
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6734  | https://doi.org/10.1038/s41598-021-85991-z

www.nature.com/scientificreports

Methodological considerations 
for identifying multiple plasma 
proteins associated with all‑cause 
mortality in a population‑based 
prospective cohort
Isabel Drake1*, George Hindy1,2, Peter Almgren1,3, Gunnar Engström4, Jan Nilsson5, 
Olle Melander3 & Marju Orho‑Melander1 

Novel methods to characterize the plasma proteome has made it possible to examine a wide range 
of proteins in large longitudinal cohort studies, but the complexity of the human proteome makes 
it difficult to identify robust protein-disease associations. Nevertheless, identification of individuals 
at high risk of early mortality is a central issue in clinical decision making and novel biomarkers may 
be useful to improve risk stratification. With adjustment for established risk factors, we examined 
the associations between 138 plasma proteins measured using two proximity extension assays and 
long-term risk of all-cause mortality in 3,918 participants of the population-based Malmö Diet and 
Cancer Study. To examine the reproducibility of protein-mortality associations we used a two-step 
random-split approach to simulate a discovery and replication cohort and conducted analyses using 
four different methods: Cox regression, stepwise Cox regression, Lasso-Cox regression, and random 
survival forest (RSF). In the total study population, we identified eight proteins that associated with 
all-cause mortality after adjustment for established risk factors and with Bonferroni correction for 
multiple testing. In the two-step analyses, the number of proteins selected for model inclusion in both 
random samples ranged from 6 to 21 depending on the method used. However, only three proteins 
were consistently included in both samples across all four methods (growth/differentiation factor-15 
(GDF-15), N-terminal pro-B-type natriuretic peptide, and epididymal secretory protein E4). Using the 
total study population, the C-statistic for a model including established risk factors was 0.7222 and 
increased to 0.7284 with inclusion of the most predictive protein (GDF-15; P < 0.0001). All multiple 
protein models showed additional improvement in the C-statistic compared to the single protein 
model (all P < 0.0001). We identified several plasma proteins associated with increased risk of all-cause 
mortality independently of established risk factors. Further investigation into the putatively causal 
role of these proteins for longevity is needed. In addition, the examined methods for identifying 
multiple proteins showed tendencies for overfitting by including several putatively false positive 
findings. Thus, the reproducibility of findings using such approaches may be limited.

Circulating biomarkers have the potential to improve risk stratification and targeted prevention strategies. 
For complex diseases, multiple biological processes and functional pathways regulate protein expression. This 
might explain why the expected clinical utility of novel biomarkers for disease outcomes often remain limited1,2. 
Advances in methodology empower exploratory analyses that aim to identify multiple protein biomarkers asso-
ciated with a range of disease outcomes3,4. However, multiple testing, weak associations, and multicollinearity 
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poses particular statistical challenges. Prediction models derived using time-to-event data typically rely on the 
Cox proportional hazards model5. To prevent overfitting and remove redundant variables, analysts may select 
predictors using stepwise selection (e.g. backward or forward elimination). Various extensions to the Cox model 
have however been developed to handle the particular setting of multicollinearity in high-dimensional models, 
where ridge, elastic net, and Least Absolute Shrinkage and Selection Operator (Lasso) are among the more often 
used6,7. In recent years, various machine learning algorithms have also been proposed as alternatives for mod-
elling survival data8–12. Machine learning find the best-fitting model through automated processes that detect 
patterns that may include non-linear associations as well as interactions between variables, without the need for 
pre-specification by the researchers. Random survival forests (RSF) is a direct extension of the random forest 
method12 and has been implemented in clinical epidemiological settings13–18. Adequate identification and risk 
stratification of individuals with reduced life expectancy, especially in the middle-aged to elderly population, is 
an important public health priority and a central issue in clinical decision making. All-cause mortality is com-
monly used as a definite (hard) endpoint in studies of clinical risk factors also for specific disease events such as 
e.g. coronary artery disease. The objectives of this study were therefore to examine the associations between 138 
plasma proteins and all-cause mortality, and to examine the potential usefulness of measuring multiple proteins 
by assessing the prediction improvement by adding a single versus multiple proteins to models for overall sur-
vival in a general population-based setting. In addition, we wanted to examine the reproducibility of different 
methods commonly used for identifying multiple predictors. Using a two-step random-split design, we examined 
the likelihood of chance findings by comparing four methods including Cox regression, stepwise Cox regression 
with backward elimination, Lasso-Cox regression, and RSF with backward elimination.

