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ABSTRACT

Achaibou, Feriel, Masters : June : 2023, Masters in Applied Statistics

Title: Volatility estimation in missing at random high-frequency financial time series

Supervisor of Thesis: Dr. Mohamed Chaouch

CAS, Qatar University.

More than 15 years ago, the capital markets have seen significant development, introduc-

ing high-frequency trading and a shift of market towards high-frequency and algorithm

trading. It was always believed that high-frequency trading and automated trading were

source price shocks and rising of volatility. Therefore, more interest was recently given

in modeling the volatility with high-frequency financial data. However, financial data

can still be missing despite modern technology that allows data collection on a very fine

time scale. Thus, this thesis focuses on the estimation of regression and volatility func-

tions based on missing data using a nonparametric heteroscedastic regression model.

A Nadaraya-Watson type estimator is used when the response variable is a real-valued

random variable and subject to missing at random mechanism, while the predictor is a

completely observed infinite-dimensional (functional) random variable. Based on the

observed data, we first introduce a simplified, as well as inverse probability weighted,

estimators. Second, these initial estimators are used to impute missing values and define

estimators of the regression and volatility operators based on imputed data. Third, the

performance of the proposed estimators is assessed using simulated data. Finally, an

application to the estimation and forecasting of the daily volatility of Brent Oil Price

returns conditionally to 1-minute frequency daily Natural Gas returns curves is also

investigated.
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CHAPTER 1: INTRODUCTION

Problem statement

In ancient times, traders used manually follow up and post stock price on boards.

However, the main drawbacks of this traditional method include slow trading activity,

manually calculations and few orders are executed per day. Starting from nineties with

the arrival of computers, the trading activity become more automated. The traders can

follow the market dynamic and make the better decision. Nowadays, with the progress of

computers and the increase of their computational capacity, financial institutions moved

towards high frequency trading. This trading activity is mainly performed by comput-

ers and orders can be executed every millisecond. Despite its advantages in trading

large volumes of securities and make profit from every very small price fluctuations,

high frequency trading has been linked to increased market volatility and even market

crashes. For instance, in 2010 the financial market experienced so called flash-crash a

type of stock market crash which started at 2:32 pm and lasted for approximately 36

minutes. Therefore, stock indices, such as S&P500, Dow Jones or Nasdaq collapsed

and rebounded very rapidly. From this perspective, understanding and modeling the

financial market intraday volatility with high frequency financial data and if possible

predict it would be of great interest to investors to take the right decisions. In addition,

financial firms, that trade assets on high-frequency time scale, are not just interested in

short-term forecasting of future values of financial assets, but also assess the risk associ-

ated to such predictions through the volatility components. Thus, risk analysis plays an

important role in financial market. Financial risk could be defined as the risk of losing

part or all of an investment. Regulators and owners of financial institutions routinely

use risk measures to aid in decision making process. The purpose of risk measure is to
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assess the level of risk in a portfolio. Higher risk investments should generate higher

returns to offset the risk of losing money. [1] was the first to use volatility as proxy

risk where the idea of risk optimisation was introduced. That is, for a particular return

on a particular investment, investors need to minimize the volatility of those returns in

order to maximize their utility so-called modern portfolio theory. Besides, [2] discussed

several risk measures such as volatility, the most popular measure for financial risk.

Investors are more interested in returns instead of prices because returns have statistical

feature involving stationarity. For instance, if the price changes a lot over a given period

time, then volatility is high. However, it is difficult to determine how high is the volatil-

ity. Because of latent nature of volatility, it must therefore be forecasted by a statistical

model.

Volatility models

Let (Xt, Yt)t=1,...,n be a strictly stationary process with the same distribution as

(X, Y ), where Y ∈ R and X ∈ Rd. Denote m(x) := E(Y |X = x) and U2(x) :=

var(Y |X = x) the regression function and the conditional variance, respectively. Sup-

pose that the random sample (Xt, Yt)1≤t≤n is generated by the following nonlinear

heteroscedastic model:

Yt = m(Xt) + U(Xt)εt, t = 1, . . . , n, (1.1)

where E(εt|Xt) = 0 and var(εt|Xt) = 1. Several approaches to estimate the regression

and the conditional variance functions were introduced in the literature. For instance, [3]

discussed parametric methods to estimate the autoregression function and the volatility

(see Chap.4) and nonparametric approaches to estimate the same quantities (see, Ch.8).
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It is worth noting that model (1.1) encompasses several interesting volatility

models. In the following, we discuss some specific models and the main existing

contributions in the literature.

(a) Parametric autoregressive models with ARCH/GARCH errors:

If we consider Xt−1 ≡ (Yt−1, . . . , Yt−d)
⊤, then model (1.1) becomes

Yt = m(Yt−1, . . . , Yt−d) + U(Yt−1, . . . , Yt−d) εt. (1.2)

Moreover, when m(Xt−1) = 0 and U(Xt−1) ≡ U(Xt−1;β) =
√
1 +

∑d
j=1 βjY 2

t−j one

obtains the pure autoregressive conditional heteroscedasticity (ARCH) model introduced

in [4].

An extension of Engle’s model was considered in [5] where

m(Xt−1) ≡ m(Xt−1;α) =

q∑
j=1

αjYt−j and U(Xt−1;β) =

√√√√1 +
d∑

j=1

βjY 2
t−j. (1.3)

In such case the underling process Yt generated by the model (1.2) is an autoregressive

process with ARCH errors. The study of the statistical properties of an AR-ARCH

model was considered, for instance, in [6] and [7] when q = d = 1 (AR(1)-ARCH(1))

and [8] for higher orders of q and d.

The AR-ARCH models presented above belong to the class of linear and para-

metric models for the volatility. Indeed, as one can see from (1.3), the shape of the

volatility is identified through some unknown parameters which should be estimated.

Moreover, common estimation techniques such as the maximum-likelihood method will

require to impose a certain probability distribution on the errors.

In practice, before assuming that a financial time series is generated by an AR-
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ARCH model, we have to use Goodness-of-fit (GOF) tests to assess the parametric form

of the volatility (see [9], and [10] for more details). Moreover, assuming a specific

probability distribution (in general Gaussian) on the εt is a very restrictive condition

which is in general violated when we model financial time series.

(b) Nonparametric autoregressive models with ARCH errors:

In order to avoid any miss-specification of the parametric form of the regression and

volatility functions in (1.2), and to relaxe the assumption on the probability distribution

of the innovations εt, nonparametric approaches represent a relevant alternative to the

AR-ARCH models. In this case we do not impose any specific form on the functions

m(·) andU2(·). Only smoothness (regularity) conditions will be needed to achieve good

statistical properties of the nonparametric estimators of the regression and the volatility

functions.

Given (Xt, Yt)t=1,...,n, a strict stationary process, several nonparametric esti-

mators of m(·) and U2(·) were proposed in the literature. For instance, [11] used

Nadaraya-Watson type estimator to estimate the parameters in the nonlinear autoregres-

sive model with ARCH errors given in (1.2). The estimator of the autoregressive part

m is defined, for any fixed x, as follows:

mn(x) =

n−1∑
t=d

Yt+1K
(x−Xt

hn

)
n−1∑
t=d

K
(x−Xt

hn

) , (1.4)

where, as defined above, Xt ≡ (Yt, . . . , Yt−d+1)
⊤, is presented as a special case when

the predicted values of the process Yt are obtained based on the past information Xt, K

is a kernel and hn is called bandwidth which is a sequence of positive numbers tending

to zero as n goes to infinity.
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The nonparametric estimation of the regression function received a lot of interest

among the statistics community. Asymptotic properties of such estimator, including

consistency, asymptotic distribution, were discuss in [12], [13], [14], [15] among others.

It has been proven in the cited literature that the choice of the kernel does not really

affect the quality of the estimation. However, the bandwidth plays a crucial role in

the estimation. The selection of the bandwidth can be obtained either by minimizing

some risk measure such as the mean square error or numerically using cross-validation

techniques.

Regarding the volatility part, observe that it can be estimated in two differ-

ent ways. The first one consists in using the following simple decomposition of the

conditional variance:

U2(x) = E(Y 2|X = x)− (m(x))2. (1.5)

Therefore, one may estimate m̃(x) ≡ E(Y 2|X = x) nonparametrically using (1.4) and

by replacing Yt+1 by Y 2
t+1. Then a difference based estimator of U2(x) can be defined

as

Ũ2
n(x) = m̃n(x)− (mn(x))

2. (1.6)

The main drawback of the difference based estimator is that, in practice, it may lead to

negative values of volatility.

The second method to estimate U2(x) is called residual-based approach. If the
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regression function is know, one can see the conditional variance as:

U2(x) = E
(
(Y −m(X))2|X = x

)
, (1.7)

which is a regression function of the squared residuals squared (Y − m(X))2 of the

predictor X . Therefore, a Nadaraya-Watson type estimator of U2(x) can be defined as

follows:

U2
n(x) =

n−1∑
t=d

(
Yt+1 −mn(Xt)

)2
K
(x−Xt

hn

)
n−1∑
t=d

K
(x−Xt

hn

) , (1.8)

where, as defined above, Xt ≡ (Yt, . . . , Yt−d+1)
⊤. [11] investigated the local

constant estimator of the regression and conditional variance given in (1.4) and (1.8),

respectively, when data is supposed to be generated from model (1.2). He provided

a uniform consistency rate for both estimators and established their asymptotic distri-

butions. [15] introduced a local linear estimator of m(·) and U2(·) and compared the

efficiency of the residual-based and difference-based estimators of U2(x). [16] dis-

cussed the conditional variance estimation in heteroscedastic regression model where

he introduced more efficient method than local linear regression estimation to ensure

that the conditional variance estimator is always positive.

(c) Stochastic volatility

Another interesting reason to study model (1.1) is that it includes continuous-

time stochastic models which are used to model diffusion processes. Several financial

assets, say X , are modeled using diffusion processes solution of the following stochastic
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differential equation:

dXt = µ(Xt)dt+ σ(Xt)dWt, t > 0, (1.9)

where Wt is a standard Brownian motion. The drift µ(·) and the diffusion σ2(·) are

in general unknown functions. Several well-known models in financial econometrics,

(including [17]; [18]; [19]; [20], among others), can be written under the form (1.9)

with a specific form of drift and diffusion functions. In practice, a diffusion process

{Xt} cannot be observed continuously over time. It is rather observed at instants

{t = i∆|i = 0, . . . , n}, where ∆ > 0 is very small. For instance the series could be

observed hourly, daily, weekly or monthly. High-frequency financial data are usually

daily or intradaily series. Following Euler discretization scheme, one gets a discretized

version of (1.9). That is

Xt+∆ −Xt = µ(Xt)∆ + σ(Xt)∆
1/2εt, (1.10)

where {εt} is a sequence of independent and identically distributed standard normal

random variables. Taking Yt = Xt+∆ − Xt, µ(Xt)∆ = m(Xt), and σ(Xt)∆
1/2 =

U(Xt), model (1.10) can be viewed as a special case of model (1.1). [17] and [21]

studied nonparametric estimation of µ and σ.

