. AAgAtlas 1.0: a human autoantigen database. Nucleic Acids Res. 2017 Jan 4;45(D1):D769-D776. <u>https://doi.org/10.1093/nar/gkw946</u> PMid:27924021 PMCid:PMC5210642
- Pascolini, S., Vannini, A., Deleonardi, G., Ciordinik, M., Sensoli, A., Carletti, I., ... & Muratori, P. (2021). COVID-19 and immunological dysregulation: can autoantibodies be useful? Clinical and Translational Science, 14(2), 502-508. https://doi.org/10.1111/cts.12908
 - PMid:32989903 PMCid:PMC7536986
- 23. Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci Immunol. 2021 Aug 19;6(62):eabl4340.
- 24. Root-Bernstein, R. (2017). Human immunodeficiency virus proteins mimic human T cell receptors inducing cross-reactive antibodies. International journal of molecular sciences, 18(10), 2091. <u>https://doi.org/10.3390/ijms18102091</u> PMid:28972547 PMCid:PMC5666773
- Gammazza, A. M., Légaré, S., Bosco, G. L., Fucarino, A., Angileri, F., de Macario, E. C., ... & Cappello, F. (2020). Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: possible role of molecular mimicry in COVID-19. Cell Stress and Chaperones, 25(5), 737-741. https://doi.org/10.1007/s12192-020-01148-3

PMid:32754823 PMCid:PMC7402394

- 26. Wolf, V. L., & Ryan, M. J. (2019). Autoimmune disease-associated hypertension. Current hypertension reports, 21(1), 10. <u>https://doi.org/10.1007/s11906-019-0914-2</u> PMid:30712132 PMCid:PMC6394456
- Itariu, B. K., & Stulnig, T. M. (2014). Autoimmune aspects of type 2 diabetes mellitus-a mini-review. Gerontology, 60(3), 189-196.

https://doi.org/10.1159/000356747 PMid:24457898


 ANA patterns. ICAP International consensus on ANA patterns. retrieved January 13, 2021, from:

https://www.anapatterns.org/nuclear_patterns.php

- Hesselstrand, R., Scheja, A., Shen, G. Q., Wiik, A., & Åkesson, A. (2003). The association of antinuclear antibodies with organ involvement and survival in systemic sclerosis. Rheumatology, 42(4), 534-540. <u>https://doi.org/10.1093/rheumatology/keg170</u> PMid:12649400
- 30. Chang SH, Minn D, & Kim YK. Autoantibodies in moderate and critical cases of COVID-19. Clin Transl Sci. 2021;14:1625-1626. <u>https://doi.org/10.1111/cts.13036</u> PMid:33934534 PMCid:PMC8239866
- Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020 Oct 23;370(6515):eabd4585. https://doi.org/10.1126/science.abd4585
 PMID: 32972996; PMCID: PMC7857397.
- 32. Lunardi, C., Tinazzi, E., Bason, C., Dolcino, M., Corrocher, R., & Puccetti, A. (2008). Human parvovirus B19 infection and autoimmunity. Autoimmunity reviews, 8(2), 116-120. <u>https://doi.org/10.1016/j.autrev.2008.07.005</u> PMid:18700174
- 33. Hawkes, M. A., Hocker, S. E., & Leis, A. A. (2018). West Nile virus induces a post-infectious pro-inflammatory state that explains transformation of stable ocular myasthenia gravis to myasthenic crises. Journal of the neurological sciences, 395, 1-3. <u>https://doi.org/10.1016/j.jns.2018.09.015</u> PMid:30267806
- 34. Lin, Y. S., Yeh, T. M., Lin, C. F., Wan, S. W., Chuang, Y. C., Hsu, T. K., ... & Lei, H. Y. (2011). Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Experimental Biology and Medicine, 236(5), 515-523. https://doi.org/10.1258/ebm.2011.010339

PMid:21502191

Supplemenary Files

Supplementary Figure 1

Supplementary Table 1

	Gende	er Age	Nationa	ity Se	verity	(AnAlive,	Dn:	HEALC?	6 Diabel Mello		on Cardiovascual disease	Cerebroxascular disease	GERD/Peptic ulcer disease (PUD)	Renal Disease/Transplant	Como Liver Disease/Transplant			diseases (TB, HEV, HCV,		Day(s) of sample collection (relative to ICU admission)	ANA text results	Medications
U_3	м	70	Non Qe	tari Grit	tical	Decesso D	d)	NA.	1	0	Ischemic HD	D	٥	٥	0	0	0	Malaria etc) O	¢		negative	ancaicilir-clavularate acthronycis Culturacime encoaparis hijodracychiroropis leocottistine Activitysteine Bers-Staterol Colorheddine Glaconate Escangezade
J.		40	Non Qa	tari Sev	497.9	*		6.9	1	o	0	Ð	o	ũ	٥	٥	o	a	0		negative	Insular Agent Egycyclan danadetarafae Di Nithirize Di Nit
,		54	Non Qa	tari Sev		*		ų	1	1	CAD/CABG	٥	Ø	Ø	ũ	٥	٥	Ø	٥		negative	Mattelsmin and Minanis Bascarly Polysthylmas Opcial Sana addrast Sodiuar Proghtas Mydrawylikarpine Laphonar/ Ristanain augith Basta Sanafras Basta Sanafras myliotok paracetaransi, parindaguk parkidara dalar
		56	Non Qa	tari Crit	tai	D	1	7,3	1	1	o	Stroke	0	o	٥	٥	a	0	Cancer of tounge/Cataract		negative	Guitapie Guitapie Xionatain Xionatain Manatain Manatain Manatain Nyatati Jepandin Labatain Nyatati Jepandin Labatain Nya
1,24 1,82 1,47 1,2 1,4 1,26 1,57						ND ND ND ND ND		ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND 0 0 0	ND ND 0 0 0 0 0	ND ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ND ND 0 0 0	ND ND 0 1 1	ND ND 0 0 0 0	ND ND 0 0 0 0	9,23,30 NG NG NG NG NG	positive ND equivocal equivocal equivocal equivocal	Malakine Mathanin Rydatu Rydatu Seria editati Seria editat
5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7				机机机机机机机机机机机机机	mptomat mptomat mptomat mptomat mptomat mptomat mptomat mptomat mptomat mptomat mptomat mptomat mptomat	tic ND tic ND			ND ND ND ND ND ND ND ND ND ND ND ND ND N			10 10 10 10 10 10 10 10 10 10 10 10 10 1	NG NG NG NG NG NG NG NG NG NG NG NG NG N	NG NG NG NG NG NG NG NG NG NG NG NG NG N	22 24 24 24 24 24 24 24 24 24 24 24 24 2	10 40 40 40 40 40 40 40 40 40 40 40 40 40						

