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Abstract

Sampling rare and clustered populations is challenging because of the effort required to find

rare units. Heuristically, a practitioner would prefer to discontinue sampling in areas where

rare units of interest are apparently extremely sparse or absent. We take advantage of the

characteristics of inverse sampling to adaptively inform practitioners when it is efficient to

move on to sample new areas. We introduce Adaptive Two-stage Inverse Sampling (ATIS),

which is designed to leave a selected area after observation of an a priori number of only

non-rare units and to continue sampling in the area when rare units are observed. ATIS is

efficient in many cases and yields more rare units than conventional sampling for a rare and

clustered population. We derive unbiased estimators of population total and variance. We

also introduce an easy-to-compute estimator, which is nearly as efficient as the unbiased

estimator. A simulation study on a rare plant population of buttercups (Ranunculus) shows

that ATIS even with the easy-to-compute estimator is more efficient than its conventional

sampling counterparts and is more efficient than Two-stage Adaptive Cluster Sampling

(TACS) for small and moderate final sample sizes. Additional simulations reveal that ATIS is

efficient for binary data (e.g., presence or absence) whereas TACS is inefficient for binary

data. The overall results indicate that ATIS is consistently efficient compared to conventional

sampling and to adaptive cluster sampling in some important cases.

Introduction

Inverse sampling is adaptive in the sense that the total sampling effort depends on the stochas-

tic observation of units that meet a specified characteristic. Units are selected following inverse

sampling procedure until a predetermined number that meet the specified characteristic have

been observed [1]. Haldane [2] used inverse sampling to estimate the frequency of a rare dis-

ease leading to other applications of inverse sampling to study rare populations.

Inverse sampling is slightly inefficient, in the sense of having smaller variance, than a Sim-

ple Random Sampling without replacement (SRS) with equal effective or expected final sample
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sizes. However, inverse sampling finds slightly more rare events than a SRS with equal sample

sizes.

Salehi and Seber [3] showed that Murthy’s estimator [4] is appropriate for developing esti-

mators for sequential sampling such as inverse sampling. Following [3], there has been quite a

number inverse sampling design estimators developed using Murthy’s estimator. Moradi et al.

[5] developed regression estimator under inverse sampling to estimate arsenic contamination.

Aggarwaland and Pandey [6] used inverse sampling to study disease burden of leprosy in an

endemic area of Uttar Pradesh, India. Salehi et al. [7] introduced inverse adaptive cluster sam-

pling with unequal selection probabilities to study crab holes. Panahbehagh and Smith [8]

developed group inverse sampling which is practical for field implementation. Mohammadi

[9] has developed a bootstrap confidence intervals for inverse sampling. Latpate and Kshirsa-

gar [10] introduced two-stage inverse adaptive cluster sampling with a stopping rule that

depends on cluster size to control the final sample size.

In the literature, whereas authors developed Murthy’s estimators to study rare and clustered

populations, the relative complexity their estimators deterred practitioners use, we believe. In

response, Panahbehagh [11] recently proposed a resampling method to compute Murthy’s

estimator to lower the computational barriers for practitioners.

Inverse sampling is generally perceived to continue until an a priori fixed number of rare

units are observed. However, having a predetermined number of rare units is not our primary

objective in this research. We develop a sampling design based on a heuristic that one should

leave an area when no rare units are observed in an initial sample of the area and continue

sampling the area when some rare units are observed initially.

To setup the design, let the population be partitioned into Primary Sampling Units (PSUs)

to constrain sampling within areas. We select some of the PSUs in the first stage, and we then

select an initial sample of secondary units from each of the selected PSUs. If we do not find

rare units among the initial sample, we leave the PSU. If we find some rare units in the PSU,

we will keep sampling one unit at a time, sequentially, until we observe the same number of

non-rare units as in the initial sample size. Because we keep sampling until observing a prede-

termined number of non-rare units, the design is a form of “reverse-inverse” sampling.

For its sake of simplicity, we call the design Adaptive Two-stage Inverse Sampling (ATIS).

We use Murthy’s estimator to analytically develop its variance estimator. We also develop an

easy-to-compute estimator and its variance estimator, which is almost as efficient as the

Murthy’s estimator. We believe that the estimator’s simplicity, along with the design’s effi-

ciency and yield of rare units, will be attractive to practitioners.