Particular cases discussed in (a), (b) and (c) clearly show that it is important to

study a general heteroscedastic regression model of the form (1.1). In this thesis we are

interested in extending the model (1.1) to the case where Y ∈ R and the predictor X is

a functional random variable. That is X ∈ E where E is an infinite-dimensional space

endowed with a certain semi-metric. Moreover, we suppose that the response variable
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Y is subject to a missing at random mechanism. Note that whenever Y is completely

observed real random variable and X ∈ E , [22] studied nonparametric estimation of

m(·) and U2(·), the regression and conditional variance operators and investigated their

asymptotic properties.

Moreover, all the above mentioned references assume that the time series is

completely observed. In practice, financial time series may be subject of a missing at

random mechanism (see [23]). Therefore estimators given in (1.4) and (1.8) cannot be

used to predict future values of financial assets or quantify the risk assigned to such

prediction through the volatility component. Recently, when x ∈ R, [24] considered

heteroscedastic regression model with fixed design (X is not random) and used local

polynomial method to estimate conditional variance function with correlated errors and

missing at random response. Four nonparametric estimators of the conditional variance

function were proposed and authors conclude that imputed estimator provides better

results than simplified one.

Thesis outline

The organization of this thesis is as follows. Chapter 1 describes the problem

statement, reviews different types of volatility models introduced in the literature and the

contribution of this thesis. Chapter 2 discusses the relevant literature which is used for

the objectives of this thesis. The estimation of the regression and conditional variance for

both cases complete and missing data is discussed in Chapter 3 . The imputed estimators

of the conditional variance are obtained in Chapter 4 based on imputation approaches

including regression imputation and inverse probability weighting. Chapter 5 reports

the simulation results, while in Chapter 6 shows an application of the methodology on
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high-frequency financial data. Finally, the main findings of this thesis are summarised

in Chapter 7 and some open research ideas are given for further investigations in the

future.

Contribution of the Thesis

This thesis deals with nonparametric estimation of the regression and condi-

tional variance operators in a nonlinear heteroscedastic functional regression model.

It supposes that the response Y is a real-valued random variable subject to a missing

at random mechanism. However, the covariate X is functional in nature taking value

in an infinite dimensional space endowed with a certain semi-metric and completely

observed. This thesis can be seen as an extension of several recent contributions in

functional data analysis:

• In [22] a heteroscedastic functional regression model was considered when the

data are completely observed. We extend the estimators in [22] to the missing at

random case.

• In [25] an inverse probability weighting kernel-based estimator of the regression

operator was investigated when the response variable is missing at random and a

homoscedastic functional regression model is considered. Under the same model,

[26] studied the simplified estimator of the regression operator. In this thesis, we

extend both results in the case of heteroscedastic functional regression model with

MAR response.

• In [24] a fixed design heteroscedastic regression model with correlated errors was

considered, and based on local polynomial regression, four nonparametric estima-

tors of the conditional variance were proposed when there are missing responses.
9



In this thesis, we extend the work in [24] to heteroscedastic functional regres-

sion model by generalizing the Nadaraya-Watson type estimator of the conditonal

variance taking into consideration the missing at random response.
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CHAPTER 2: LITIRATURE REVIEW

Nonparametric regression estimation: finite dimensional case

In statistics is is very common that we want to understand how a response variable

Y is concomitant to a certain predictor X . Regression models represent one of the most

powerful tools to understand the relationship between these random variables. In this

section we suppose that the data generating model is written as follows:

Y = m(X) + error, (2.1)

where m : R → R is an unknown function to be estimated and the error

term is centered conditionally to X . Therefore, one can show that, when X = x,

m(x) = E (Y |X = x) .

In what follows we briefly remind the reader how to estimate m(x) nonparamet-

rically using an i.i.d random sample (Xi, Yi)i=1,...,n copies of (X, Y ) ∈ R × R. Note

that the regression function or the conditional mean m(·) can be rewritten as

m(x) = E(Y |X = x) =

∫
yfY |X=x(y)dy =

∫
yf(x, y)

f(x)
dy, (2.2)

where f(x, y) is the joint density function of (X, Y ) and f(x) is the marginal density of

X . A plug-in estimator of m(x) can be obtained by replacing each unknown quantity

in (2.2) by its empirical version. Therefore, a Nadaraya-Watson type estimator of m(x),

at any fixed point x, can be written as follows:

mn(x) =

∫
yfn(x, y)

fn(x)
dy, (2.3)

11



where fn(x, y) and fn(x) are the nonparametric estimators of f(x, y) and f(x), respec-

tively. These estimators are defined as follows:

fn(x, y) =
1

nh2

n∑
t=1

K
(x−Xt

h

)
K
(y − Yt

h

)
and fn(x) =

1

nh

n∑
t=1

K
(x−Xt

h

)
. (2.4)

After substituting (2.4) in (2.3), a Nadaraya-Watson type estimator of the regression

function is obtained for any fixed x, as follows

mn(x) =

n∑
t=1

YtK
(x−Xt

hn

)
n∑

t=1

K
(x−Xt

hn

) . (2.5)

where, K is the kernel and h := hn is the bandwidth which is a sequence of positive

numbers tending to zero as n goes to infinity. Note that closer the observation Xt

to the fixed point x where m(x) is estimated, higher will be the weight assigned to

corresponding Yt.

Observe that the Nadaraya-Watson type regression estimator can be adapted to

the multivariate case, where Y ∈ R and X ∈ Rd, and defined as follows:

mn(x) =

n∑
t=1

YtK

(
||x−Xt||

h

)
n∑

t=1

K

(
||x−Xt||

h

) , (2.6)

where, || · || denotes the Euclidean norm and defined, for any u = (u1, . . . , ud)
⊤ ∈ Rd,

as ∥u∥ = (u2
1 + · · ·+ u2

d)
1/2.

Alternatively, one can consider the so-called the kernel product estimator of the

regression function where, for any u ∈ Rd, K(u) =
∏d

j=1Kj(uj). For simplicity, we

consider here the same kernel Kj for any j = 1, . . . , d. Therefore, one can define mn(x)

12



as follows:

mn(x) =

n∑
t=1

d∏
j=1

YtK

(
xj −Xt,j

h

)
n∑

t=1

d∏
j=1

K

(
xj −Xt,j

h

) . (2.7)

Note that the kernel product estimator is easy to calculate compared to one

given in (2.6). However, it does not preserve the dependence structure in the vector

X as is the case in (2.6). The statistical properties of such estimator were discussed

in the literature. For instance [27] and [28] investigated the strong consistency and

the asymptotic normality of mn(x) for α-mixing processes. In addition, the uniform

consistency of the estimator for ϕ-mixing process were discussed in [29],[30] and [13].

Remark 1 (On the principle of local weighting). The local weighting techniques are

very well adapted to nonparametric estimation. One of the most common approaches

among theses local weighting techniques in finite dimensional case is the kernel one.

Kernel local weighting is based on a kernel function K and bandwidth h. In finite

dimensional case, ifx is fixed point, then the kernel smoothing transforms the observation

Xt into ∆t as follows such that ∆t =
1

h
K

(
x−Xt

h

)
, t = 1, . . . , n. The kernel density

estimator is defined as f(x) =
1

n

n∑
t=1

1

h
K

(
x−Xt

h

)
. The basic idea behind the local

weighting around a fixed x is to assign a weight to each observation Xt based on the

similarity between x and Xt. The more Xt is close to x, the higher is the weighting.

In practice, there are different choices of possible kernels that listed below and

displayed in Figure 2.1.

Gaussian Kernel: K(u) = 1√
2π

exp(−u2

2
)

Epanechnikov or Quadratic Kernel: K(u) = 3
4
(1− u2)1l{|u|≤1}

13



Uniform or Rectangular Kernel: K(u) = 1
2
1l(|u|≤1)

Triangular Kernel: K(u) = (1− |u|)1l(|u|≤1)

Biweight Kernel: K(u) = 15
16
(1− u2)21l(|u|≤1)

Cosine Kernel: K(u) = 1
2
(1 + cos(πu))1l(|u|≤1)

Optcosine Kernel: K(u) = π
4
cos(π

2
u)1l(|u|≤1)

Figure 2.1. Different type of usual kernels used in nonparametric estimation.

How to choose the bandwidth? The accuracy of the kernel smoothing method mainly

depends on the smoothing parameter h. It is well-know in nonparametric estimation that

the choice of the kernel is not a determinant factor of the quality of estimation even though

it has been proven that the Epanechnikov gives slightly better results. In contrast, the

choice of the smoothing parameter is crucial theoretically as well as in practice. Indeed,

from a theoretical point of view, it has been proven (see Theorem 3.1 in Bosq (1998),

page 70) that the “optimal" mean square convergence rate of the kernel-type estimator

of the regression function is of order n−4/(d+4) for a bandwidth hn = cnn
−1/(d+4), where
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d is the dimension of the predictor X . Thus, a good choice of the bandwidth allows

to reach some optimal convergence rates of the estimators. From a practical point of

view, the optimal bandwidth is usually selected based on the minimization of a certain

risk measure. For instance, if we can explicitly find an analytical expression of the

asymptotic mean square error (AMSE) or the asymptotic integrated mean square error,

as a function of h, then one can find the analytical expression of the corresponding

bandwidth minimizing such criterion. In general this approach will lead to a value

of bandwidth which is also depending on some unknown parameters that should be

estimated as well. The second approach, called cross-validation, is purely numerical

which consists in choosing the optimal bandwidth that minimizes the sum of the square

prediction errors. For illustration, the Figure 2.2 displays an example of the effect

of varying the bandwidth. A smoothing parameter that is too large can obscure the

characteristics of the distribution (e.g. oversmoothed curve). However, a too small

value of h can overemphasize the variability (e.g. undersmoothed curve). The decision

how much is too smooth is important in nonparametric estimation, hence the selection

of the smoothing parameter is well known to be a challenging task.

Functional data analysis

While classical statistics refers to the analysis of random univariate, vectors, and

matrices, functional data analysis (FDA) deals with the analysis and theory of random

functions. FDA is a new field in statistics which aims to analyze curve-type data. This

area’s history is much older and go back to [31] and [32]. Data from many fields come

to us through a process that is naturally described as functional including chemometric

data, speech recognition data, and electricity consumption data, etc.
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Figure 2.2. Example of effect of the bandwidth selection on the regression estimation.