Supplementary Table 2

International system International system International system International system Number Johnson 1 <	prevalence												
	GeneSymbol [Uniprot] start-end	prevalence ICU cases		log odds ratio	MSigD8 entry	as sequence							
AHL AHL ALE THANADCOMMENTICIPATIONS THE AND COMMENTICIPATIONS AMILIONICOLOGISTICATURA DE LA LA COMMENTICIPATIONS THE AND COMMENTICIPATIONS THE AND COMMENTICIPATIONS THE AND COMMENTICIPATIONS AMILIONICOLOGISTICATURA DE LA LA COMMENTICIPATIONS THE AND COMMENTICIPATIONS THE AND COMMENTICIPATIONS THE AND COMMENTICIPATIONS AMILIONICOLOGISTICATURA DE LA LA COMMENTICIPATIONS THE AND COMMENTICIPATIONS THE AND COMMENTICIPATIONS THE AND COMMENTICIPATIONS AMILIONICOLOGISTICATURA DE LA LA COMMENTICIPATIONS THE AND COMMENTICIPATIO			cases										
ANNE (1987) 89-58 11.84 0.11 4.12 THUMATERINAL INCOMPACE LINGS/INFORMATING LINGS/IN													
MCC 100000000000000000000000000000000000													
Initial Science J. (2014) 11.54 0.11 4.12 Provide Science S													
MAX2000000000000000000000000000000000000				-									
THEID (DIRCC) (46: 49) LEM CLI UPDER USE (100,0000) UPD													
I Linking (junking) 23-115 ILIA LIN VERNELSMAR ALL ALL ALL ALL ALL ALL ALL ALL ALL A													
Incl. Incl. Introductional Constructional Construpreserve Constructional Constructin Constructional Constructin Co													
IMACE (BACE) (BACE) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
Intention Intention <t< td=""><td></td><td></td><td></td><td>4,32</td><td></td><td>PQSNSPVLLSRLHFEXDADSSERIAPMRWGLVPSWFKESDPSKLQFNTTNCRSDTVMEKRSFKVPLGKGRRCVVLADGFYEWQRCQGTN</td></t<>				4,32		PQSNSPVLLSRLHFEXDADSSERIAPMRWGLVPSWFKESDPSKLQFNTTNCRSDTVMEKRSFKVPLGKGRRCVVLADGFYEWQRCQGTN							
Incl.2002.01249 ILL CLI 4.32 MMVPEXMUELLETTINGLETTI	LRRC73 Q5JTD7 135-225	56,21	0,31	6,02		LLPPDGAKSGLKELTLSANPGITPKGWSRLAIAVAHSSQVRVLNLDYNPLGDHVAGMLAVAVASSRTLEVLDLEGTGLTNQ5AQTLLDMV							
IDEAL (URWP) (6-10" 11.7 0.11 4.98 attaming PARAFTEQ/140/000000041400441000014100044000410014000440004004													
IMME IMME <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
IDUS7 [102] IDUS L1.2 MMCRUEHTMANNETSLAAMAGETALAMEETAL					autoantigen								
International (1) International (1) <thinternatin (1)<="" th=""> Internatin (1)</thinternatin>													
IAM26.14.1855 (6):1.15 50,00 1.72 1.82 DOULLING INVALUATION INCLORMENT OF INCLORMENTS OF INCLUSION INCLORMENT OF INCLORMENTS OF INCLORMENTS OF INCLORMENTS OF INCLUSION INCLORMENT OF INCLUSION INCLORMENT OF INCLUSION													
ICDB (2077) (#5-355 11,64 0.11 4.12 PROCREMENT SUBJECT MARKET VIEW LENGTH SUBJECT VIEW VIEW LENGTH SUBJECT VIEW VIEW LENGTH SUBJECT VIEW VIEW VIEW LENGTH SUBJECT VIEW VIEW LENGTH SUBJECT VIEW VIEW VIEW VIEW VIEW VIEW VIEW VIEW													
ILBSS ILBS ILBS <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
AddMA1 (2019/06) [10:93-86 17.5 1.7.2 1.42 VMGGTTTMAACCA/MGUTTAAVANDGGALCOPTCADPRIPMEMALTALGGAPER/PERPENALTALGGAPE/MCGALANAMONG MALER, DOGZZI (200-320) 1.8.4 0.11 4.32 LEMAN VARIATION TALAVANDGGALCOPTCADPRIPMEMALTALGGAPER/PERPENALTALGGAPER/USER/VARIATION TALGAPER/USER/VARIATION TALGAPER/USE													
International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) International (1997) Internati		37,58		1,42									