Methods and subjects
Study population.  The Malmö Diet and Cancer Study (MDCS) is a population-based prospective cohort 
study established between 1991 and 199619. Detailed descriptions of the cohort and representability has been 
published previously20–22. All men and women born between 1923–1950 and living in Malmö (Sweden) were 
invited to join. With a participation rate of approximately 40%, the cohort consists of 30,446 participants aged 
44–73 years at baseline. Between October 1991 and February 1994, every other MDCS participant was invited to 
join a sub-study on cardiovascular disease risk (MDCS-cardiovascular arm (CVA); N = 6103)23. Participants in 
the MDCS-CVA donated fasting blood samples at baseline24. After protein quality control and exclusion of indi-
viduals based on pre-specified criteria, the final study population included 3918 subjects (Supplement Fig. 1).

The study complies with the Declaration of Helsinki. All participants provided written informed consent, and 
the study was approved by the Ethics Review Committee at Lund University (LU 51-90).

Proteomic profiling.  Plasma proteins were analyzed using the Proseek Multiplex Oncology I, Version 2.1 
and the Proseek Multiplex CVD I (Olink Bioscience) at the Science for Life Laboratory (SciLifeLab) in Uppsala, 
Sweden. Fasting blood samples taken at the baseline examination were separated into plasma and stored at 
− 80 °C. Plasma samples of 1 µL per participant were analyzed by the SciLifeLab using the Proseek assays. The 
proximity extension assay technique has been described in detail previously3,25. In short, the Proseek assay uses 
oligonucleotide-labeled antibody probe pairs that bind to their respective protein antigens in the plasma sample 
and uses DNA polymerase to form a PCR template. The individual DNA sequences were detected and quantified 
using specific primers by microfluidic real-time quantitative PCR chip (96.96, Dynamic Array IFC, Fluidigm 
Biomark). The chip was run with a Biomark HD instrument. A pre-processing normalization procedure for raw 
Proseek data was performed using Olink Wizard for GenEx (Multid Analyses, Sweden). For each data point, 
normalization for technical variation was performed by subtracting of the quantification cycle (Cq) value in that 
well for the extension control25. An inter-plate control (IPC) was used to control for variation between plates. 
Normalization between runs was performed by subtracting the median IPC Cq from all the extension control-
adjusted values on a plate, resulting in normalized protein expression (NPX, log2 scale) values accounting for 
potential batch effects. The NPX were finally adjusted to give a background noise level (based on negative con-
trols) of around zero25. General calibrator curves as well as detailed technical information about the assays are 
available on the Olink homepage (http://​www.​olink.​com). Limit of detection (LOD) was defined as 3 × standard 
deviations (SD) above the background noise based on the negative controls in each run. Eleven proteins were 
excluded due to > 50% missing values as determined by values below LOD. To retain a sufficient sample size with 
data on the remaining proteins, protein levels below the protein-specific LOD were imputed with LOD/2 among 
subjects with missing values. After quality control and imputation, a total of 138 plasma proteins remained for 
analysis. In order to provide comparable effect estimates across identified proteins, all protein levels (measured 
in arbitrary units) were subsequently ln-normalized and adjusted for age in a linear regression model and stand-
ardized to a mean of zero and a standard deviation of one. To further assess potential unaccounted for batch 
effects, we conducted principal component analyses (Supplement Fig. 2–6) (i.e. to assess individual differences 
by plate) in the total study population, two random-split samples of the study population, in a smaller random 
sample of the total study population (N = 200) as well as in all subjects with no imputed protein levels (N = 772); 
no visually significant batch effects were observed. A flow chart of participants including quality control steps 
and imputation is found in Supplement Fig. 1 and a description of the included proteins including mean (range) 
NPX and the number of subjects with imputed values is shown in Supplement Table 1.