In the last decade, FDA received special interest among the statistical community

where several statistical approaches, studied in multivariate statistics framework, were

generalized when functional/curve-type data are available. Several monographs were

published to discuss FDA statistical methods. For instance [33] discussed parametric

models for functional. In [34] more focus was given to nonparametric approaches.

The last methods are doubly infinite in nature because they suppose that the regression

function is not defined through some parameters, belongs to an infinite dimensional

family and the predictor is an infinite-dimensional random variable (see, e.g. [35]).

Formally, from now on, we will denote E an infinite dimensional space where

the functional random variable takes values. The larger is the space, the sparser are the

data. An interesting question is that about the sparseness of the data in high-dimensional

space when we work with functional data? Clearly, the sparseness concept is strongly

linked to method used to measure closeness between data. Closeness measure between

mathematical objects is an important concept in several statistical analysis methods.
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In many situations, a classical norm can be used to measure the proximity of two

objects. For instance, the usual Euclidean norm, which is based on sum of squares of

the components of any vector, is the one of the most widely used in finite dimensional

euclidean space (E = Rd, d ≥ 1). In finite dimensional space, there is an equivalence in

all norms, the choice of norm is therefore not crucial. However, in the functional data

context, it is necessary to approach the issue differently since the equivalence between

norms fails.

Semi-metric choice and measure of similarity between curves

Suppose that Z1 := (Z1
1 , Z

2
1 , . . . , Z

d
1 )

⊤ and Z2 := (Z1
2 , Z

2
2 , . . . , Z

d
2 )

⊤ are two

d-dimensional random vectors. The similarity between Z1 and Z2 can be quantified

using the Euclidean distance is defined as:

∥Z1 − Z2∥E =
(
(Z1

1 − Z1
2)

2 + · · ·+ (Zd
1 − Zd

2 )
2
)1/2

.

Now suppose that X1 and X2 are elements in a certain functional space, take

for instance E = L2(T ), the space of square integrable functions on the interval T

endowed with its L2-norm. A natural extension of the Euclidean distance to measure

the similarity between X1 and X2 could be defined as:

∥X1 −X2∥2 =
(∫

T

(X1(t)−X2(t))
2 dt

)1/2

. (2.8)

Figure 2.3 displays two curves with very similar shape but with different mag-

nitude. The general appearance tells that these curves are “similar". However, the

calculation of the L2-distance comes to calculate the area between the curves X1 and
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X2 which in such case will be large. Thus, one can wrongly conclude that X1 and X2

are not similar.

Note that if the magnitude of the predictorX plays an important role in explaining

the response variable X then using the L2-distance could be of interest. However, if the

shape the X is more relevant than its magnitude in explaining Y then one cannot use

the L2-distance as a measure of similarity between curves. In such case one may use

as a measure of proximity between curves the norm of the difference between the first

derivative of X1 and X2 (when X1 and X2 are differentiable). That is

d(X1, X2) =

(∫
T

(X ′
1(t)−X ′

2(t))
2
dt

)1/2

. (2.9)

Note that, in contrast to the L2-distance, the distance based on the first derivative in (2.9)

between X1 and X2 in Figure 2.3 would be d(X1, X2) = 0.

Figure 2.3. Example of curves.

Now we discuss another example that shows how important the selection of the

appropriate semi-metric to measure the similarity between curves. Figure 2.4 displays

three different curves, say X1, X2 and X3.

A first comparison, based on the overall trend, between the three curves reveals

that X1 and X2 are similar and completely different from X3. However, ∥X1 −X2∥2 is
18



Figure 2.4. Example of curves.

certainly not small since X1 and X2 represent several differences in terms of amplitude

and phase of the respective oscillations. If we suppose that the oscillations are just

noise and that the general trend of the curves is most relevant to explain the variability

in the response Y , one can think of using a semi-metric based on the projection of the

curves on a suitable polynomial basis in order to have d(X1, X2) ≈ 0, d(X1, X3) > 0

and d(X2, X3) > 0. If in contrast it is believed that, instead of the trend, the oscillation

component plays an important role in explaining Y it is more reasonable to consider a

semi-metric based on Fourrier transform of the curves in order to have d(X2, X3) ≈ 0

and d(X1, X2) > 0.

In conclusion, while choosing a semi-metric we first have to identify the most

relevant features in the curves that may explain the variability in the response Y . Once

identified, we can then build a projection-type semi-metric after considering the ap-

propriate bases (e.g. polynomial, B-Spline, Wavelets, Fourrier, Principle Component

Analysis) on which we can project our curves.
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Some commonly used semi-metrics

As discussed above the concept of semi-metric in functional data analysis plays

an important role theoretically as well as practically. We present here three semi-metric

families, but many others can be built. The first two are well adapted for rough curves,

whereas the third one is for smooth data. To start with, the Principle Component Analysis

(PCA) is a popular method for showing data in reduced dimensional space in many

multivariate analysis. PCA approaches were recently extended to functional data and

used for many different statistical purposes. Thus, functional PCA can be used to build

semi-metrics in order to compute similarity between curves in a reduced dimensional

space. Indeed, this type of semi-metrics are usable only if the curves are rough and

the datasets are balanced, when the curves are observed at the same points and the grid

of measurements sufficiently fine. Let X̃q =
∑q

k=1

( ∫
X(t)vk(t)dt

)
vk be a truncated

version of the expanansion of X =
∑∞

k=1(
∫
X(t)vk(t)dt)vk, where v1, v2, · · · denotes

the orthogonal eigen functions of the covariance operator Γ(s, t) = E(X(s)X(t))

associated with the eigen values λ1 ≥ λ2 ≥ · · · . Therefore, a class of semi-norm can

be introduced from the classical L2-norm as follows:

∥X∥PCA
q =

√√√√ q∑
k=1

(∫
X(t)vk(t)dt

)2

.

Then, we define the semi-metric based on FPCA truncated component at q as follows:

dFPCA
q (X1, X2) =

√√√√ q∑
k=1

(∫
{X1(t)−X2(t)}Vk(t)dt

)2

.

Another way to build a new family of semi-metrics based on Partial Least
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Square (PLS) when we observe an additional response by adapting multivariate partial

least squares regression (MPLSR) method. The MPLSR can be used to predict a multi-

variate response from independent variables when there is a high degree of collinearity

between the predictors and the number of predictors is very large compared to number of

observations. The MPLSR method computes a simultaneous decomposition of the set

of predictors and the set of responses such that the components are taken to maximize

the covariance between the two sets of variables. The MPLSR, in particular, gives p

components, each corresponding to a response, where the computed components rely

on parameter known as the the number of factors, the larger this parameter, the better

data fitting. Taking many factors, on the other hand, can result in components with high

variability. Based on this, the number of factors is equivalent to the number of dimension

retained in PCA. The main difference with PCA is that the components performed in

PCA only explain the predictors, whereas in the PLS approach the components are also

relevant to the multivariate response. let vq1, · · · , vqp be the vectors of Rj performed by

MPLSR where q denotes the number of factors and p the number of scalar responses.

Thus, the semi-metric based on the MPLSR is defined as follows:

dPLS
q (X1, X2) =

√√√√ p∑
k=1

( J∑
j=2

wj(X1(tj)−X2(tj)[v
q
k]j

)2

,

where w1, · · · , wJ are the weights.

One more method to build a family of semi-metrics between curves is consider

a distance between one of their derivatives. For quite smooth curves, this type, namely,

semi-metric based on higher order derivatives, could be appropriate. We consider the

21



following semi-metric given two observed curves X1 and X2:

dderivq (X1, X2) =

√∫ (
X

(q)
1 (t)−X

(q)
2 (t)

)2
dt,

where X(q) being the qth order derivative of X .

Nonparametric regression estimation: infinite dimensional case

In this section we focus on explaining the extension of the concept of kernel

local smoothing in the case of infinite-dimensional random variables. The expression

of the regression operator m(·) can be then easily defined and will take similar form as

the one in (2.6) after making the necessary adjustments.

Let (Xt)1,··· ,n be n functional random variables valued in E and let x be a fixed

element of E . Then, an extension of kernel local smoothing would be to transform n

functional random variables (Xt)1,··· ,n into n quantities as follows:

1

V (h)
K

(
d(x,Xt)

h

)

Where d(·, ·) is a semi-metric defining the topology of the functional space E , K is a

kernel, and V (h) is the volume of B(x, h) = {x′ ∈ E , d(x, x′) ≤ h}, which is the ball

of center x and radius h.

This method requires V (h) to be defined. In other words, a measure on E must

be available to quantify the volume of the ball B(x, h). When E is a finite dimensional

space, the Lebesgue measure is used to quantify V (h). However, when E is an infinite-

dimensional space there no universal measure that could be used to calculate V (h).

As a result, in order to avoid having to choose a specific measure, we construct the
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normalization directly using the probability distribution of functional random variable.

Therefore a functional kernel local weighted variables are defined as follows:

∆t =

K

(
d(x,Xt)

h

)
E
(
K

(
d(x,X1)

h

)) , t = 1, . . . , n.

By considering such normalization we have to technically be able to quantify

E(K(h−1d(x,X1)).

Observe that, since X1 ∈ B(x, h) then d(x,X1) ≤ h. Therefore, one gets

E
(
K

(
d(x,X1)

h

))
=

∫ h

0

K
(u
h

)
dP (d(x,X1) ≤ u) .

Note that at this stage, in order to be able to quantify the above integral, one

needs to evaluate the so-called small ball probability

F (u) := P (d(x,X1) ≤ u) .

Several authors were interested in this problem and found that it is possible to

evaluate the small ball probability for some specific functional processes. Below we

give some examples:

Case 1: When X is a standard Ornstein-Uhlenbeck process. In other words the functional

space E = C ([0, 1],R) and the semi-metric is the supremum norm. Then one can

show that F (u) ∼ Cxe
−π2/8hu2

.

Case 2: When X is a standard general diffusion process and E = C
(
[0, 1],Rd

)
and the

semi-metric is the supremum norm. Then F (u) ∼ Cxe
−Ch−2

.
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Case 3: When X is a fractal-type process of order τ , then F (u) ∼ Cuτ .

Case 4: When X is of exponential-type with order (τ1, τ2) then F (u) ∼ Ce− log(1/hτ2 )h−τ1 .