LAND (01217) 0.10 4.81 ACCOMPANYSCALER/OPPENDING ACCOMPANYSCALER/OPPENDING VEXT) [014/VAB 189.45 0.11 4.22 LEDIMATEGISTING ACCOMPANYSCALER/OPPENDING	IFT172 Q9UG01 270-360	18,94	0,31	4,32		RRSIWEEAK9KEITNLYTITALAWKRDGSRLCVGTLCGGVEQFDCCLRRSIYKNKFELTYVGPSQVVVNLSSGTRVVLKSHYGYEVEEV							
LKNT (2004/L01/09-365 11,84 0,11 4,22 ESTIMATION CONTRACT CONTRAC		18,94											
INFC: QBACE! LIAM D.11 4.12 LIAMINGLERGYSTS: LIAMINGLERGYSTS: <thliaming< td=""><td>KANK2 Q63ZY3 90-180</td><td>25,16</td><td>0,31</td><td>4,68</td><td></td><td>ASGDSRHSAYSYCGRGFYPQYGALETRGGFNPRVERTLIDARRRLEDQAATPTGLGSLTPSAAGSTASLVGVGLPPPTPRSSGLSTPVPP</td></thliaming<>	KANK2 Q63ZY3 90-180	25,16	0,31	4,68		ASGDSRHSAYSYCGRGFYPQYGALETRGGFNPRVERTLIDARRRLEDQAATPTGLGSLTPSAAGSTASLVGVGLPPPTPRSSGLSTPVPP							
INTERNA-2 (2012) 13.10 0.11 4.MI SSECUCIONE/VIP/CCCP/VIP													
LGALSS (ENTER: 6-15 18,44 0,11 4,12 CSCNTGTP: TYUCDE(LAWARGEDWOPE) EINAMELCUTURE ENTER: TYUCDE(LAWARGEDWOPE) EINAMELCUTURE ENTER: TYUCDE ENTER:													
LCC.20230201 ml 1-80 18,4 0,11 4,12 MCFLUYSPERINGTUNDAMECONCURSTANT, LLAWARE DESIGNED, TUNDAMECONCURSTANT, LLAWARE DESIGNED, LLAWARE DESI													
L02.1028/224 (am) 1-80 18,4 0,11 4,12 MPTURPSC/TPREFERING MPSSREE/LEASALS MPSSREE/LEASALS <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
LOCID20EXI4 [m] 1-20 15,4 0,11 4,12 MMSARAGUQAVEGNOLUSALEELANDUKUS ALEELAANUKUSQUUTTUURUKUGAIIEAUNAKUSQUUTUURUKUSUURUKUUUURUKUUURUKUUURUKUUURUKUUUURUKUUURUKUUUURUKUUUURUKUUUURUKUUUURUKUUURUKUUUURUKUUURUKUUURUKUUURUKUUUURUKUUUURUKUUUURUKUUUURUKUUUURUKUUUURUKUUUUUU													
LOCIO2094071 [un] [85-945 18,64 0,11 4,12 PEMALWAY MANAGANA CALLENT CONSIGNAL CALLENT ANALYSA CALLE													
L01273201 nai 120-50 18,44 0,11 4,12 GYVATROCKSCHUTUTUANARCHELLILTUNKINCIEGUS (GROCELIRACLEBUS REFLICE) L01264877 Jina 190-180 18,44 0,11 4,12 CPVATROCKSCHUTUS (GROCELIRACLE) L01264877 Jina 190-180 18,44 0,11 4,12 CPVATROCKSCHUTUS (GROCELIRACLE) MODES (GROCELIS-275 18,44 0,11 4,12 CPVATROCKSCHUTUS (GROCELIRACLE) MODES (GROCELIS-275 18,44 0,11 4,12 CPVATROCKSCHUTUS (GROCELIRACLE) MODES (GROCELIS-275 18,44 0,11 4,12 CPVATROCKSCHUTUS (GROCELIRACLE) CPVATROCKSCHUTUS (GROCELIRACLE) NATCI (GROCELIS-255 18,44 0,11 4,12 CPVATROCKSCHUTUS (GROCELIRACLE) CPVATROCKSCH													
L0C440377 [nai]00.180 18,84 0,11 4,32 TPPV/LPPK/CSDEDUCE/DELEVALSG/DELAPAGE/SEVAPG/CSDEVAPG/DELEVER/DELEVER/SG/DELAPAGE/SEVAPG/DELAPAGE/SEVAPG/SEVAPG/DELAPA	LOC100294386 nan 1485-1575	18,94	0,31	4,32		PERHARSEWSPLPRMWAEQPAVCPVTPPAPLCAGLEVRQSIRECALGSLVRLARGPNLPPVTVLGAISPWGPCLPLILPGIAPPLAEPGH							
UNDER (1950;4):135-225 18,84 0,11 4,32 ACCESCIVALCY/STRAINED/FWEDECED/PRO/US2/WEDECED/FROM/USER/STRAINED/FWEDECED/FWEDC	LOC197350 nan 360-450	18,94	0,31	4,32		GYVAYRDOKGSDFIQTLVEVLRANPGRDLLELLTEVNRRVCEQEVLGPDCDELRKACLEIRSSLRRRLCLQA							
MOCGS (20058) 180-70 18,94 0.11 4.32 EEEAAAADVCGUHUC (*AAQUESQUWE) SMEETANGGUHUC (*AADVESQUWE) SMEETANGGUHUKUETANDAASUNGUFUT) NAMBA (2007, 164-135 18,94 0.11 4.32 SQUURANILTAUGHY (*CERSANGELYMEEDANCHOUS CONTROL SMEAR CONTROL SM		18,94	0,31										
MARKEL (2007) 18,84 0,11 4,12 SQCERATING Construction of the second seco													
NNU [0]NUT 270-360 23,6 0,11 4,87 NETCH (0)NUS 0,000													