Clinical outcomes.  The study population was followed from their baseline examination until 31 December 
2014, death, or emigration. Vital status and underlying causes of death were obtained by linkage to the Swedish 
Tax Agency and the Swedish Cause of Death Registry. When a death occurs, this event is registered at the civil 
registry system with information on the date and cause of death based on the codes used in the International 
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Classification of Disease (ICD) Version 9 and 10. As our study investigates all-cause mortality, all deaths were 
included as the endpoint independent of the underlying cause of death.

Clinical risk factors.  Information on age and gender were extracted from the subjects’ Swedish personal 
identification number. Smoking status was classified as never, former, or current smokers. Educational level was 
categorized as elementary, junior high school, high school, continued education, or university/college degree. 
Direct measurements taken by trained nurses included height (cm) and weight (kg), which was used to calculate 
body mass index (BMI; kg/m2). Blood pressure was measured after 5 min of supine rest. History of hypertension 
was defined as a blood pressure at baseline above 140/90 mmHg and/or reported use of anti-hypertensive treat-
ment in the baseline questionnaire. Prevalent diabetes mellitus (yes/no) was confirmed by diagnosis in local or 
national registries or having a fasting whole blood glucose value of > 6.0 mmol/L at the baseline screening. Dur-
ing screening, HbA1c (%), triglycerides (mmol/L), and high-density lipoprotein cholesterol (HDLC; mmol/L) 
were measured at the Department of Clinical Chemistry, Skåne University Hospital in Malmö. Low-density lipo-
protein cholesterol (LDLC) was estimated using Friedewald’s formula. Blood samples stored at − 80 °C were used 
for analyses of high-sensitivity C-reactive protein (hsCRP) using the Tina-quant CRP latex high sensitivity assay 
(Roche Diagnostics, Basel, Switzerland) on an ADIVA 1650 Chemistry System (Bayer Healthcare, NY, USA).

Statistical analysis.  The Pearson’s correlation coefficients for all proteins were visualized with a heat map 
matrix ordered with hierarchical clustering (Supplement Fig. 7). To identify single proteins associated with all-
cause mortality, a Cox proportional hazards regression with follow-up time as the time-scale was used. Clinical 
covariates included age, sex, smoking status, BMI, educational level, history of hypertension, prevalent diabetes 
mellitus, C-reactive protein, HbA1c, and LDL-cholesterol. HbA1c and hsCRP were ln-transformed to normal-
ize distribution. The Bonferroni method was used to account for multiple testing (P-value = 0.05/138 proteins). 
To discriminate for the usefulness of the individual proteins for mortality prediction we calculated Harrell’s 
C-statistic (concordance index), category-free net reclassification improvement (cNRI) and integrated discrimi-
nation improvement (IDI)26.

To identify multiple proteins that robustly associate with all-cause mortality after mutual adjustment, the 
study population was randomly split into two samples to simulate a discovery and replication cohort. Randomiza-
tion was performed by sorting on underlying cause of death as a grouping variable to assure equal distribution 
of causes of death in the two samples. Differences in baseline characteristics were examined using ANOVA and 
Chi-square test. We performed the two-step random-split analysis using four methodological approaches. Firstly, 
we repeated single protein analyses with adjustment for covariates and retained proteins that were nominally 
associated with all-cause mortality in both random samples. Secondly, we ran a stepwise Cox regression with 
backward elimination of proteins with P-values > 0.05 and with forced inclusion of covariates. Thirdly, we used 
a Lasso-Cox regression with tenfold cross-validation, maximization of Cox model partial likelihood and model 
selection based on lambda-minimum. Covariates were forced into the model. For all Cox regression models, 
we assumed linear associations between proteins and mortality and no protein–protein interactions. The scaled 
Schoenfeld residuals were used to test the proportional hazards assumption; no deviations were noted. Finally, 
we applied a RSF backward algorithm. The method has been described in detail previously16. For evaluation 
of the RSF procedure, three different models were computed including: (1) covariates only, (2) covariates and 
all proteins, and (3) covariates and proteins selected using the backward elimination procedure. For each RSF 
model, 100 repetitions were computed and used to calculate means and 95% CIs of prediction error rates. The 
prediction error rate corresponds to 1 minus the C-index, where a lower value corresponds to better prediction16. 
The default values for computation of RSFs were used. Each RSF was computed using 1000 bootstrap samples 
and the log-rank splitting rule with 10 splits per variable.