During the last two decade, several adaptive sampling designs were introduced to sample

rare and clustered populations, for example, two-stage sequential sampling [12], adaptive web

sampling [13], and complete allocation sampling [14]. However, Adaptive Cluster Sampling

(ACS) introduced by Thompson [15] and its different versions, stratified ACS [16], two-stage

ACS [17] are still the foundation for sampling rare and clustered populations. Two-stage

Adaptive cluster Sampling (TACS) and ATIS can be considered as competing options. Using a

simulation study on the buttercups (Ranunculus) population, we show that ATIS is more effi-

cient than TACS for small and moderate sample sizes but TACS is more efficient for large sam-

ple sizes. Site occupancy rate (the proportion of units occupied by a species) is critical

information for many large scale and long-term conservation efforts for imperilled species [18,

19]. ACS and its different versions are inefficient sampling designs to estimate occupancy rate

where the variable of interest is binary. Using a simulation study on a population, we show

that ATIS is an efficient sampling design to estimate occupancy rate for rare and clustered pop-

ulations characteristic of imperilled species. The standard recommendation is to use a model-

ling approach for estimation of occupancy to account for imperfect detection [20]. Pacifici
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et al. [19] integrated adaptive cluster sampling into occupancy modelling for spatially-clus-

tered populations. However, Welsh et al. [21] found that when data are sparse, as is expected

for rare species, occupancy modelling can perform poorly with errors commensurate with dis-

regarding detectability. The potential gains in efficiency from adaptive designs are eroded by

low detectability [22]. Plug-in estimators are available to incorporate independently estimated

detectability in adaptive designs [23], but garnering independent estimates of detectability for

rare species are not commonly available due to sparse data. Thus, we proceed with the assump-

tion that detectability is high (>0.8; [22]) within a sampling unit so that efficiency and yield

are the overriding concerns.

In summary, ATIS, which mimics how practitioners (e.g., conservation biologists) would

like to collect data, has an easy-to-compute estimator, is a competitive option TACS to esti-

mate parameters of a rare and clustered population, and is efficient for binary variables. More-

over, ATIS is a neighborhood-free sampling design which is an advantage over TACS design.

If an appropriate neighborhood definition is not implemented, ACS and its TACS version will

fail to detect the rare clusters as is demonstrated in section 3 (cf. [24, 25]).

In section 2, we develop a unbiased estimator and its variance estimator of the introduced

sampling design based on Murthy’s estimator. To simplify the estimator, we then ignore the

last selected non-rare unit in those PSUs for which we have sequentially selected extra units.

By ignoring the last selected units, its estimator becomes as simple as the conventional two-

stage simple random sample estimator. In section 3, ATIS properties will be studied. Using

simulation studies, we compare ATIS with SRS, conventional two-stage sampling (CTS) and

TACS. We then conclude the paper in section 4 by summarizing the results and providing

some recommendations.

Sampling design and terminology

Sampling design

Suppose that we have a population of N units, which are partitioned into M primary units of

size Ni, (i = 1, 2, . . ., M), secondary units. Ideally, the primary units dimensions would be based

on available information about the spatial distribution and size of clusters using prior survey

information, habitat maps, or satellite images. Let unit (i, j) denote the jth secondary unit in the

ith primary unit with an associated measurement or the count of a species of interest of yij. Let

ti ¼
PNi

j¼1
yij be the sum of y-values in the ith primary unit, and let t ¼

PM
i¼1
ti be the popula-

tion total. The population of secondary units in primary unit i is divided into two subpopula-

tions according to whether the y-values satisfy a condition C, for example C = {yij: yij> c},
where c is a constant. Let denote the two subpopulations by PiC ¼ fu : yij 2 C; j ¼ 1; . . . ;Nig

and PiC0 ¼ fu : yij=2C; j ¼ 1; . . . ;Nig, where Ki ¼ jPiC0 j and Ni � Ki ¼ jPiCj are the unknown

numbers of units, or cardinalities, of PiC0 and PiC, respectively. In the first stage, we choose a

sample of size m from the M primary units in the population using a sampling design with

inclusion probability πi of primary unit i and the joint inclusion probability πii0 of primary units

i and i0. In the second stage, we select a simple random sample of size ki secondary units without

replacement from primary unit i, i = 1, 2, . . ., m. If all observed units are from PiC0 there will be

no further sampling in primary unit i. If the initial sample contains less than ki units from PiC0

sampling continues in a sequential manner, one at a time, until exactly ki units are selected from

PiC0 . In other words, ki is a threshold which is used as a rule of thumb to leave primary units i.
Let νi be the final sample size from PSU i.