NCARD (024694) 495-585 18,94 0,11 4,32 PEPEDDG (004004) (0040) (0													
NN ATCA [104544] [36-430 12,73 50,00 -1,92 CBANTINU FEW IMPOPSATULIQUE ANAMER CORRADUCTORY INFOCISION PROCEEDABLE INFORMATION CORRECT I													
NYATAC (21494/13-225 18,94 0,11 4,32 SPEPARSIG CWSCOPEGAGGGGGAGGGAULCESSTISSET DEPTREPALEMENTOWCOCSTRUCTURATION NUDB1 (09196-100 18,94 0,31 4,32 GRUPTLINERGALWGGACCUYSTAGUIDANCYWSTARLEINUNGCTANASTURGERAUMAGUNCUYSTARLEINUNGCIANASTURGUNGAUMAGUNCUYSTARLEINUNGCIANASTURGUNGAUMAGUNCUSTARLEINUNGCIANASTURGUNGUNGUNGUNGUNGUNGUNGUNGUNGUNGUNGUNGUNG													
NODE 1000 118,4 0,11 4,12 REGRUPTION NUBLIQUEXALISE-270 118,4 0,11 4,12 LEEKIQUEXALEALARAALEVUEXALEVUEXALEULIVALUULIVALUULUULIVALUULIVALUULIVALUULUULIVALUULIVALUULIVALU													
NUEL IDEA 0,11 4,12 LERKIQRTREALERARATUVOPEMPILEIANGTESIRPPERAAMLAAKSHTKURAULERARUKAULULLEINKYPECC OCKL[001588] 180-59 37,58 6,52 2,16 REVENTTUNNELLANDESIVENGUELEERKOURDEPOLEEEERLOUDED PATL1[CREAD] 120-310 37,58 6,52 2,16 ATRELIRIPQAALAPPGIPTILVSUPSITUDIPREDEPOLEEEERLOUDED PATL1[CREAD] 120-310 37,58 6,52 2,16 ATRELIRIPQAALAPPGIPTILVSUPSITUDIPREDEPOLEEEERLOUDED PATL2[CREAD] 120-32 11,17 6,52 1,18 LICULITSWIPPSILTDIPREPOKUSGODPHALMETRELEURSKERALODERD PCCB12[007518] 120-450 11,37 6,52 1,18 LICULITSWIPPSILTDIPREPOKUSGODPHALMETRELEURSKERALAPPERASKERANGELARPRELINGUNGUSGOPHALMETRELEURSKERALERARVELIQUEDALAPPERASKERANGELARPRELINGUNGUGGOPHALMETRELEURSKERALERARVELIQUEDALAPPERASKERANGELARPRELINGUNGUGGOPHALMETRELEURSKERALERARVELIQUEDALAPPERASKERANGELARPRELINGUEDAPRELINGUEDAPRELINGUEDALAPPERASKERANGELAPPERASKERANGELARPRELINGUEDA													
PATLI (GRIB) 170-810 37,58 6,52 2,16 ATTELLIRPALALARS/SIFTU/SUSTRY/DIGUNALLETLETLU/UGER PATLI (GRIB) 170-810 37,58 17,57 1,47 ANTELLIRPALALARS/SIFTU/SUSTRY/DIGUNALLETLEGIL PRODUCED IN DISTRY/DIGUNALLETLEGIL/OPATLICAL/SIETU/SCUSTRY/DIGUNALLETLEGIL/OPATLICAL/SIETU/SCUSTRY/DIGUNALLETLEGIL/DISTRY/DIGUNALLEGIL/DISTRY/DIGUNALL		18,94	0,31	4,32		LKEKQIQRTKRGLEILAKRAAETVVDPEMTPYLDIANQTGRSIRIPPSERKALMLAMGYHEKGRAFLKRKEYGIALPCLLDADKYFCECC							
PATL2[CBILR0]1:60 37.58 32.73 1.42 MINICLEPORTCEPLASEELVENCIPEUEEDELEPOLEPOLEEEDELEPOLEPOLEEEDELEPOLAAUMINGALSAPPENDALE PATL2[CBILR0]1:50 31.37 6.52 1.86 LICSLISSWOPPSHUTQLAPPENDRUSSYNNINUUTGALDEPTAAUMINTEQUARVENDOVINGAAPPEDDVINGA PCCMBLS[CBIPSEL]200-450 11.87 6.52 1.86 PETLVALFRBIDROSCHARCHIGODVINSSYNNINUUTGALDEPTAAUMINTEQUARVENDOVINGAAPPEDDVINGSYNNINUUTGALDEPTAAUMINTEQUARVENDOVINGAAPPEDDVINGSYNNINUUTGALDEPTAAUMINTEQUARVENDOVINGSYNNINUUTGALDEPTAAUMINTEQUARVENDOVINGSYNNINUUTGALDEPTAAUMINTEQUARVENDOVINGSYNNINUUTGALDEPTAAUMINTEQUARVENDOVINGSYNNINUUTGALDEPTAAUMINTEQUARVENDOVINGSYNNINUUTGALDEPTAAUMINTEQUARVENDOVINGSYNNINUUTGALDEPTAAUMINTEQUARVENDOVINGSYNNINUUTGALDEPTAAUMINTEQUARVENDOVINGSYNNINUUTGA	OCRL[Q01968]360-450	37,58	6,52	2,16									