In general we work with any functional space endowed with a certain abstract

semi-metric d(·, ·). [36] suggested to consider the following decomposition of the small

ball probability:

F (u) = f1(x)ϕ(u) + o(ϕ(u)), as u → 0, (2.10)

where 0 < f1(x) < ∞ is a deterministic functional and ϕ(u), called the concentration

function, is a real function tending to zero as its argument goes to zero. The function ϕ(·)

measures how densely packed are the considered elements of E in an infinite-dimensional

ball of radius u. Observe that the small ball probability of processes given in Case 1 to

case 4 satisfy the decomposition (2.10). [37] gave several further example of processes

(such as the Hilbert autoregressive process of order 1) for which the decomposition in

(2.10) is also satisfied.

Remark 2. Note that decomposition (2.10) helps in quantifying E (K (h−1d(x,X1)))

and is also valid when E = Rd. Indeed, in such case f1(x) will be the density function

of X and ϕ(u) = ud2πd/2/Γ(d/2), where Γ(·) is the Gamma function. Note that

ud2πd/2/Γ(d/2) represents the volume of the hypersphere of radius u in Rd.

Now, given a random sample (X1, Y1), . . . , (Xn, Yn), copies of (X, Y ) ∈ E ×R,

one defines a kernel-type estimator of the regression operator m : E → R as follows:

mn(x) =

n∑
t=1

YtK

(
d(x,Xt)

h

)
n∑

t=1

K

(
d(x,Xt)

h

) , ∀x ∈ E . (2.11)
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The curse of the infinite dimension

Consider nonparametric regression estimation where Y ∈ R and X ∈ Rd, if the

dimension is greater than 3 (e.g. d ≥ 3), then the estimator of the regression function

converges more slowly to the true regression function. In other words, as the dimension

of the predictor increases, the rate of uniform convergence (log n/n)r/(2r+d) (r is the

degree of smoothness of the regression function with respect to the Euclidean norm)

of mn(x) toward m(·) decreases. Note that the rate (log n/n)r/(2r+d) obtained in the

finite dimensional case is acceptable since by the rule of l’Hospital the limit in infinity

of log n/n is equal to the limit of 1/n. In other words the optimal convergence rate is

of order n−r/(2r+d).

Since in functional data setting the predictor X is supposed to be infinite di-

mensional then we expect that mn(x) in (2.11) would have poor theoretical properties.

Indeed, if X is an exponential-type process and d(·, ·) is the L2-norm ∥ · ∥2 as defined in

(2.8), one can show that, in such case, the convergence rate of mn(x) towards m(x) will

be of order (log n)−ν , for some ν > 0. Compared to the rate (log n/n)r/(2r+d) obtained

in the finite dimensional case, a rate dependent on the logarithm of the sample size is

statistically unacceptable (since it cannot be written as a power of n).

How the choice of the semi-metric helps in solving the curse of infinite dimension?

To be able to answer such question let us first introduce some definitions and

results.

Definition 1. [Fractal-type Process] A variable X is said to be of fractal order τ , with

respect to the semi-metric d(·, ·), if there exists some finite constant C > 0 such that the
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associated concentration function ϕ(·) is of the form

ϕ(u) ∼ Cuτ as u → 0.

The following theorem established the convergence rate of the regression oper-

ator estimator mn(x) when the predictor X is a fractal-type process.

Theorem 1. [see [34], p. 208]

Assume that X is of fractal order τ. Then, for x fixed, we have almost surely

mn(x)−m(x) = O

((
log n

n

)r/(2r+τ)
)
,

where r is the degree of smoothness of m(·) with respect to the semi-metric d(·, ·).

Remark 3. Observe that Theorem 1 allows to obtain the finite-dimensional convergence

rate only when the predictor X is a fractal-type process. This result is very important

since if X is any functional random variable, if we find a way to transform it into a

fractal-type process then Theorem 1 becomes applicable and the optimal rate could be

reached.

The following lemma represents the key point to transform any functional process

X into a fractal-type process.

Lemma 1 (see [34], p. 213). Let H be a separable Hilbert space with inner product

⟨·, ·⟩ and let {ej, j = 1, . . . ,∞} an orthogonal basis. Let k ∈ N⋆ be fixed. Let

X =
∑∞

j=1 x
jej be a fixed element in H.

26



(i) ∀(X1, X2) ∈ H ×H , the function defined by

dk(X1, X2) =

(
k∑

j=1

⟨X1 −X2, ej⟩2
)1/2

is a semi-metric on the space H.

(ii) Let X =
∑∞

j=1 x
jej be a squared integrable random element of H . If the random

variable x = (x1, . . . , xk) is absolutely continuous with respect to the Lebesgue

measure on Rk with a continuous density function f , then the process X is fractal

order k with respect to the semi-metric dk in the sense of Definition 1.

Note that a given functional random variable X can be projected on some

orthonormal bases such Fourrier, Wavelets, functional PCA to be transformed into a

fractal-type process. Then, one can use any of the corresponding semi-metrics described

in Subsection 2.2.2.

Missing data and imputation techniques

The problem of missing data is another factor to take into account in this thesis.

In practice, despite the modern technology, which allows to collect data at a very fine

time scale, financial data can still be missing. For instance, there are some regular

holidays, such as Thanksgiving Day and Christmas, for which stock price data are miss-

ing. There are many other technical reasons (such as breakdown in devises recording

data, computers’ sudden shutdowns, . . . ) that make stretches of data missing. In the

literature of financial data analysis, it is commonly assumed that the data are completely

observed which is not realistic. Therefore, the problem of missing data arises whenever

there is a disturbance in the sequence of the series in terms of observations, hence it
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is necessary to address this such problem. The statistical inference with missing data

can be found in statistical literature, hence we will refer to [23] work in this section.

Missing data are not simply unobserved values that must be filled with imputed data or

removed from the analysis. The missing data pattern may reveal valuable information.

Understanding the nature of missing data is important to make accurate statistical infer-

ence. Researchers often consider missing data mechanism in choosing data imputation

method. The missingness pattern defines which values are missing and observed in the

data matrix, while mechanism deal with the relationship between missingness and the

values of the variables in data matrix, where rows and columns represent observations

and variables, respectively. Assumptions are needed to characterize the missingness

process because the missing data mechanism is unknown in practice. In [23], they

classified the missingness mechanism into three types: (i) missing completely at ran-

dom (MCAR), (ii) missing at random (MAR) and (iii) missing not at random (MNAR).

MCAR has probability of missingness do not rely on the values of the data, neither

missing or observed. For example, lost data due to technical errors, e.g. miscalibration

of MRI machine. MAR relaxes MCAR assumption and requires that the probability

of missingness depends only on observed values. For example, unable to tolerate MRI

sequences, predictable from participant’s daily living activities. If the missingness

mechanism is neither MCAR or MAR, hence the missingness assumption is MNAR,

which depends on the value the outcome would have taken had it been observed. If the

assumptions about missingness mechanism do not fit the situation with the data, then the

results of the imputation approach may not reflect the actual situation. Several statistical

methods were developed for handling missing data problem. Single imputation methods

such as regression imputation was introduced in [23], single imputation methods can be
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used to impute one value for each incomplete variable. Regression imputation is done

using regression model that estimates the relationship between the observed values of

the response and the predictor totally observed by applying ordinary least squares. Then,

replace the missing observations of the response itself by their predictive values from

regression. To illustrate the core idea of this method, consider an example, suppose the

oil price contains missing data that has the value of another variable gold price, which

is highly correlated with oil price. First, predict the missing value of oil price from gold

price and then to fill in these missing values. Hence, missing at random mechanism

holds since the probability of missingness is related to other variable not to value of the

variable with missing data itself. Regression imputation method may result unbiased

imputed values under MAR assumption.
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CHAPTER 3: VOLATILITY ESTIMATION UNDER MAR ASSUMPTION

In this chapter, we focus on the estimation of the regression and the volatility

functions in heteroscedastic regression model, when the response variable Y is a real-

valued random variable and the predictor X is infinite-dimensional random variable. In

Section 3.1, we first consider the estimation of the regression and conditional variance

operators when a complete observed sample is available at hand. Then, in Section 3.2

the estimation of the same parameters is considered when the predictor is completely

observed whereas the response variable is subject to a missing at random mechanism.

Case of completely observed data

Let Y be a real-valued random variable and X an infinite dimensional predictor

taking values in a certain functional space E endowed with a certain semi-metric d(·, ·).

One of the most common problems in statistics is to to understand how Y and X are

concomitant. Regression models represent one of the most used tools to answer such

question. That is, we assume that the relationship between the response variable Y and

its predictor X is described by the following model:

Y = m(X) + η, (3.1)

where m : E → R is called the regression operator and η is the error term which is

usually supposed to be independent of X and with zero mean and constant variance.

Notice that (3.1) is called a homoscedastic functional regression model since the error

term η has a constant variance. Several authors in nonparametric functional data analysis

were interested in the estimation of the operator m(·). For instance, an extension of

the Nadaraya-Waston estimator in the finite dimensional case to the model (3.1) was

30



proposed in [38] for (i.i.d) functional data, where the mean squared convergence rate

and the asymptotic normality were established under strong mixing condition for the

functional kernel regression estimator of the operatorm(·). However, there are a number

of well known processes where the mixing properties do not satisfy them, such as the

linear AR(1) process, which is not strong mixing. Therefore, studying the asymptotic

properties of the nonparametric regression estimator under more general assumptions

was considered in the literature. In [37], the Nadaraya-Watson estimator was used to

estimate m(·) and under stationarity and ergodicity assumption, a uniform almost sure

consistency rate and the asymptotic normality were obtained.

Assuming that the errors have a constant variance and are independent of X is a

strong assumption which is usually not fulfilled when we analyze real data. In this thesis

we relax such strong condition and we assume the following heteroscedastic functional

regression model:

Y = m(X) + U(X)ε, (3.2)

where U : E → R+ is the conditional standard deviation operator.

Model (3.2) allows the errors to be dependent on the predictor X and to have

a non constant conditional variance. Therefore, this model is more realistic and more

appropriate to consider especially when we deal with financial time stochastic processes.

Despite its interest from a theoretical, as well as practical point of view, less attention was

given to the estimation of the operators m(·) and U(·) in the literature of nonparametric

functional data analysis. To the best of our knowledge, the only article that considered the

estimation of the regression and the conditional variance operator for ergodic processes

is [22].
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Let us now focus on the identification of the parameters m(·) and U(·).

Proposition 1 (Identification of the operator m(·)).

Suppose that E (ε|X) = 0, almost surely (a.s.), then m(X) = E (Y |X) a.s.

Proof. Observe that, by applying the conditional expectation on equation (3.2), one

gets,

E(Y |X) = E{m(X) + U(X)ε|X}

= E(m(X)|X = x) + E(U(X)ε|X = x)

= m(x) + U(x)E(ε|X = x)︸ ︷︷ ︸
= 0

= m(X).

■

Proposition 2 (Identification of the operator U2(·)).