Finally, we included proteins selected concordantly in both random samples in Cox regression models using 
the full study population. To quantify the predictive performance of the multiple protein models, we used Har-
rell’s C-statistic and compared these models with a clinical model (i.e. established risk factors only) as well as 
the clinical model with inclusion of only the strongest protein biomarker using the likelihood ratio (LR) test. 
For single proteins significantly associated with mortality (i.e. after Bonferroni correction) as well as for pro-
teins concordantly selected across both random samples and using all examined methodological approaches, 
we constructed protein scores using the quintile ranking of participants based on their plasma protein levels 
and estimated 10-year absolute risk of mortality across quintiles of scores. Analyses were conducted with the R 
Version 3.5.1 (The R Project for Statistical Computing, Vienna, Austria), including the randomForestSRC pack-
age for RSF analysis and the glmnet package for Lasso-Cox regression, and Stata/SE Version 14.2 (StataCorp, 
College Station, TX, USA).

Results
Description of study population.  A summary of the study design and main results is shown in Fig. 1. 
Baseline characteristics of the study population are shown in Table 1. Overall, there were no differences in the 
examined characteristics between the two random samples of the study population, except for higher hsCRP 
levels in random sample 1 compared to random sample 2 (P = 0.04). During a median follow-up of 21.7 years 
(interquartile range 20.9–22.4 years), there were 974 deaths from any cause. There was a positive correlation 
structure between several of the investigated proteins (Supplement Fig. 7).

Individual proteins associated with all‑cause mortality.  The analyses of the individual proteins in 
relation to all-cause mortality in the total study population is shown in Supplement Table 2. With adjustment 
for covariates, 32 proteins were nominally associated with all-cause mortality (P < 0.05) (Fig. 2). After Bonfer-
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Figure 1.   Summary of study design, methods used, and main results. (a) Individual proteins found to associate 
with all-cause mortality in the Malmö Diet and Cancer Study Cardiovascular Arm (MDCS-CVA) using Cox 
regression analysis adjusting for established risk factors (b) Two-step random split analyses to assess the 
reproducibility of multiple protein models defined using four methodological approaches. Three proteins were 
robustly replicated across the random samples and all included methods. (c) The association between a plasma 
protein score including the proteins in section (a) with all-cause mortality and the between-protein Pearson 
correlation coefficients.

Table 1.   Description of the MDCS-CVA and two random samples of the study population. *Mean (standard 
deviation, SD) are shown unless otherwise noted. Chi-square test (categorical variables) and ANOVA 
(continuous variables) used to test differences in characteristics between random sample 1 and 2. # Median 
(interquartile range) and P-value from ANOVA using ln-transformed variable due to non-normal distribution.

Characteristic Total study population Random sample 1 Random sample 2 P-value*

Number of subjects 3918 1963 1955

Number of deaths 974 491 483

Cause of death (%)