PATL2 (20144) [13:225 11,37 6,52 1,88 UCSLITSWP9F9-LTQLIP9F0BLQQQCPLSQTFSPAKKWSQQPQPVANLMTREXCOVINQQAVQLQSAVFBLDOYYPQTYQF PCCHB15 (200722) [35:945 18,94 0,11 4,32 MGALAPTSINGSPAARAGAREANKEAAEPTEASLELBELKQVKLQRBHEXELBELENGANKWSQQDVQLGSAVFBLDOYYPQTYGF PLCB2 (200722) [35:945 18,94 0,11 4,32 MGALAPTSINGSPAARAGAREANKEAAEPTEASLELBELKQVKLQRBHEXELBELENGANKWEGLQDDPVFATDWELLDWF PLCB2 (200722) [35:945 18,94 0,11 4,32 SHIFSHAAKAGAREEANKEAAEPTEASLEELBELKQUENNKGSLGBLDUNTWVKAAQQUNGKSWTLENKQQDDPVFATDWELLEWF PDCB2 [20468] [35:25 18,94 0,11 4,32 SHIFSHAAKANTPROKGGBLMANLESGTUKKQBKVCVLLQRBHEXELBELENGALMULTWIKWSKYLTYNGUNGKYLTUNKKARQVCKT RODOD [201468] [35:25 18,94 0,11 4,32 SHIFSHAAKANTPROKGBLANGUNGKWTLANGUNGKUSTERLTWIKWSKYLTYNGUNGKYLTUNKKARQVCKK RODOD [201464] [35:15* 18,94 0,11 4,32 DF0GSGEGGGUTNVKKERGUCGUSTSKARLEXGEXKARE SHIFSHAAKANTPROKGBLANGUNGKYLTYNGUSTKARLEXGEXKARE RUNDO1 [201464] [35:15* 18,94 0,11 4,32 DF0GSGEGGGUSTNVKERGEGUSTKANTERUSTKARLEXGEXKARE RUNDO1 [201464] [35:15* 18,94 0,11 4,32 DF0GSGEGGGUSTANTARE SUSTKARE SHIFSHAAKANTENGGUSTKAREEENKKARE S													
PECHBLS (0975EB) 180-450 11,37 6,52 1,88 PETEVALFIBESGENEGMECK0000 VERKISSY KENYELVITEGALDELTAARYNTITTIGLTFREKTEGENALLAPPETAGEL PLCB2 (00772E) 185-945 18,94 0,11 4,32 VGRRQYFRSMYEDGTADFELLKQLENKGSLERULLINGVALLOBETAARKALLENGGARKWELLINGGARVALLENGGARVALLENGGARVELE													
PLC2[2] [2072] [25-445 18,94 0,11 4,32 NGLAPTSKS5PAARAAEREANREALERTRAXELLELER.VVLC.PREHEELELER.RARREALLGEPEX/VGUGDPEATURES PLC2[2] [2036] [315-000 18,94 0,11 4,32 VGTROVPSAVEDES INFORMALISELTROSERVOLLEGGLALAGLINE PROVINCES VELTERUS (AGREGORY VELTERUS PROVINCES VELTERUS AGREGORY VELTERUS PROVINCES VELTERUS AGREGORY VELTE													
PLCC2 [P16885 [810-900 18_P4 0,11 4,12 VGTRQQVPSWVEDSTADFELEXQLEDNEGSLERULENTSWARQQDSPVEDSTADFELEXQQEDNEGSLERULENTSWARQQDSPVEDSTADFELEXQUEDNEGSLERULENTSWARQQDSPVEDSTADFELEXQLEDNEGSLERULENTSWARQQDSPVEDSTADFELEXQUEDNEGSLERULENTSWARQQDSPVEDSTADFELEXQUEDNEGSLERULENTSWARQQDSPENDUNULSSWARQVDETHT PMC01 [91004] 115-225 18_P4 0,11 4,12 IAQQVCSULNQVEXMARQVEEDEDVMVESTLSQSSSWAQTVANVETTYTVRUGAURSWARVENTUTYTVRUGAURSWARQVETTH RXDL [01404] 45-125 18_P4 0,11 4,12 IAQQVCSULNQVEXMARQVEEDEDVMVESTLSQQSSSWQTVANVETTYTVRUGAURSWCTTVRUGAURSWCTVTVRUGAURSWCTVLANVEXTUTYTVRUGAURSWCTVRUGAURSWCTVTVRUGAURSWCTVTVRUGAURSWCTVRUGAURSWCTVTVRUGAURSWCTVTVRUGAURSWCTVRU													
PRODUCT 18,94 0,11 4,32 SHTSHLAWINTPENNGGLEHNMALISELTICISER/SVALLEGSLALAGUEREPHONINGUSSNELTAUVARGYLETILUXAR													
RAPEZP2 [Q94468] 225-315 18_94 0,11 4,22 IAGQOYCENLOQVERMOQVEEEGEMMAEHEASTGEVAMMEHEASTGEVAMMEKTENDSVDFHIEDFULTVERTUSSMEVAGE ROBD2 [Q94468] 225-315 18_94 0,31 4,32 ISADACTIVERTUSSMEVAGE ROBD2 [Q94468] 225-315 18_94 0,31 4,32 ISADACTIVERTUSSMEVAGE RUN [Q1404[45-135* 18_94 0,31 4,32 IDPG2GECGEVAMMEHEASTGEVAMMEKTLYTVEGEDPHINTUTATIVEGUENTUSCUMMERGEDFEVENTUSCUMMETHERGENAMENTUSTIVEGEDFEVENTUSCUMMETHERGENAMENTUSTIVEGEDFEVENTUSCUMMETHERGENAMENTUSTIVEGEDFEVENTUSCUMMETHERGENAMENTUSTIVEGEDFEVENTUSCUMMETHERGENAMENTUSTIVEGEDFEVENTUSCUMERGENAMENTUSTIVEGEDFEVENTUSCUMERGENAMENTUSTIVEGEDFEVENTUSCUMERGENAMENTUSTIVEGEDFEVENTUSCUMERGENAMENTUSTIVEGEDFEVENTUSCUMERGENAMENTUSTIVEGUENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSCUMERGENAMENTUSC													
ROBOLI (QRICKA) (546-000 56, 21 0, 31 6, 02 PSRC/UTO/TENS/TLS/UQRICTLAASA/TIE/ASQUARK/UQTI/VAN/VATULTU/UTI/UN/VAN/NOCLI/SPRS/DEPVIE RSUII (Q15404) (45-135* 18, 54 0, 31 4, 32 sutoantigm VLSINKLIT/UN/VERUNCLICULATINUSES GRUDTPALSE/LICULATINUSES GRUDTPALSE/LICULATINUSES/EXPONDED/VERUNCLICULATINUSES GRUDTPALSE/LICULATINUS/SILTU/UN/VERUNCLICULATINUS/S													
RSUI[0]1404[45:18* 18,94 0,11 4,12 automigm VLEMENTIMPPENALULULULULULULULULULULULULULULULULULULU		56,21	0,31	6,02		PSKPQVTDVTKNSVTLSWQPGTPGTLPASAYIEAPSQSVSNSWQTVANHVKTTLYTVRGLRPNTIYLPMVRAINPQGLSDPSPMSDPVR							