To illustrate, PUS 8 in Fig 1 shows a PSU of size 25 with 14 rare units, which have a number

in them. A SRS of size 3 is selected with units in light gray. Two selected units are rare units
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and the other unit is non-rare. The sampling procedure continues one at a time until two

more non-rare units is selected. The extra selected units are in dark gray which are 7 units

from which 5 are rare units. The final sample contains 7 rare units and 3 non-rare units. The

last selected units is the one with ×.

Estimator and its variance estimator

Salehi and Seber [3] showed that Murthy’s estimator can provide an unbiased estimator for

sequential sampling designs. Murthy’s estimator is

t̂ i ¼
X

j2si

PðsijjÞ
PðsiÞ

yij

where P(si) is the probability of finally obtaining the sample set si in primary unit i and P(si|j) is

the conditional probability of getting the sample si given the jth unit was selected in the first

Fig 1. Castle Hill buttercups population. There are 300 quadrats of size 100m2. The counts of buttercups are shown. The population site is partitioned

into 12 primary units. All 12 primary units are selected. Three quadrats are selected from each PSU, in light gray. If all three selected quadrates are not

empty, the sampling has been continued one at a time, sequentially, until three empty quadrats are selected. The sequentially selected quadrates are in

dark gray and the last selected quadrats have × which are non-rare quadrates.

https://doi.org/10.1371/journal.pone.0255256.g001
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draw in primary unit i. The variance of t̂ i is given by

var½t̂ i� ¼
XNi

j¼1

XNi

j<j0
1 �

X

si∍j;j0

PðsijjÞPðsijj0Þ
PðsiÞ

 !
yij
pj;i
�

yij0
pj0 ;i

 !2

pj;ipj0 ;i;

where pj,i the probability that unit j in primary unit i is selected first at the second stage.

Because we have pj,i = 1/Ni for all j = 1, 2, . . ., Ni,

var½t̂ i� ¼
XNi

j¼1

XNi

j<j0
1 �

X

si∍j;j0

PðsijjÞPðsijj0Þ
PðsiÞ

 !

ðyij � yij0 Þ
2
;

and its unbiased estimator is

cvar½t̂ i� ¼
X

j2si

X

j<j0
ð
Pðsijjj0Þ
PðsiÞ

�
PðsijjÞPðsijj0Þ

PðsiÞ
2
Þðyij � yij0 Þ

2
;

where P(si|jj0) is the probability of the sample si given that the units j and j0 were selected

regardless of order in the first two draws in primary unit i.
Using the definition of conditional probability and a simple algebra we have

t̂ i ¼
X

j2si

PðjjsiÞ
pj;i

yij ð1Þ

and its variance estimator of (1) is

cvar½t̂ i� ¼
X

j2si

X

j<j0
ð
Pðjj0jsiÞ
pj;i

�
PðjjsiÞPðj0jsiÞ

pj;ipj0 ;i
Þðyij � yij0 Þ

2
; ð2Þ

Evaluating (1) and (2) for ATIS design, we have

t̂ i ¼ NiðP̂i�yiC0 þ ð1 � P̂iÞ�yiCÞ; ð3Þ

where P̂i ¼ ðki � 1Þ=ðni � 1Þ, �yiC0 ¼ k� 1
i

P
j2SiC0

yij, �yiC ¼ ðni � kiÞ
� 1P

i2SiC
yij and, SiC are SiC0

are samples from PiC and PiC0 , respectively. The derivation is given in S1 Appendix. Note that

if all ki selected units do not satisfy C, P̂i is 1 so that t̂ i ¼ Ni�yiC0 . An unbiased estimator of the

variance of (3) is given by

cvarðt̂ iÞ ¼
N2

i
1

ni
� 1

Ni

� �
s2
iC0 ni ¼ ki

N2
i ðAs

2
iC0 þ cvarðP̂iÞð�yiC0 � �yiCÞ

2
þ Bs2

iCÞ ni > ki;

8
><

>:
ð4Þ
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where

cvarðP̂iÞ ¼ ð1 �
ni � 1

Ni
Þ
P̂ið1 � P̂iÞ

ni � 2
;