Cancer 41.8 41.6 42.0

Cardiovascular 29.1 28.9 29.2

Neurological 6.1 6.1 6.0

Respiratory 5.8 5.7 5.8

Age, years 57.2 (5.9) 57.4 (5.9) 57.1 (5.9) 0.17

Male gender (%) 40.4 41.9 38.8 0.05

Body mass index, kg/m2 25.6 (3.9) 25.6 (3.8) 25.5 (4.0) 0.62

Current smoking (%) 25.8 27.2 24.5 0.12

University/college degree (%) 11.8 11.6 12.1 0.95

Prevalent diabetes mellitus (%) 3.5 3.4 3.5 0.84

History of hypertension (%) 61.9 61.5 62.3 0.60

C-reactive protein, mg/dL# 1.3 (0.7–2.7) 1.4 (0.7–2.8) 1.3 (0.6–2.7) 0.04

LDL-cholesterol, mmol/L 4.2 (1.0) 4.2 (1.0) 4.2 (1.0) 0.09

HbA1c, %# 4.8 (4.5–5.1) 4.8 (4.5–5.1) 4.8 (4.5–5.1) 0.94
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roni correction, eight proteins remained significantly associated with all-cause mortality (Fig. 2; Table 2). These 
included amphiregulin (AR), C-X-C motif chemokine 9 (CXCL9), epididymal secretory protein E4 (HE4), 
growth hormone (GH), growth/differentiation factor-15 (GDF15), N-terminal pro-B-type natriuretic peptide 
(NTproBNP), stem cell factor (SCF), and urokinase plasminogen activator receptor (UPAR). Compared to a 
clinical model (i.e. with established risk factors only) all identified proteins improved discrimination of all-cause 
mortality as assessed by the C-statistic and comparing model discrimination using the LR test (all P < 0.001). In 
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Figure 2.   Forest plot of plasma proteins associated with risk of all-cause mortality with nominal significance 
level (P < 0.05) after covariate adjustment in the MDCS-CVA (n = 3,918). Hazard ratio (HR) and 95% confidence 
interval (CI) per standard deviation (SD) from a Cox regression model adjusted for age, sex, smoking status, 
BMI, educational level, history of hypertension, prevalent diabetes mellitus, C-reactive protein (ln-transformed), 
HbA1c (ln-transformed), and LDL-cholesterol. Bonferroni corrected significance threshold was P < 0.00036.

Table 2.   Performance metrics of individual plasma proteins in addition to clinical covariates for prediction 
of all-cause mortality in the MDCS-CVA. LR likelihood ratio test, cNRI category-free Net Reclassification 
Improvement, IDI integrated discrimination improvement. *Cox regression model including age, sex, 
smoking status, BMI, educational level, history of hypertension, prevalent diabetes mellitus, C-reactive protein 
(ln-transformed), HbA1c (ln-transformed), and LDL-cholesterol.

Model C-statistic P-value (LR) IDI P-value cNRI P-value

Clinical model* 0.7222 – –

 + AR 0.7247 0.0001 0.0039 0.0001 0.1673  < 0.0001

 + CXCL9 0.7243 0.0002 0.0033 0.0008 0.1439  < 0.0001

 + HE4 0.7260  < 0.0001 0.0058  < 0.0001 0.1788  < 0.0001

 + GH 0.7248 0.0001 0.0042 0.0002 0.1268 0.0006

 + GDF15 0.7284  < 0.0001 0.0088  < 0.0001 0.1287 0.0005

 + NTproBNP 0.7235  < 0.0001 0.0044 0.0003 0.0569 0.1238

 + SCF 0.7253  < 0.0001 0.0057 0.0001 0.1419 0.0001

 + UPAR 0.7266  < 0.0001 0.0040 0.0002 0.1564  < 0.0001
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addition, there was a significant improvement in IDI and cNRI for all markers, except for NTproBNP, where no 
improvement in cNRI was observed (P = 0.12).

Selection of multiple predictors using regression‑based methods and RSF.  Nine proteins were 
associated with all-cause mortality in both random samples of the study population (P < 0.05), including AR, 
CXCL9, GDF15, GH, HE4, NTproBNP, SCF, and UPAR, and additionally interleukin-6 (IL6), which did not 
reach the threshold for significance in the full study population after Bonferroni correction for multiple testing 
(Table 3). Results for the single protein analyses in the two random samples are shown in Supplement Table 3. 
Using a stepwise Cox regression with backward elimination resulted in 21 proteins retained in random sample 
1 and 16 proteins retained in random sample 2. Out of these, 7 proteins were retained in both random samples, 
including GDF15, HE4, NTproBNP, caspase-3 (CASP3), epidermal growth factor receptor (EGFR), ezrin (EZR), 
and myeloperoxidase (MPO). However, MPO showed diverging associations in the two random samples (data 
not shown). In a Lasso-Cox regression, 26 proteins were retained in random sample 1 and 27 proteins in ran-
dom sample 2. Out of these, 13 proteins were retained in both random samples, including CXCL9, EGFR, EZR, 
GDF15, GH, HE4, kallikrein-6 (KLK6), myoglobin (MB), NTproBNP, SCF, tissue-injury molecule-1 (TIM), and 
TNF-related apoptosis-inducing ligand (TRAIL) (data not shown). The RSF backward algorithm identified 49 
and 30 proteins in random sample 1 and 2, respectively. Out of these, 21 proteins were retained in both random 
samples (data not shown). Compared to a RSF model with only covariates and covariates together with all pro-
teins, the RSF models with covariates and selected proteins had lower mean prediction error rates in both ran-
dom samples, as well as in the full study population including the 21 proteins retained in both random samples 
(Supplement Table 4).