RW001 Q9H46 45-135 1E_04 0.31 4_32 ETVQTTUKTTYSEPER/PARYUSSELQNALQAEUNAVAFTUUTAVQEUNEUQUEUNUEQEUNEUVQEUNEUVQEUNEUVQEUNEUQUEUVUEUXQEUNEUQUEUNUEQEUNEUQUEUVUEUXUUTUUEUXQEUNEUVQEUNEUVQEUNEUXQEUNEUQUEUVUEUXUUEQEUNEUVQEUNEUXQEUNEUXQEUNUEUXQEUNEUXQEUNUEUXQEUNEUXQEUNUEUXQEUNEUXQEUNUEUXQEUXVEUXXEXABUEVXQEUXVEUXQEUXQEUXVEUXXEXABUEVXVEUXQEUXUEUXV		18,94	0,31	4,32	autoantigen	VLSHNKLTMVPPNIAELKNLEVLNFFNNQIEELPTQISSLQKLKHLNLGMINRUNTLPRGFGSLPALEVLDLTYNNLSENSLPGNFFYLTT							
MTREX[P4228]S45-473* 18_94 0,31 4,32 subscription SLC25A36[Q96CQ1]-90 18_94 0,31 4,32 avcoantigm EXSTP0Q0/mVANREDCVGALTCPLPV/KTRLQSSV1/VFELVQLNTMAGAS/MVVVSGDL4XLER/KTVLNECGPG/KVVV SLC25A36[Q96CQ1]-90 18_94 0,31 4,32 MSQRDTUVILFAGGCGGTVAALLGFKKTOSPSCLEKUTNOVSSLDFTUPVLLSSPGGFLASATISTEPSCPVINGURATIST SPRD3[Q3254]450-540 18_94 0,31 4,32 TAKKEEQCVTASVTALLGFKKTOSPSCLEKUTNOVSSLDFTUPVLLSSPGGFLASATISTEPSCPVINGURATIST SPTD38[Q9356]1350-1440 18_94 0,31 4,32 TVFVFKMALLVYRKUNDSDDFYMFMSTDDFYFKMAGASTRATTSTEPSALQKUNDQAAAPASTATVEAAVQBLQMLGGBCFUP THAM2 [Q03751]1350-1440 18_94 0,31 4,32 CVFGSGCRGLTFCIPOPYGSCSGSGWRGSQCQLACAPGH/GADCRLQCQCQNGGTCDRFSGCVCPSGWHGWHCESDBIPULMMAS THAM2 [Q03751]1350-1440 18_94 0,31 4,32 CCFGSGCRGLTFCIPOPYGSCSGSGWRGSQCQLAACAPGH/GADCRLQCQCQNGGTCDRFSGCVCPSGWHGWHCESDBIPULMMAS THAM3 [Q03751]1350-1440 18_94 0,31 4,32 CCFGSGCRGLTFCIPOPYGSCGCGAAAGAPGHAUKUSEBLEVEFFGEETEEDEEDEDEDAVTVSSGRCVPSGWHGWASEBLEVESDBIPULMASE THAM3 [Q03752]1420 18_94 0,31 4,32 CGRGFRGPUTVVMLKMALTSHPWTWEXAGQGGTVAMCKGDCFTANFCTSTFTUCTNESDAGAWFFGWTTVLKSGRCGTVPSGWHGWASEBLEDEDEDEMVTVSSGRCVPSGWHGWASEBLEDEDEMVTVSSGRCVPSGWHGWASEBL	RUNDC38(Q95NL0(405-495	18,94	0,31	4,32		DPGQSQEGDGKQDTLNVMSEGKEDTPSLLGLCGSLTSVASYKSLTSLKSNDYLASPTTEMTSPGLTPS							
SLC2AJal (QBCQ1):90 18,94 0,31 4,32 MSQRDTVHLAGGCGTVGALTE PLYVETRUCESSTLYDEVCENTMAGASVRWVPSPCPURCINVLEXGERSURG.GENUG SNX19 (QB254) (450-56) 18,94 0,31 4,32 TAKEE QGDVTASVTAGGCSTVGALTE PLYVETRUCESSTLYDEVCENTMAGASVRWVPSPCPURCINVLEXGERSURG.GENUG STIDIS (QBWCE) 160-450 18,94 0,31 4,32 LSQCWAGLWVFAGAGGCQLAXABSQALQQILLQUILETLABBCQHAALBESTLDAUQULQUAAPPRISATTSEELSSPEERSURGVANQUELEDUILDUAAPPRISATTSEELSSPEERSURGVANQUELEDUILDUAAPPRISATTSEELSSPEERSURGVANQUELEDUILDUAAPPRISATTSEELSSPEERSURGVANQUELEDUILDUAAPPRISATTSEELSSPEERSURGVANQUELEDUILDUAAPPRISATTSEELSSPEERSURGVANQUELEDUILDUAAPPRISTDUDPORTWINESTLDEDPORTWINESTLDEDPORTWINESTELDUPORTANDUPORTWINESSEALUPORTWINESSEALUPORTWINESSEALUPORTWINES													
SNK19 Q23431405-540 18,94 0,31 4,32 TADKRE QGV/TAVTAULEGRETCOSRPSCIENCE TRUDUSDDFUPPULSSEPGCIESATTSREPLSSPEQPULSULETSTTE SPTBNS1Q9NEC) 160-450 18,94 0,31 4,32 TADKRE QGV/TAVTAULEGRETCOSRPSCIENCE TRUDUSDDFUPPULSSEPGCIESATTSREPLSSPEQPULSULETSTTE SPTBNS1Q9NEC) 160-450 18,94 0,31 4,32 TVPYRRMULVYED/LGXBUSDFUPUHSULETSTTE SPTBNS1Q9NEC) 160-450 18,94 0,31 4,32 TVPYRRMULVYED/LGXBUSDFUPUHSULETSTTE SPTBNS1Q9NEC) 160-450 18,94 0,31 4,32 CUPYRRMULVYED/LGXBUSDFUPUHSULETSTTE SPTBNS1Q9DFUPUHSULETSTE SPTBNS1Q9DFUPUHSUPUHSUPUHSUETSTE SPTBNS1Q9DFUPUHSUPUHSUETSTE SPTBNS1Q9DF					autoantigen								
SPTENSI (SPINCE) (200-450 18, 54 0, 31 4, 32 LSQCWAGLIWAREARSQAIDQUILLQUPILLULARIPCHIKALEEVELAREQADQUADPARAPSASLATVEAAVQBGAREIDQUERUD TIAAK2 (QBIVS) (1350-1440 18, 54 0, 31 4, 32 TVEVERANULYKENCLIKKESINSRAPAHISTIDDEPVERALQUPILLQUPILLULARIPCHIKALEEVELAREQADQUADPARAPSASLATVEAAVQBGARETIP(SCESS) TILL (2015) (2015													