If E (ε|X) = 0, and V(ε|X) = 1, a.s., then U2(X) = E
{
(Y −m(X))2 |X

}
a.s.

Proof. From equation (3.2) one easily obtains (Y − m(X))2 = U2(X)ε2. Then, by

taking the conditional expectation, with respect to X , at both sides we obtain:

E{(Y −m(X))2|X)} = E{(U2(X)(ε)2|X)}

= U2(X)E((ε)2|X)︸ ︷︷ ︸
= 1

= U2(X).

■

Remark 4. Observe thatU2(x) := V(Y |X) = E{(Y −m(X))2|X)} a.s., which will be

called residual-based conditional variance. Notice that the residual-based variance
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U2(X) can be seen as a regression function of the squared errors, obtained after fitting

a regression model to the data, on the predictor X . Alternatively, and following simple

calculation, one can also show that

U2(X) = E{Y 2 − 2Y ×m(X) +m2(X)|X)}

= E(Y 2|X) +m2(X)− 2m(X)E(Y |X)︸ ︷︷ ︸
= m(X)

= E(Y 2|X)−m2(X).

From now on, we denote Ũ2(x) := E(Y 2|X) − m2(X), which is called a difference-

based conditional variance.

Let us now focus on the nonparametric estimation of U2(x) and Ũ2(x). For

this let us consider (Xt, Yt)t=1,...,n n-copies of strictly stationary process (X, Y ) ∈

E×R. Suppose that the observations are generated according to the following nonlinear

heteroscedastic functional regression model:

Yt = m(Xt) + U(Xt)εt, t = 1, . . . , n, (3.3)

where E(εt|Xt) = 0 and var(εt|Xt) = 1. Here, it is assumed that the errors (εt)t=1,...,n

are dependent on the predictor (Xt)t=1,...,n.

(a) Nonparametric difference-based conditional variance estimator

As discussed above, remember that the difference-based conditional variance of

Y given X = x is defined as follows:

Ũ2(x) = E(Y 2|X = x)− (E(Y |X = x))2

:= m̃(x)− (m(x))2. (3.4)
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Therefore, a plug-in estimator of Ũ2(x) can be obtained by replacing m̃(x) and m(x)

by their nonparametric estimators. That is

m̃c
n(x) =

n∑
t=1

Y 2
t K
(d(Xt − x)

hm

)
n∑

t=1

K
(d(Xt − x)

hm

) and mc
n(x) =

n∑
t=1

YtK
(d(Xt − x)

hm

)
n∑

t=1

K
(d(Xt − x)

hm

) , (3.5)

where K is a kernel function and hm is a sequence of positive real numbers

decreasing to zero as n goes to infinity. It worth noting that one can consider different

bandwidth and kernel for m̃n and mn. For simplicity reason, we consider here the same

tuning parameters for both regression functions.

Consequently a nonparametric difference-based conditional variance estimator

of Ũ2(x) is defined as follows:

Ũ2,c
n (x) = m̃c

n(x)− (mc
n(x))

2. (3.6)

Remark 5. Even though it is easy to calculate, the main drawback of the difference-

based conditional variance estimator is that in practice it may lead to negative values

of volatility which is absurd.

(b) Nonparametric residual-based conditional variance estimator

To overcome the drawback of the difference-based conditional variance estimator

stated in Remark 5, [15] suggested a nonparametric estimator of the so-called residual-

based conditional variance which is defined, for any fixed x ∈ E as

U2(x) = E
(
(Y −m(X))2|X = x

)
. (3.7)
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A Kernel-type estimator of U2(x) can be obtained following the algorithm

described below:

Step 1: Estimate the regression operator at the sample curves X1, . . . , Xn using the for-

mula of mc
n(x) in (3.5).

Step 2: Compute the squared residuals rt := (Yt −mc
n(Xt))

2 for all t ∈ {1, . . . , n}.

Step 3: Use the sample (X1, r1), . . . , (Xn, rn) to estimate U2(x) at any fixed x ∈ E as

follows:

U2,c
n (x) =

n∑
t=1

rtK
(d(Xt − x)

hu

)
n∑

t=1

K
(d(Xt − x)

hu

) , (3.8)

where hu is a sequence of positive real numbers decreasing to zero as n → ∞.

Note that, for simplicity reason, we consider the same kernel used to estimate the

regression function. In practice two different kernels might be considered.

Remark 6. In contrast to the difference-based conditional variance estimator defined

in (3.6), the residual-based estimator always takes positive values since it represents the

regression of the squared residuals (rt)t=1,...,n on the predictor (Xt)t=1,...,n.

Theorem 2. (Uniform consistency, see [22])1 Under some regularity conditions, we

have, for α, β > 0,

sup
x∈C

∣∣∣U2,c
n (x)− U2(x)

∣∣∣ = Oa.s.(h
2β
m + hα

u) +Oa.s.(λ
′
n + λ2

n),

where (λ′
n)n and (λn)n are two sequences of positive numbers tending to zero as n → ∞.

1Denote by Oa.s.(u) a real random function g such that g(u)/u is almost surely bounded. Here C
denotes a “compact set" of the functional space E .
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The uniform consistency result, displayed in Theorem 2, is fundamental to

establish the convergence of the predictor, at a horizon n+H , of the volatility operator

at any out-of-sample curve Xn+H say Un(Xn+H).

Theorem 3. (Asymptotic distribution, see [22]) Under some regularity conditions, we

have,

√
αn

(
U2,c
n (x)− U2(x)

)
⇝ N(0, σ2(x)),

where ⇝ denotes convergence in distribution, σ2(x) = M2U
2(x)ω(x)/M2

1 , Mj =

Kj(1) −
∫ 1

0
(Kj)′(u)τ0(u)du for j ∈ {1, 2}, ω(x) := E

(
(ε21 − 1)

2 |X = x
)

and αn is

the convergence rate (for more details see [22]).

Theorem 3 states the asymptotic distribution of the residual-based estimator of

the conditional variance. This result plays an important role in building asymptotic con-

fidence intervals for U2(x). It is worth noting here that the asymptotic variance depends

on several unknown quantities such as ω(x) and the conditional variance U2(x). By re-

placing the unknown quantities by their empirical version, [22] established asymptotic

confidence intervals for U2(x).

Case of Missing At Random data

The principle objective of this section is to update the local constant estimator

to incomplete data case. An extension of the work in [11] who applied Nadaraya-

Watson estimator in complete data to missing at random mechanism is investigated.

With the objective of estimating the regression and variance functions, we take the

heteroscedastic regression model given in (1.1), where the error terms εt depend on Xt.

In our case, the response variable Yt is not completely observed and subject to MAR at
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any discrete time t, but the predictor variable Xt is totally observed. There are mainly

two strategies that can be followed in the context of missing data. The first one only uses

observes complete data, resulting simplified estimation. The second one is based on

simple imputation techniques, resulting imputed estimation, which consists in applying

the simplified estimator to estimate the incomplete observations of the response variable

and then applying the estimator for complete data to complete sample. To complete

the missing data, two imputation techniques will be applied including nonparametric

regression imputation estimation and inverse probability weighted imputation. In order

to check whether an observation is complete or missing, a new variable δ is introduced

into the model as an indicator of the missing observations, where δ is assumed to be a

Bernoulli random variable. Thus δt = 1 if Yt is observed, and zero if Yt is missing, for

any 0 ≤ t ≤ n. We suppose that the Bernoulli random variable δ satisfies the following

assumption:

(H0) P(δ = 1|X, Y ) = P(δ = 1|X) = π(X),

where π(X) is called the conditional probability of observing Y conditionally on X and

is often unknown. Assumption (H0) allows to conclude that δ and Y are conditionally

independent given X .

Motivated by [23] work on statistical methods (such as nonparametric regression

and inverse weight probability) for handling missing data, let us recall the heteroscedastic

regression model defined as:

Y = m(X) + U(X)ε. (3.9)

Let us now focus on the identification and estimation of the parameters m(·) and U(·)
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under the MAR assumption.

Simplified Estimator

Proposition 3 (Identification of the operator m(·) under MAR assumption).

Assume that the data generating model is given by (3.9) and suppose that (H0) holds

true. Then one gets, for any fixed x ∈ E ,

m(x) =
E(δY |X = x)

E(δ|X = x)
.

Proof. Premultiplying equation (3.9) by δ and taking the conditional expectation, with

respect to X = x, at both sides we obtain:

E(δY |X = x) = E(δm(X) + δU(X)ε|X = x)

= E(δm(X)|X = x) + E(δU(X)ε|X = x)

= m(x)E(δ|X = x) + U(x)E(δε|X = x)

= m(x)E(δ|X = x) + U(x)E(δ|X = x)E(ε|X = x) (by (H0))

= m(x)E(δ|X = x) + U(x)π(x)E(ε|X = x)︸ ︷︷ ︸
=0

.

Finally, we have

m(x) =
E(δY |X = x)

E(δ|X = x)
.

■

Proposition 4. [Identification of the operator U2(·) under MAR assumption]
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Under model (3.9) and assuming that (H0) is satisfied, then one gets,

U2(x) =
E(δ(Y −m(X))2|X = x)

E(δ|X = x)
, for any x ∈ E .

Proof. Notice that making use of (3.9) one easily obtains δ(Y −m(X))2 = δU2(X)ε2.

Then, by taking the conditional expectation, with respect to X = x, at both sides one

gets:

E{δ(Y −m(X))2|X = x} = E{δU2(X)ε2|X = x}

= U2(x)E(δ|X = x)E(ε2|X = x)︸ ︷︷ ︸
=1

(by (H0))

= U2(x)E(δ|X = x).

Finally, we have

U2(x) =
E(δ(Y −m(X))2|X = x)

E(δ|X = x)
.

■

Let us consider (Xt, Yt, δt)t=1,··· ,n be n-copies of (X, Y, δ) not necessarily i.i.d. In the

following we discuss the estimation of the operator m(·), the difference based variance

Ũ2(·) as well as the residual-based variance U2(·).

(a) Simplified Residual-Based Estimator

Given the shape of the parameter U2(x) obtained in Proposition 4, we re-

place each conditional expectation by its nonparametric estimator to obtain a simplified
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residual-based estimator of the conditional variance, say U2,s
n (x), defined as:

U2,s
n (x) =

n∑
t=1

δtr
s
tK

(
d(Xt − x)

hu

)
n∑

t=1

δtK

(
d(Xt − x)

hu

) , for any t = 1, · · · , n (3.10)

where rst = (Yt −ms
n(Xt))

2 are the squared residuals obtained after fitting a regression

model and

ms
n(x) =

n∑
t=1

δtYtK

(
d(Xt − x)

hm

)
n∑

t=1

δtK

(
d(Xt − x)

hm

) . (3.11)

(b) Simplified Difference-Based Estimator

Let us first recall that the difference-based variance is defined as

Ũ2(x) = m̃(x)−m(x).