Performance metrics of multiple protein models.  A summary of findings using the two-step random-
split approach to identify multiple protein models is shown in Supplement Table 5. In total, only three proteins 
were consistently retained across all four methods and in both random samples. These included HE4, GDF15 
and NTproBNP. We examined model discrimination by improvement in the C-statistic in models including 
multiple proteins selected using the two-stage random split analysis to a clinical model with established risk 
factors for mortality (Table 3). Compared to the clinical model, all models including one or more protein bio-
markers showed an increase in the C-statistic (all P < 0.0001). The C-statistic for the clinical model was 0.7222, 
which increased to 0.7284 when including GDF15 (strongest marker) and to 0.7705 when including all proteins. 
The two Cox regression models where proteins were included on the basis of the individual protein analysis or 
the stepwise selection procedure performed similarly, with a C-statistic of 0.7379 and 0.7373, respectively. The 
models based on results from the Lasso-Cox and the RSF performed similar and better than the traditional Cox 
regression models with C-statistics of 0.7492 and 0.7436, respectively (Table 3).

We separated participants into quintiles on the basis of (1) GDF15 levels, (2) a score including three proteins 
consistently identified across different methodological approaches (GDF15, HE4, and NTproBNP) and (3) a score 
including eight proteins that were associated with all-cause mortality after Bonferroni correction (GDF15, HE4, 
NTproBNP, AR, CXCL9, GH, UPAR, and SCF). Supplement Fig. 9 shows the cumulative hazard rate for all-cause 

Table 3.   Performance metrics of different Cox regression models where proteins were selected for inclusion 
by using a two-step random-split approach in the MDCS-CVA (N = 3,918). *Covariates included in the model 
were age, sex, smoking status, BMI, educational level, history of hypertension, prevalent diabetes mellitus, 
C-reactive protein, HbA1c, and LDL-cholesterol. **Covariates and growth/differentiation factor-15 (GDF-
15). ***Covariates and all proteins (n = 138). a Covariates and 9 proteins (AR, CXCL9, GDF15, GH, HE4, 
IL6, NTproBNP, SCF, UPAR) associated (P < 0.05) with all-cause mortality in a Cox regression model after 
adjustment for covariates in both random samples of the MDCS-CVA. b Covariates and 6 proteins (GDF15, 
CASP3, EGFR, EZR, HE4, NTproBNP) associated (P < 0.05) with all-cause mortality with mutual adjustment 
in both random samples of the MDCS-CVA using a stepwise Cox regression with backwards elimination of 
proteins with P < 0.05. MPO was excluded due to diverging associations with all-cause mortality in the two 
random samples. c Clinical variables and 13 proteins (CXCL9, EGFR, EZR, GDF15, GH, HE4, KLK6, MB, 
NTproBNP, SCF, TIM, TRAIL, UPAR) retained in both random samples of the MDCS-CVA using a Lasso 
penalized Cox regression and lambda minimum for protein selection. d  Clinical variables and 21 proteins 
(FABP4, FasL, GDF15, HE4, HGF, IL12, IL6, mAmP, MMP1, MMP12, MYD88, NTproBNP, PRSS8, PSGL1, 
PTPN22, PTX3, RAGE, REN, SCF, THPO, TIM) retained in both random samples using a RSF backward 
elimination approach.