THANK1 [0]2079-180 18_94 0_31 4_32 TVV/VREAULIVEX/NSERPENTISTIL/PEPTER/NPACTURE/NUMBER/NATION/NE/PACTURE/NUMBER/NATION/NE/PACTURE/NUMBER/NATION/NE/PACTURE/NE/PACT													
TTEL [193590] 270-800 18_94 0,31 4,32 QCPGSBCRS[TFCLIPPIPOCSCSSSWRGQCQACAPEHIGADCRLQCQCQNGSTEDR93CCVPSSWHGWECKSDRIPQ].INAAS TP53RE(20554] 180-270 18_94 0,31 4,32 LDFGISFISALPEDKOVELYVEKAFLSTHPITTETTVTAKSYSTSSKARPULOCECVPLSRBGRSMMG TRAFS[Q9544] 180-270 18_94 0,31 4,32 DCPRRQVSCINCASAMETDRINGOVELANDICEVPLSRBGRSMMG TRAFS[Q9544] 180-270 18_94 0,31 4,32 DCPRRQVSCINCASAMETDRINGOVELANDICEVPLSRBGRSMMG TRAFS[Q9542] 2295-2385 18_94 0,31 4,32 TGKTCCLYRLWOOTHVWEKAGASSPLAAQVWICKSRLVEGGEYENCOKSEDQUESDQVECGMONQLENVYLESSEQ CARDS[Q972432] 2395-2385 18_94 0,31 4,32 EGKVYHNOVELKSNGKYTTSBRGRQNLTVEVTXEDQGEYSTVCKSGRGVETCKLKMPRPAILQLSDQVECGMONQLENVYLESVE CARDS[Q972432] 2-90 18_94 0,31 4,32 EBAGGRSVMVG EGKVYHNOVELKSNGKYTTSBRGRQNLTVEVTKEDQGEYSTVCKSGRAFTLGDTINNSSKRRVVSSALKVWYLSSAL													
TPS38K [Q96344]186-270 18,94 0,31 4,32 LUDGL91SLPEDGV0LVVLEKAFLSTHPNTET/VFEAFLCSTVSTSSGGARPVLIXLDEVRLAGRRESMVG TRAKK [Q96344]186-270 18,94 0,31 4,32 DCPRR/04SDBCAASMAREDREINDQ/VCLANNCEYCNTLBRQ/MPHRTED/DFFAFREETSTEGCHESMQBINHLABRILQENTQSHM TRAKK [Q96344]186-270 18,94 0,31 4,32 DCPRR/04SDBCAASMAREDREINDQ/VCLANNCEYCNTLBRQ/MPHRTED/DFFAFREETSTEGCHESMQBINHLABRILQENTQSHM TTAKIK [Q96244]2295-2385 18,94 0,31 4,32 EGKVPHINDVLESMGRTTISBRGQ/MT/NED/NED/STPUEGKTEVLESMGRTTVSLORGDFFN/DGKTTCLLMMPPHALQLSDQ/VCEGOVQLEVVESSE CARDDI [Q70742]29-00 18,94 0,31 4,32 ERASGTIPHTED/DKVTVESD/LTXDD/DEDRR/DVEGKTLDDFFN/DGKTTLDDFFN/DGKTTLDDFFN/DGKTTLDDFFN/DFLARGUNFNSSA.NLV/NVE													
TRAF6 (974K3) 180-270 18,94 0,31 4,32 DCPR8Q/SCDNCAASMAFEDKEIHDQNCPLAN/ICEYCNTLREQ/MPNHYDLDCPTAPPCTISTEGCHEKMQRNHARHUQENTQSHI TRAF6 (974K3) 180-270 18,94 0,31 4,32 TGKTCCLYRLWOOTH/WEKAGAGSFLIAGC/WLKRRE/VEGGETELCOEREDSIL/EVENTSGCGETELAAGGAGVP TINIQ (BWCAS) 2285-2385 18,94 0,31 4,32 EGWWINDVELKSRE/GUTSTREGGETELAGGAGSFLIAGC/WLKRRE/VEGGETELCOEREDSIL/EVENTSGCGTELAAGGAGVP CARDB (0972G2) 1-90 18,94 0,31 4,32 RIASGTRLSPTISTREGGETELAGGAGVPE VPS1D (0774k2) 2800 18,94 0,31 4,32 RIASGTRLSPTISTREGGETELAGGAGVPE VPS1D (0774k2) 2800 18,94 0,31 4,32 RIASGTRLSPTISTREGGETELAGGAGVPE VPS1D (0774k2) 2800 18,94 0,31 4,32 RIASGTRLSPTISTREGGETELAGGAGVPE VPS1D (0774k2) 2800 18,94 0,31 4,32 MONISSER AQVAELDAGGETAUGTORISMICALASAGSAGU/WEGAGS													
THANKI [01509] [005-1125 18,94 0,31 4,32 TGKTECCIVELWORTHWITEREDGALACCEPTOTISE Constraints TTNI [0]W242 [229-2385 18,94 0,31 4,32 EGMV/HINVELX/SUBJECT													
TTN QIW242 229>2385 18,94 0,31 4,32 EGKWYHNDVELKSNGKYTTSRRGRQNLTVRUVTKEDQGYSV/DGKTTCKLKMPRPALQGLSDQKVCEGDVQLEWVSLESVE CARDB QW2G2 1-90 18,94 0,31 4,32 RASGTRLSPITSNLTYPHPEDKHULVSDQLVKEDGEVERDVRLGTSPMDEVINGSTYNSKAAKKWPRWSLS VPS110 QSTKH4 2800-2970 25,16 0,31 4,82 RXSGTRLSPITSNLTYPHPEDKHULVSDQLVKEGDVRLGTSPMDEVINGSTYNSKAAKKWPRWSLS CrAPS2 QIN1V2 1-90 18,94 0,31 4,82 RVMDUSFEAQVALLELDAVIGTNUK WYGKOKTLCDUNINGSTWRLSVEGDEGDCSVVWSLAKRDALCOSPAAGUN VMS10 QSTKH4 2800-5675 18,94 0,31 4,32 PPDFEEPAQUALLEDAVIGTNUKWYGKGSGSQCQSVWLGSLADAAPSPAQVCSPPVEGPL/DQSJSLGKVQQP XCR1 P46094 1-90 18,94 0,31 4,32 PPDFEEPAQQHLIPPTTSTSLASDSTROSQGSDVVSDSQQSQQQWLGSLADAAPSPAQVCSPPVEGPL/DQSJSLGKVQQP XCR1 P46094 1-90 18,94 0,31 4,32 QHMWRGUECCGLLQLUPU HYTELVTLVTLLSLVGSQCPCOSHGHER/CCCERVLDQLUFURUKVFELESLINFIFLICLSUKVFELESLINFIFLICLISUKVFELESLINFIFLICLISUKVFELEFURUPUCCERVLGCPCOSHGHER/EVCEDERINDEVICUEVIDUC													