Therefore, a plug-in estimator of Ũ2(x), at a fixed point x ∈ E , is obtained by replacing

m̃(x) and m(x) by their nonparametric estimator adapted to the MAR framework.

That is:

m̃s
n(x) :=

n∑
t=1

δtY
2
t K

(
d(Xt − x)

hm

)
n∑

t=1

δtK

(
d(Xt − x)

hm

) , (3.12)

and ms
n(x) is as defined in (3.11). Therefore, a simplified difference-based estimator of
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the conditional variance is defined as follows:

Ũ2,s
n (x) = m̃s

n(x)− (ms
n(x))

2. (3.13)

Inverse Probability Weighted Estimator

The IPW estimator is based on the complete cases but now weighting them with the

inverse of the probability that a case is observed as introduced in [39] and [40].

In this way cases with low probability to be observed gain more influence in the

analysis and thus represent the probable missing values in the neighborhood. One can

look at this approach as an implicit imputation of missing values.

Proposition 5 (Identification of the operator m(·) under MAR assumption).

Assuming (H0) holds true, then one gets, for any fixed x ∈ E ,

m(x) =

E
{

δ

π(X)
Y |X = x

}
E
{

δ

π(X)
|X = x

} .

Proof.

The regression operatorm(·) can be seen as the minimizer of the loss functionE
(
(Y −m(X))2 |X

)
.

We can show as detailed below that, almost surely,

E
{

δ

π(X)
(Y −m(X))2 |X

}
= E

{
(Y −m(X))2 |X

}
. (3.14)
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Indeed, using a double-conditioning, we obtain:

E
{

δ

π(X)
(Y −m(X))2|X

}
= E

{
E
(

δ

π(X)
(Y −m(X))2|X, Y

)
|X
}

= E
{
(Y −m(X))2

π(X)
E(δ|X, Y )︸ ︷︷ ︸

π(X)

)|X}

= E{(Y −m(X))2 |X}.

By taking the first derivative, with respect to m, at the left hand side of equation (3.14),

and taking X = x, the regression function is a zero of the following equation:

E
{

δ

π(X)
(−2)(Y −m(X))|X = x

}
= 0.

Therefore, a simple calculation allows to find that

E
{

δ

π(X)
Y |X = x

}
= m(x)E

{
δ

π(X)
|X = x

}
.

Finally, one gets

m(x) =

E
{

δ

π(X)
Y |X = x

}
E
{

δ

π(X)
|X = x

} .

■

Proposition 6. [Identification of the operator U(·) under MAR assumption]

Assuming (H0) holds true, then one gets, for any fixed x ∈ E ,

U2(x) =

E
{

δ

π(X)
(Y −m(X))2|X = x

}
E
{

δ

π(X)
|X = x

} .

Proof.
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The conditional variance operatorU2(·) can be seen as the minimizer of the loss function

E{((Y −m(X))2 − U2(X))2|X)}.

We can show as detailed below that, almost surely,

E
{

δ

π(X)
((Y −m(X))2 − U2(X))2|X

}
= E

{
((Y −m(X))2 − U2(X))2|X

}
.

(3.15)

Indeed, using double-conditioning, we obtain:

E
{

δ

π(X)
((Y −m(X))2 − U2(X))2|X

}
= E

{
E
(

δ

π(X)
((Y −m(X))2 − U2(X))2|X, Y

)
|X
}

= E
{
((Y −m(X))2 − U2(X))2

π(X)
E(δ|X, Y )︸ ︷︷ ︸

π(X)

)|X}

= E{((Y −m(X))2 − U2(X))2|X}.

By taking the first derivative, with respect to U2, at the left hand side of equation (3.15),
and taking X = x, the conditional variance function is a zero of the following equation:

E
{

δ

π(X)
(−2)((Y −m(X))2 − U2(X))|X = x

}
= 0.

Therefore, a simple calculation allows to find that

E
{

δ

π(X)
(Y −m(X))2|X = x

}
= U2(x)E

{
δ

π(X)
|X = x

}
.

Finally, one gets

U2(x) =

{
E

δ

π(X)
(Y −m(X))2|X = x

}
E
{

δ

π(X)
|X = x

} .

■
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Let us consider (Xt, Yt, δt)t=1,··· ,n be n-copies not necessarily i.i.d. In the following we

discuss the estimation of the operator m(·), the difference based variance Ũ2(·) as well

as the residual-based variance U2(·)

(a) IPW Residual-Based Estimator

Given the shape of the parameter U2(x) obtained in Proposition 6, we replace

each conditional expectation by its nonparametric estimator to obtain an inverse prob-

ability weighted residual-based estimator of the conditional variance, say U2,IPW
n (x),

defined as:

U2,IPW
n (x) =

n∑
t=1

δt
πn(Xt)

rIPW
t K

(
d(Xt − x)

hu

)
n∑

t=1

δt
πn(Xt)

K

(
d(Xt − x)

hu

) , for any t = 1, · · · , n (3.16)

Where rIPW
t = (Yt − mIPW

n (Xt))
2 are the residuals squared obtained after fitting

regression model and

mIPW
n (x) =

n∑
t=1

δt
πn(Xt)

YtK

(
d(Xt − x)

hm

)
n∑

t=1

δt
πn(Xt)

K

(
d(Xt − x)

hm

) . (3.17)

The unknown probability function π(X) is estimated nonparametrically as follows:

πn(x) =

n∑
t=1

δtK

(
d(Xt − x)

hπ

)
n∑

t=1

K

(
d(Xt − x)

hπ

) . (3.18)

(b) IPW Difference-Based Estimator
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Let us first recall the difference-based variance is

Ũ2(x) = m̃(x)−m(x).

Therefore, a plug-in estimator of Ũ2(x), at a fixed point x ∈ E , is obtained by replacing

m̃(x) and m(x) by their nonparametric estimator adapted to the MAR framework.

That is

m̃IPW
n (x) =

n∑
t=1

δt
πn(Xt)

Y 2
t K

(
d(Xt − x)

hm

)
n∑

t=1

δt
πn(Xt)

K

(
d(Xt − x)

hm

) , (3.19)

mIPW
n (x) and πn(x) as defined in (3.17) and (3.18), respectively. Therefore, an inverse

probability weighted difference-based estimator of the conditional variance is defined

as follows:

Ũ2,IPW
n (x) = m̂IPW (x)− (mIPW

n (x))2. (3.20)

Data-driven smoothing parameters selection

Cross-validation approach in choosing the smoothing parameters of the above

estimators is used. As a result, we select the smoothing parameters as shows below.

hopt,⋆
m = argmin

h

n∑
t=1

δt
Pn(Xt)

{Yt −m⋆
n,−t(Xt;h)}2 (3.21)

and

hopt,⋆
u = argmin

h

n∑
t=1

δt
Pn(Xt)

{rt − U2,⋆
n,−t(Xt;h)}2, (3.22)
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where m⋆
n,−t(·) (resp. U2,⋆

n,−t(·)) is a "leave-one-out" version of m⋆
n(·) (resp. U2,⋆

n (·)),

that is

m⋆
n,−t(Xt) =

n∑
i=1,i ̸=t

δi
Pn(Xt)

YiK

(
d(Xi − x)

h

)
n∑

i=1,i ̸=t

δi
Pn(Xt)

K

(
d(Xi − x)

h

) .

U2,⋆
n,−t(Xt) =

n∑
i=1,i ̸=t

δi
Pn(Xt)

riK

(
d(Xi − x)

h

)
n∑

i=1,i ̸=t

δi
Pn(Xt)

K

(
d(Xi − x)

h

) .

⋆ ∈ {s, IPW} and Pn(·) = 1 if ⋆ = s and equals πn(·) if ⋆ = IPW .

The optimal bandwidth for πn is also obtained cross-validation approach, that is

hopt
π = argmin

h

n∑
t=1

{δt − πn,−t(Xt;h)}2, (3.23)

where

πn,−t(Xt) =

n∑
i=1,i ̸=t

δiK

(
d(Xi − x)

h

)
n∑

i=1,i ̸=t

K

(
d(Xi − x)

h

) .

Remark 7. Despite the lack of literature on functional data analysis framework when

dealing with incomplete data, special attention was devoted to investigate the statistical

properties of the regression estimator for missing data. Recently, [25] considered the

inverse probability weighted estimation for the functional regression operator based on

i.i.d functional sample in which the response is missing at random, where the asymptotic

properties of the proposed estimator were obtained under the mild conditions. The

obtained results are as follows:
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Theorem 4. (See [25]) Under regularity conditions, If hβ(nϕ(h))1/2 → 0 as n→ ∞,

then

√
αn (mn(x)−m(x))⇝ N(0, σ2(x)),

where⇝ denotes convergence in distribution, σ2(x) =
M2U

2(x)

M2
1π(x)f(x)

, the con-

stants (Mj)j=1,2 are defined in Theorem 3, f(x) is a nonnegative bounded function and

αn is the convergence rate (see [25] for more details).
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CHAPTER 4: VOLATILITY ESTIMATION WITH IMPUTED DATA

In this chapter, we focus on the estimation of the regression and volatility oper-

ators, when the response variable Y is a real valued random variable and the predictor

X is infinite-dimensional random variable. Our purpose is to correct the simplified and

the inverse probability estimators by filling in the incomplete data using the imputa-

tion techniques. Therefore, general classes of imputed estimators of the regression and

volatility functions are considered.

A class of imputed volatility estimators

A general class of imputed estimator for the regression function is defined as

follows:

mn(x) =

n∑
t=1

{
δt

Pn(Xt)
Yt +

(
1− δt

Pn(Xt)

)
m⋆

n(Xt)

}
K

(
d(Xt − x)

hm

)
n∑

t=1

K

(
d(Xt − x)

hm

) . (4.1)

In contrast, a general class of imputed estimator for the volatility function is

defined as follows:

U2
n(x) =

n∑
t=1

{
δt

Pn(Xt)
r⋆t +

(
1− δt

Pn(Xt)

)
U2,⋆
n (Xt)

}
K

(
d(Xt − x)

hu

)
n∑

t=1

K

(
d(Xt − x)

hu

) , (4.2)

where Pn(x) is some sequence of quantities with probability limits P (x), r⋆t =

(Yt −m⋆
n(Xt))

2 for any t ∈ {1, · · · , n} and ⋆ ∈ {s, IPW}.
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We have a particular interest in some special cases are described as follows:

Case 1: Nonparametric Imputed Estimator

When Pn(x) = 1, then ⋆ = s, therefore, a nonparametric (NP) imputed regres-

sion and volatility estimators of m(x) and U2(x) are obtained.