Model C-statistic Change in C-statistic from clinical model P-value (LR)
Change in C-statistic from clinical + strongest 
marker model P-value (LR)

Clinical model* 0.7222 – –

Clinical + strongest marker** 0.7284 0.0062  < 0.0001 – –

Clinical + all proteins*** 0.7705 0.0483  < 0.0001 0.0421  < 0.0001

Clinical + Coxa 0.7379 0.0157  < 0.0001 0.0095  < 0.0001

Clinical + StepwiseCoxb 0.7373 0.0151  < 0.0001 0.0089  < 0.0001

Clinical + LassoCoxc 0.7492 0.0270  < 0.0001 0.0208  < 0.0001

Clinical + RSFd 0.7436 0.0241  < 0.0001 0.0152  < 0.0001
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mortality across quintiles of the biomarker scores. The HRs in quintile five compared to quintile 1 were 1.48 
(95% CI 1.20–1.84) for GDF15, 1.67 (95% CI 1.33–2.08) for the 3-protein score, and 1.93 (95% CI 1.56–2.38) for 
the eight-protein score. For the 8-protein score, the HR corresponded to a 10-year absolute mortality risk of 4.9 
(95% CI 4.0–5.8) in quintile 5 compared to 2.5 (95% CI 2.0–3.0) in quintile 1 (Supplement Fig. 10).

Discussion
Based on explorative analyses of 138 plasma proteins, we identified eight proteins associated with all-cause 
mortality after adjustment for known clinical risk factors. Compared to the clinical model, all of the identified 
proteins significantly improved prediction of all-cause mortality, however, the increase in the C-statistic was 
modest. Comparing four methods for selecting multiple predictors, there were only three protein biomarkers 
that showed consistent model inclusion across all four approaches (HE4, GDF15, and NTproBNP). Notably, 
the multivariable methods examined in this study showed tendencies for overfitting and limited robustness in 
selecting multiple predictors based on the results from the two-step random split analysis.

All-cause mortality is a heterogeneous endpoint and as such most of the identified proteins are known to 
have pleiotropic functions with involvement in a range of conditions and diseases. However, while some of the 
proteins are positively correlated, there are no established links between the identified proteins, suggesting that 
they may act fairly independently on development of disease and future risk of mortality (Supplement Fig. 8). 
GDF-15 (also known as macrophage inhibitory cytokine-1) is a stress response cytokine and a member of the 
transforming growth factor-ß superfamily. In humans, increasing GDF-15 levels have been associated with 
inflammation, cardiovascular disease, type 2 diabetes, and cancer25,27–29. The established heart failure biomarker 
NTproBNP have been studied extensively in relation to risk of cardiovascular diseases30 and a meta-analysis found 
that NTproBNP levels also associate with all-cause mortality in the general population31. HE4 levels are elevated 
in patients with ovarian cancer32. A recent study also found that HE4 levels are elevated in patients with chronic 
heart failure and that levels predict heart failure outcome33. Compared to GDF-15 and NTproBNP, HE4 is much 
less studied in general populations using a longitudinal design. The soluble form of UPAR has been studied 
extensively with respect to disease outcomes, both in general populations and in patient populations34. UPAR is 
generally believed to be a marker of low-grade inflammation in the general population and is strongly affected 
by smoking35. CXCL9 is a cytokine with chemotactic functions that function as a ligand to the CXC chemokine 
receptor 3 expressed on T-lymphocytes and natural killer cells. CXCR3 and its ligands CXCL9/10/11 have been 
proposed to play an important role in recruitment of Th1 cells in atherosclerotic plaques36 and to have a more 
complex role in the tumor microenvironment37. A previous study within the MDCS-CVA showed that plasma 
SCF associates with decreased risk of both cardiovascular disease and all-cause mortality38. AR is a ligand to the 
epidermal growth factor receptor that has been shown to be pro-oncogenic, with functional studies implicating 
most of the cancer hallmarks39. AR has also been shown to be expressed by numerous immune cells in a variety 
of inflammatory conditions40. In a previous study within the MDCS-CVA, high-sensitivity GH was associated 
with increased risk of cardiovascular morbidity and mortality41. In cancer, GH, via its mediator peptide insulin-
like growth factor-1 (IGF-1) is known to influence regulation of cellular growth42.