CARDD[QPTG2]]=90 18,94 0,31 4,32 BIASGTRUSHTSHUTYHEHEDIKHUTYSEDALLTAJDDEEDERHOVRUSTSPEMENINGSSYNANAANSWERVOSS VPS110[QPTH4]2880-2970 25,16 0,31 4,68 PKRRQPTVFALMENTGCTWATLTTFTRAALSHSGPGVVFEQGUTFLDOTHWRSEWREVTGEEPFERAGELIKHENTHDLBH CrAPS2[QHN1/2]1-90 18,94 0,31 4,32 MDNDSYRAQVAELIDAVGTNORUSYNNAMAANSUNGVVSLAGAALSHSGPGVVFEQGUTFLDOTHWRSEWREVTGEEPFERAGELIKHENTHDLBH VMS2[FRW9F9]585-675 18,94 0,31 4,32 PPEPEEPERAQUHUPTTFTSTSLAGSTSTOSGQSGTVVSDQSQQQWMLGBLADAAPSPAQ:VCSPAGUN XDM590[J04571135-225 18,94 0,31 4,32 PPEPEEPERAQUHUPTTFTSTSLAGSTSTOSGQSGTVVSDQSQQQWLGBLADAAPSPAQ:VCSPAGUN/ACLIAVACUPEPEERAGULAULULULULULULULULULULULULULULULULULU													
CFAP52 (QRN1V2[1-90 18,94 0,31 4,32 MDN0SPEAQVAELELDAVIGFNDHUWDYKINELLARLSLIKKKEREALAFSPRDLYLVSLGGPDDGSVVVVSLAKRDALCGSPAAGLINV WIND [FRWIPF] SE5-675 18,94 0,31 4,32 PPEPEEPEAQUILIPTITSTSTASADSTTVSDGGGSTVVSDSQGSQQVMLGSLADAAPSPRDLYLVSLGGPDDGSVVVVSLAKRDALCGSPAAGLINV XCR1[P46094] I-90 18,94 0,31 4,32 MESSGNPESTTFYDDLQSQCENQAWVFALATVLVLVFLISLVGRSULWVLWVFSLESITINFILKLCSULVALLIPVWSF ZVPS980[QRNVT] 155-225 18,94 0,11 4,32 QHMRRIGHLCRLLQHUJFTVSWVSRMLDAMPRINDLARIGPROFILKINKRIGHULKULKULUKULKULKULKULKULKULKULKULKULKULK		18,94	0,31	4,32		RIASGTRLSIPITSNTLIVYHPHPEDIKFHLYLVPSDALLTKAIDDEEDRFHGVRLQTSPPMEPLNFGSSYIVSNSANLKVMPKWISSL							
WNR2 [FBW9F9[585-675 18_94 0,31 4,32 PEPEPERADQHILPPTLyTSATSLASDSTFDSQQSSTVYSDSQQSQQWALGSLADAAPSPAQCVCSPP45C6VLPQSIPSLGAVQQP XXR1 [P46094]1-90 18_94 0,31 4,32 MESSGLAVESTFYYDLGSQCESTVYSDSQQSCGPOTSHBRINKLCSULWININGVENDLIKURINGNHTVECVFDCFDSGDQGPOTSHBRINKCCEDSHLAVINGVENDLIKURINGNHTVECVFDCFDSGDQGPOTSHBRINKCEDSHLAVINGVENDCFDCFDSGDQGPOTSHBRINKCEDSHLAVINGVENDCFDCFDSGDQGPOTSHBRINKCEDSHLAVINGVENDCFDCFDSGDQGPOTSHBRINKCEDSHLAVINGVENDCFDCFDSGDQGPOTSHBRINKCEDSGDQFDQFDQFDQFDQFDQFDQFDQFDQFDQFDQFDQFDQFD													
XCR1 [P46094]1-90 18,94 0,31 4,32 MESSGNPESTTFFYDLgSQPCENQAWVFATLATTVLYCLVTLSLVGRSU/LWVLVKYESLESLTNFE.NLCLSDLVFACLLPVWISP ZNFSPE] qB8UK7]135-225 18,94 0,31 4,32 QHMRRQHELFCCRLCLQHLQFFYERKWSRKDLARHRMQGDPCOTSHRGHPLCKFCDERILDNDELLKH.RRDHTFCHFCDSDGAQDY													
2NF598 Q86UK7 135-225 18,94 0,31 4,32 QHMRRQHELFCCRLCLQHLQIFTYERKWYSRKDLARHRMQGDPDOTSHRGHPLCKFCDERYLDNDELLKHLRRDHYTCHFCDSDGAQDY													
endosti mutro data vise endosti mutro data endosti mutro data endosti mutro data endosti endosti data endosti endo													
	er els anana la an	52,62	0,81	4,48		and and the second se							

Supplementary Table 3. Screening of positive ANA prepandemic samples (i.e., prior Covid-19) against different viruses.

Sample	Gender	ANA IgG	Dengue	Chikungunia	HEV IgM	HEV IgG	B19V IgM	B19V IgG	WNV IgM	WNV IgG
Α	М	positive	positive	Negative	ND	ND	Negative	Positive	Negative	Positive
В	М	positive	Negative	Negative	Negative	Negative	Negative	Positive	Negative	Negative
С	М	positive	ND	ND	Negative	Negative	Negative	Positive	ND	ND
D	М	positive	ND	ND	ND	ND	Negative	Positive	ND	ND
Е	М	positive	ND	ND	ND	ND	ND	ND	Negative	Positive

ND: Not determined.