(a) NP imputed Residual-Based Estimator

U2,NPI
n (x) =

n∑
t=1

rNPI
t K

(
d(Xt − x)

hu

)
n∑

t=1

K

(
d(Xt − x)

hu

) (4.3)

and

mNPI
n (x) =

n∑
t=1

Y NPI
t K

(
d(Xt − x)

hm

)
n∑

t=1

K

(
d(Xt − x)

hm

) , (4.4)

where Y NPI
t = δtYt + (1− δt)m

s
n(Xt) and rNPI

t = δtr
s
t + (1− δt)U

2,s(Xt).

(b) NP imputed Difference-Based Estimator

Ũ2,NPI
n (x) = m̃NPI

n (x)− (mNPI
n (x))2, (4.5)

where

m̃NPI
n (x) =

n∑
t=1

Y 2,NPI
t K

(
d(Xt − x)

hm

)

K

(
d(Xt − x)

hm

) , (4.6)

mNPI
n (x) is as defined in (4.4) and Y NPI

t = δtYt + (1− δt)m
s
n(Xt).

Case 2: IPW Imputed Estimator

When Pn(x) = πn(x), then ⋆ = IPW , therefore, inverse probability weight

(IPW) imputed regression and volatility estimators of m(x) and U2(x) are obtained.
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(a) IPW imputed residual-based estimator

U2,IPWI
n (x) =

n∑
t=1

rIPWI
t K

(
d(Xt − x)

hu

)
n∑

t=1

K

(
d(Xt − x)

hu

) (4.7)

and

mIPWI
n (x) =

n∑
t=1

Y IPWI
t K

(
d(Xt − x)

hm

)
n∑

t=1

K

(
d(Xt − x)

hm

) , (4.8)

where Y IPWI
t =

δt
πn(Xt)

Yt +

(
1− δt

πn(Xt)

)
mIPW

n (Xt) and

rIPWI
t =

δt
πn(Xt)

rIPW
t +

(
1− δt

πn(Xt)

)
U2,IPW
n (Xt).

(b) IPW imputed difference-based estimator

Ũ2,IPWI
n (x) = m̃IPWI

n (x)− (mIPWI
n (x))2, (4.9)

where

m̃IPWI
n (x) =

n∑
t=1

Y 2,IPWI
t K

(
d(Xt − x)

hm

)
n∑

t=1

K

(
d(Xt − x)

hm

) , (4.10)

mIPWI
n (x) is as defined in (4.8) and Y IPWI

t =
δt

πn(Xt)
Yt +

(
1− δt

πn(Xt)

)
mIPW

n (Xt).

Smoothing parameters selection

Cross-validation approach in choosing the smoothing parameters of the above

estimators is used. As a result, we select the smoothing parameters as shows below.
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hopt,•
m = argmin

h

n∑
t=1

{Y •
t −m•

n,−t(Xt)}2 (4.11)

and

hopt,•
u = argmin

h

n∑
t=1

{r•t − U2,•
n,−t(Xt)}2, (4.12)

where • = {c,NPI, IPWI}. Notice that when the data are completely observed, then

Y •
t = Yt and r•t = (Yt −mc

n(Xt))
2.
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CHAPTER 5: NUMERICAL ANALYSIS THROUGH SIMULATED DATA

In this section, we carry out simulation study to assess the quality of the proposed

estimation methods. Let us consider (Xt, Yt, δt)t=1,··· ,n be a strict stationary process

valued in E ×R× {0, 1}. The functional covariate variables X1(λ), · · · , Xt(λ), where

t takes 100 equally spaced values in [−1, 1], are generated by

Xt(λ) = A(2− cos(πλω)) + (1− A) cos(πλω),

where ω ∼ N(0, 1), A ∼ Bernoulli
(
1

2

)
and λ ∈ [−1, 1]. A sample of 100 simulated

curves is displayed in Figure 5.1.
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Figure 5.1. A sample of simulated curves Xt(λ).

To generate the response variable observation, we consider the following het-

eroscedastic regression model:

Yt = m(Xt) + U(Xt)εt,

where

m(x) =

∫ 1

−1

λx(λ)dλ, U(x) =

∫ 1

−1

|λ|x2dλ (5.1)
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Regarding the errors, four models of generation are considered for εt:

Model 1: The εt’s are i.i.d, distributed according to N(0, 1).

Model 2: εt =
1

2
εt−1 + ξt, where ξt ∼ N(0, 1).

Model 3: εt = −1

2
εt−1 + ξt, where ξt ∼ N(0, 1).

Model 4: εt =
1

2
εt−1 + ξt, where ξt ∼ Bernoulli

(
1

2

)
.

Figure 5.2 shows the generated response variable for each of the four scenarios.
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Figure 5.2. The generated process Yt for Model 1 (a), Model 2 (b), Model 3 (c) and
Model 4 (d).

We suppose that missing at random observations in the response variable Y are

generated according to the following probability:

π(x) = P(δ = 1|X = x) = expit
(
2α

∫ 1

−1

x2(λ)dλ

)
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where expit(u) =
eu

1 + eu
and α ∈ {0.2, 0.8}.

Remark 8. Observe that according to the value ofα one gets different MAR rate. Higher

is the value of α, higher will be π(x). Therefore, smaller will be the missing data rate

for Y . Indeed, when α = 0.8 the MAR rate will be 20% and 60% for α = 0.2 . Figure

5.3 shows an example of the process Yt that is affected by MAR mechanism for alpha

values of 0.2 and 0.8, respectively.
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Figure 5.3. Missing at random in the generated process Yt when α = 0.2 (a) and 0.8
(b).

In this simulation, we consider the four models mentioned above using the

regression and the variance operators as defined in (5.1). Since the choice of the kernel

is not determinant factor of the quality of estimation, then the Gaussian kernel is used

as defined in Chapter 2. The choice of the bandwidth is based on the cross-validation

criterion. Based on the smoothness of the curves Xt(λ), we consider a semi-metric for

the regression and the conditional variance functions estimation the usual L2-norm of

the first derivatives of the curves, is defined as follows:

d(Xt, Xs) =

[ ∫ 1

−1

{
X

(1)
t (λ)−X(1)

s (λ)

}2

dλ

]1/2
, ∀t ̸= s.
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Our purpose is to estimation the conditional variance at a fixed curve

x0(λ) = cos(πλ/4) forλ ∈ [−1, 1].

To assess the consistency of the estimation, we generated B = 500 samples and

from each sample we estimate the conditional variance and evaluate the square error.

That is, at iteration b we have

SEb =
(
U2
n,b(x0)− U2(x0)

)2
,

where U2
n,b(x0) represents either the complete, simplified, IPW, NP imputation or IPW

imputation estimator.

Tables 5.1 and 5.2 display some summary statistics of the square errors obtained

for each model with missing at random rate equals 60% and 20%, respectively. We

can see that the estimators obtained after missing data imputation provide better results.

Moreover, one can observe that the higher the MAR rate, the lower the quality of

estimation. Finally, one can notice that the dependence structure in the data plays an

important role in the quality of estimation. Indeed, small errors are obtained in model 1

(corresponding to the i.i.d case), then higher is the dependence structure higher will be

the estimation errors.
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CHAPTER 6: APPLICATION TO HIGH-FREQUENCY FINANCIAL DATA

In this chapter, we are interested in estimating and forecasting the volatility of

the log returns of Brent crude oil closing price in US dollars per barrel given the natural

gas closing price in US dollars per MMBtu.

The relationship between oil and natural gas prices has been a topic of interest

to researchers and market practitioners for many years. In particular, the volatility of

oil prices has been a major concern for investors and market participants. A number of

studies have investigated the impact of natural gas prices on the volatility of oil prices,

with the aim of developing models that can better capture this relationship.

[41] used a VAR model to examine the relationship between crude oil and natural

gas prices in North America. Another study by [42] used a BEKK-GARCH model to

investigate the volatility spillovers between crude oil and natural gas prices in the

United States. Moreover, [43] used a copula-GARCH model to examine the relationship

between Brent oil and natural gas prices. The authors found that the volatility of Brent

oil prices was indeed affected by natural gas prices, and that their model outperformed

other traditional GARCH models in terms of forecasting accuracy. The authors found

that the relationship between the two prices varied depending on the market regime, and

suggested that this could be important for risk management purposes.

Overall, these studies suggest that incorporating the relationship between natural

gas prices and the volatility of Brent oil prices can lead to improved forecasting accu-

racy and risk management. However, the precise nature of this relationship may vary

depending on the specific market conditions and modeling approach used.
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Data preliminary analysis

The data covers the trading days from February 14, 2020 to February 14, 2023.

Figure 6.1 displays a 1-day frequency time series of Brent crude oil and natural gas

closing prices. One can see from Figure 6.1 that there is a correlation between the two

prices.

We consider the Brent crude oil closing price, which observed at a daily frequency

from February 14, 2020 to February 14, 2023, while the natural gas closing price is

observed every minute over the same time period. The returns of Brent crude oil is

calculated as follows: rot := log

(
P o
t

P o
t−1

)
, where P o

t is the daily closing price at day

t of the Brent crude oil. Similarly, the 1-minute frequency of return of natural gas is

obtained according to the following formula: rgm := log

(
P g
m

P g
m−1

)
, where P g

m is the

price of natural gas at a minute m.

Table 6.1 contains the descriptive statistics as well as the results of the statistical

tests on the price and returns for Brent and gas. The maximum natural gas and prices

are six times relative to minimum values, while the maximum Brent crude oil and prices

are six times relative to the minimum values. The average of the natural gas is slightly

greater than the median, while the mean of Brent crude oil is less than the median. The

observation of their skewness is consistent with this. The distribution of natural gas

prices has a positive skewness, on the other hand, the skewness of Brent crude oil price

is negative. The kurtosis of all price series is around 2, indicating that the distribution

natural gas and Brent crude oil prices are platykurtic with flat tails. The table also shows

a test for normality, both the two prices and returns distributions are not expected to be

normal at 5% level, according to Jarque-Bera test. Furthermore, the Box-Pierce test for

the presence of an autocorrelation up to 10 lags reveals that all the returns squared of
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daily frequency of natural gas and Brent crude oil have autocorrelation. These findings

support the use of the heteroscedastic regression model to estimate and forecast the

return series of natural gas and Brent crude oil. Last but not least, the ADF test shows

that all the return series are stationary.

Table 6.1. Descriptive Statistics for Brent Crude Oil and Natural Gas Closing Price.
Note: The symbol*denotes the statistical significance at 5% level; Jarque-Bera and Box-Pierece refer to
the empirical statistics of the test for normality and autocorrelation, respectively.