This is to the best of our knowledge the first large-scale investigation into multiple plasma proteins in relation 
to long-term risk of all-cause mortality in a population-based setting. There are several studies examining the 
usefulness of large-scale data such as various ‘omics’ data (including proteomics) for prediction of disease events 
in general populations or in patient populations4,43–45. Overall, few biomarkers have been robustly replicated 
in independent study populations as well as so far proven to be sufficiently useful for clinical implementation. 
For this reason, the findings from this study should be regarded as exploratory and in need of replication in 
independent study populations. In addition, the two-step random split analyses indicate that the potentially 
low information value on many of the included proteins as well as multi-collinearity may result in several false 
positive findings when using several commonly used multivariable approaches. Further, while several plasma 
proteins were found to robustly associate with all-cause mortality in this study population, the causal nature of 
these associations are not known. A recent large scale proteomics Mendelian randomization study reported some 
evidence for a causal positive association between GDF15 and body mass index/weight, and a causal inverse 
association between SCF and HDL cholesterol and a positive association with triglycerides46. As such it is likely 
that several of the investigated proteins represent pathways related to many of the established risk factors for 
mortality, which may explain the limited improvement in prediction of this outcome.

This study has several strengths and limitations. The main strengths include the prospective study design 
and the use of a well-characterized population-based cohort with information on key covariates and high com-
pleteness of endpoint ascertainment. Loss to follow-up due to emigration was less than 0.5%. In general, there 
was a rather large discrepancy between the identified proteins in the two random samples from the same study 
population, suggesting that probing large proteomics dataset is likely to include several false positive findings 
as well as producing over-fitted prediction models when using commonly implemented predictor selection 
methods. We aimed to overcome the heterogeneity of the study outcome by assuring equal distribution of the 
underlying causes of deaths in the two random samples, however, differences between the two random samples 
may be due to unaccounted for heterogeneity between samples. We could not identify any statistically significant 
differences in distribution by plate or imputed protein values between the two random samples. There appeared 
to be no major batch effects in the total study population or based on visual inspection of PCA plots in smaller 
random samples of the study population (see Supplement Fig. 2 and 5). However, based on visual inspection of 
PCA plots there appeared to be slight differences between the two random samples (see Supplement Fig. 3 and 
4). We therefore repeated the main analyses with inclusion of plate number as a covariate, however, results were 
virtually unchanged (data not tabulated). While specific causes of death could be investigated as potential out-
comes in this study, the statistical power for such analysis would be limited. The main rationale for our two-step 
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random split approach was to provide a similar setting as to examining the same methodological approaches 
when using two independent cohorts (discovery and replication) i.e. a real-world type of scenario. Thus, the aim 
was not to perform a traditional examination of model robustness nor to validate the specific models (i.e. using 
a training and test set for model parameters). The key interest in our paper was rather to consider potential of 
chance findings (and thus reproducibility) when using these methods in two independent study populations. 
This type of approach is however not comparable to external replication because both samples were drawn from 
the same study population and thus analyses in the two samples share sources of bias. Overall, the two methods 
designed to maximize prediction (i.e. the Lasso-penalized Cox regression and the RSF method) retained a higher 
number of proteins compared to the traditional Cox regression methods where covariates selection is guided 
by statistical significance only. Accordingly, these models also performed better in predicting all-cause mortal-
ity. The RSF approach holds some advantages over the traditional regression-based approaches for exploratory 
analysis of complex datasets. For example, it is possible probe potential protein–protein interactions as well as 
examining non-linear associations to identify suitable protein level cut-points. For a specific outcome analysis of 
an exploratory nature, the RSF approach may thus be an appealing complement to the Cox regression approaches. 
Nevertheless, the results of such a model will, similarly to the other methods examined in this study, need rep-
lication in independent samples.

In conclusion, we identified several proteins that associated with all-cause mortality, however, the causal 
nature of these associations remains to be investigated. Exploratory multiple protein models may display 
poor replicability and should be interpreted as hypothesis-generating unless replicated in independent study 
populations.

Data availability
The datasets analyzed during the current study are not publicly available due to restrictions in the ethical permis-
sion but the data can be accessed through the corresponding author upon reasonable request and with permission 
of the Malmö Diet and Cancer Study Steering Committee.
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