Descriptive Statistics
Price Return

Gas (Days) Brent (Days) Gas (Days) Brent (Days)

Mean 4.168 71.79 0 0

Median 3.673 73.09 0 0

Std.dev 2.095 24.788 0.038 0.028

Minimum 1.528 19.61 −0.177 −0.308

Maximum 9.757 129.03 0.431 0.166

Skewness 0.762 −0.009 1.064 −1.989

Kurtosis 2.543 2.100 18.516 29.799

Jarque-Bera 115.81∗ 36.989∗ 11201∗ 33521∗

Box-Pierce(10) 10428∗ 10640∗ 11.162 32.12∗

Box-Pierce2(10) 10197∗ 10484∗ 18.277∗ 112.51∗

ADF test −0.9524 −2.003 −10.798∗ −9.5171∗

Observations 1097 1097 1096 1096

Figure 6.2 shows that the most likely prices for the Brent oil and the natural gas

do not in general exceed $80 and $5 respectively.
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Figure 6.1. Closing Price for Brent Crude Oil and Natural Gas.
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Figure 6.2. Joint density estimation of daily Brent oil and Natural Gas prices.

The random sample construction

Our sample here can be denoted as follows: (Xt, Yt)t=1,··· ,1096, where the sample

size n = 1096 is the total number of trading days from February 14, 2020 to February

14, 2023. Note that Yt = rot and the functional-valued discrete-time process is defined
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as follows:

Xt(m) = rgt (m+ (t− 1)× 1439) t = 1, . . . , n, ∀m ∈ [0, 1439).

Figure 6.3(a) displays a sample of three 1-minute frequency curve of the natural

gas and Figure 6.3(b) shows all intraday (1-minute frequency) curves from February 14,

2020 to February 14, 2023.

Definition 2. Let Z ∈ L2 space be a functional random variable with mean µ(t) =

E(Z(t)), then the covariance function is defined as follows:

Σ(t, s) = cov(Z(t), Z(s))

= E ((Z(t)− µ(t)) (Z(s)− µ(s))) .

Given a sample Z1(t), . . . , Zn(t), an estimator of Σ(t, s) is defined as:

Σ̂(t, s) =
1

n

n∑
i=1

(Zi(t)− µ̂(t)) (Zi(s)− µ̂(s)) ,

where µ̂(t) = n−1
∑n

i=1 Zi(t) an estimator of mean function µ(t).

Figure 6.4 displays the estimated covariance operator of the price of natural gas

and shows that prices are highly correlated in the morning and until 03:30pm. One can

also observe a high correlation in the evening around 08:00pm.

Figure 6.5(a) displays a sample of three 1-minute frequency curve of natural gas

return and Figure 6.5(b) shows the stochastic process of the daily Brent Oil return, with

the dots representing the three preselected days.

Observe that the data are initially completely observed. Therefore, we artificially

generate missing observations in order to validate our methodology.

We assume that the missing at random mechanism is generated according to the
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Figure 6.3. (a) Sample of three intraday (1-minute frequency) Natural Gas price
curves. (b) All historical intraday (1-minute frequency) Natural Gas price curves.
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following probability distribution:

log

(
π(x)

1− π(x)

)
= ⟨α0, X⟩+ c,

where α0(t) = sin(2πt), ∀t ∈ [0, 1440] and c = 2.

Figure 6.6(b) displays daily Brent Oil return where 12% of the observations are
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Figure 6.5. (a) Sample of three intraday (1-minute frequency) Natural Gas return
curves. (b) The stochastic process of daily Brent Oil return and the dots represent the
corresponding three preselected days.
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Figure 6.6. (a) Daily Brent crude oil returns for complete data. (b) Daily Brent crude
oil returns at %12 MAR.

Daily Brent oil return volatility estimation and forecasting

Our purpose is to estimate and forecast the daily volatility of the Brent Oil price

log-return using, as a predictor, the intraday (one-minute) frequency log-return of natural
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gas. The original sample is split into training and testing subsamples. The training

sample is selected from February 14, 2020 to June 30, 2022. However, the remaining

period from July 1, 2022 to February 13, 2023 will be for evaluation of forecast of

the daily volatility of the Brent Oil price log-return. For the tuning parameters, we

considered here the quadratic kernel, the bandwith is chosen using cross-validation

approach and the PCA semi-metric is considered to estimate the volatility.

Note that the term "Volatility" refers to a latent variable, which cannot be ob-

served directly but is approximated from other variables that can be observed. Therefore,

the concept of the realized volatility was first introduced by [44], who defined it as a

non-parametric estimator that is independent of the parameter distribution. In this con-

text, to evaluate the estimation and forecast of the volatility, one considers the so-called

realized volatility computed based on the 1-hour frequency of Brent oil over same pe-

riod. Thus, the realized volatility is considered as the true value of volatility that we can

refer to in order to assess the performance of our estimators. Given 1-hour frequency

one calculates the realized volatility on a specific day d as follows:

RVd =
24∑
h=1

r2d,h,

where rd,h is the value of the log return of the Brent observed at hour h on the day d.

Figure 6.7 shows the In-Sample and Out-Of-Sample (the green-shaded area) sets

for the realized and estimated volatility of the Brent returns. Figure 6.7(a) shows that

the most volatile period for the Brent is the 2020 year. This is due to an important event

named "the 2020 Russia-Saudi Arabia conflict, COVID-19", which is a combination of

two factors that led to a significant drop in oil prices, including a supply-demand oil

conflict between Russia and Saudi Arabia, and another supply-demand disruption from
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the COVID-19 pandemic, which has clearly impacted oil supply-demand because of the

lockdowns around the world. The confinements and shutdowns of economic activity

lowered demand, resulting in the collapse of oil prices. Besides, Vienna, a major oil

producer, were unable to reach an agreement to reduce oil production in response to

the COVID-19 pandemic, and immediately after that, Saudi Arabia and Russia began

a pricing war that significantly lowered the price of oil. However, the period of lowest

volatility is between 2021 and 2022, displayed in Figure 6.7(a). Because in January

2021, oil prices started to rise due to demand outside Europe and reductions in OPEC

countries. It can also be noted that the volatility increased steeply during the starting year

2022. Reaching a new peak after 2020, indicating another major high-risk event the war

between Russia and Ukraine and its impact on the global economy after the COVID-19

epidemic. However, the Out-Of-Sample set (green-shaded area) shows that the forecast

of the realized volatility of the Brent return is getting stable, indicating that the volatility

levels are low starting from July 1, 2022 to February 13, 2023. Figure 6.7(b) seems to

indicate that the estimated volatility of the Brent return fits well with the true value of

volatility. Figure 6.7(c), (d), (e), and (f) present the estimated volatility of the Brent

return at a 12% MAR rate. It is clear that the four graphs retain the same pattern of

the true value of volatility, even with incomplete observations or after imputation. As a

criterion for measuring estimators accuracy in estimating and forecasting in In-Sample

and Out-Of-Sample, respectively, we consider the absolute error, defined as

AEd := |U2
d (Xd)−RVd|,

where Ud(Xd) denotes the volatility estimation/forecast obtained either with complete

data, missing data or imputed data.
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Table 6.2 provides summarized statistics of absolute error for each estimator at

a 12% MAR rate. The results for the estimators in In-Sample subset based on median

absolute error shows that the nonparametric imputed and inverse probability weighted

imputed estimators are more effective than simplified and inverse probability weight

estimators, respectively. As a result, the inverse probability weighted imputed method

is the best choice for estimating the volatility of the daily Brent oil return when there

are 12% of the observations are missing at random. Regarding the estimators in Out-

Of-Sample subset based on lower quantile absolute error shows that the nonparametric

imputed and inverse probability weighted imputed estimators perform better than sim-

plified and inverse probability weighted estimators, respectively. Therefore, the best

method for forecasting the volatility of the daily Brent oil return when there are 12% of

the observations are missing at random is the nonparametric imputed approach. How-

ever, the complete case is the only one that yields efficient estimators among others

of the estimated and forecast volatility of the daily Brent oil return in both In-Sample

and Out-Of-Sample subsets, according to the absolute error measure based on lower

quantile.
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Table 6.2. Summary Statistics of the AE obtained for each estimator when MAR=%12.

Estimators
In-Sample (IS)×10−4 Out-of-Sample (OoS)×10−4

Q25% Q50% Q75% Mean Q25% Q50% Q75% Mean

Complete 0.0496 0.4954 7.3966 7.5302 1.41353 6.12136 7.75438 6.29141

Simplified 0.0401 0.8101 7.9516 7.5359 1.59297 6.24067 7.87776 6.36422

NP Imp. 0.0416 0.7807 7.6034 7.5697 1.27913 6.13609 7.68484 6.30530

IPW 0.0388 0.8554 8.1461 7.5856 1.5929 6.2215 8.0110 6.4060

IPW Imp. 0.0479 0.6400 7.4681 7.4882 1.43097 6.16744 8.30704 6.50837
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Figure 6.7. (a) Realized Intraday Volatility (hourly frequency) Brent log-returns. (b)
Estimated Intraday Volatility (daily frequency) Brent for complete data. Estimated
Intraday Volatility (daily frequency) Brent at 12% MAR for Simplified (c),
Nonparametric Imputed (d), Inverse Probability Weight (e) and Inverse Probability
Weight Imputed (f) estimators.



CHAPTER 7: CONCLUSION AND PERSPECTIVES

This thesis deals with the nonparametric estimation of the regression and volatil-

ity functions in a nonlinear heteroscedastic functional regression model. A Nadaraya-

Watson type estimator is used when the response variable is a real-valued random

variable and subject to missing at random mechanism, while the predictor is functional

in nature taking value in an infinite dimensional space endowed with a certain semi-

metric and completely observed. We start by introducing the simplified and inverse

probability weighted estimators based on the complete observed data. Then, these

initial estimators were used to impute missing values and to define the estimators of

the regression and volatility operators after data imputation. A simulation study was

performed to assess the performance of the proposed estimators and revealed that impu-

tation techniques improve the quality of estimation. An application to high-frequency

financial data is also considered and the estimation and the forecast of volatility of 1-

day frequency Brent returns given the 1-minute frequency natural gas intraday returns

was investigated. Results show that the initial estimators provide a reasonably good

results. Moreover, after imputation of missing data, the quality of estimation/forecasts

was improved significantly.

Note that several predictors could be involved in modeling the high-frequency

Brent returns such as historical data of the volatility, the exchange rate, geopolitical

events indicators, macroeconomic factors (inflation, interest rate, economic growth) and

weather conditions. The integration of such predictor requires a more sophisticated

models. That may include general additive models and partially linear models among

many others. One can also consider the case that the predictor itself is subject to some

missing mechanism. These idea might be implemented in future research projects.
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