A ¼
P̂2
i

ki

ðNi � ni þ 1Þðniki � ni � kiÞ � Niðni � 2Þ

Niðni � 2Þðki � 1Þ

� �

;B ¼
ðNi � ni þ 1Þðni � ki � 1Þ

Niðni � 1Þðni � 2Þ
;

s2
iC0 ¼

1

ki � 1

X

j2SiC0

ðyij � �yiC0 Þ
2 and s2

iC ¼
1

ni � ki � 1

X

j2SiC

ðyij � �yiCÞ
2

The estimate of the total population, τ, is

t̂ ¼
Xm

i¼1

t̂ i
pi
;

where πi is the inclusion probability PSU i ([26], p. 89), and an unbiased estimator of its vari-

ance is

cvarðt̂Þ ¼
Xm

i¼1

Xm

i0¼1

1

pipi0
�

1

pii0

� �

t̂ it̂ i0 þ
Xm

i¼1

cvarðt̂ iÞ
pi

;

where πii is the joint inclusion probability and πii = πi.
In practice, if the sizes of primary units are the same and auxiliary variables are not avail-

able, SRS design would be a reasonable choice for the first stage (Salehi and Smith 2005). If the

first stage design is SRS, then an unbiased estimator is

t̂ ¼ M�̂t ¼
M
m

Xm

i¼1

Ni P̂i�yiC0 þ ð1 � P̂iÞ�yiC
� �

; ð5Þ

where �̂t ¼
Pm

i¼1
t̂ i=m. An unbiased estimator of its variance is

cvarðt̂Þ ¼ MðM � mÞ
s2
t

m
þ
M
m

Xm

i¼1

cvarðt̂ iÞ; ð6Þ

where s2
t
¼
Pm

i¼1
ðt̂ i �

�̂tÞ
2
=ðm � 1Þ:

An easy-to-compute estimator and its variance estimator. Pathak [27] introduced an

unbiased estimator for the mean population in fixed cost sequential sampling schemes. The

estimator is the sample mean where the last selected unit is ignored. Using Pathak’s approach,

we may show that

~t i ¼

Ni
1

ni

Pni
j¼1

yij
h i

¼ Ni�yni ni ¼ ki

Ni
1

ni � 1

Pni � 1

j¼1
yij

h i
¼ Ni�yni � 1 ni > ki

8
>><

>>:

is an unbiased estimator, where �yni � 1 is the sample mean based on the first νi − 1 selected units.

This estimator is inadmissable as the last selected sample is discarded. An estimator is inadmis-

sible if it is uniformly dominated by some other estimator. Since varðt̂ iÞ is uniformly smaller

than varð~t iÞ, ~t i is an inadmissable estimator. It can be showed that t̂ i is the Rao-Blackwell ver-

sion of ~t i. The ATIS is designed so that the last observed unit in PSUs for which the extra

sequentially are selected, are non-rare so that the loss of information will be minimal. When c
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is zero in condition C = {yij: yij> c} the easy-to-compute estimator ~t i will be equal to t̂ i for

i = 1, . . ., m so that there is no loss of information. When the first stage design is a SRS, another

unbiased estimator is,

~t ¼ M�~t ; ð7Þ

where �~t ¼
Pm

i¼1
~t i=m. This estimator can be easily computed and as simple as a Conventional

Two-Stage (CTS) estimator. An unbiased estimator of its variance is

cvarð~tÞ ¼ MðM � mÞ
s2
t

m
þ
M
m

Xm

i¼1

cvarð~t iÞ; ð8Þ

where s2
t
¼
Pm

i¼1
ð~t i �

�~tÞ
2
=ðm � 1Þ, and

cvarð~t iÞ ¼
N2

i
1

ni
� 1

Ni

� �
s2
iC0 ni ¼ ki

N2
i

1

ni � 1
� 1

Ni

� �
s2
ni � 1

ni > ki;

8
>><

>>:

ð9Þ

where s2
ni � 1
¼ ð1=ðni � 2ÞÞ

Pni � 1

j¼1
ðyij � �yni � 1Þ

2
, the sample variance of the first νi − 1 selected

units in the PSUs with at least one rare unit observed.

The number of observed rare units in each primary unit has Negative Hypergeometric dis-

tribution [28, 29]. The expected number of observed rare units in each primary sampling unit

is ki Ki/(Ni − Ki+1). When the first stage sampling is simple random sample and k0is are the

same, the expected final sample size is

EðnÞ ¼
m
M

Xm

1¼i

EðniÞ ¼
mk
M

XM

i¼1

Ni þ 1

Ni � Ki þ 1
;

and the expected number of observed rare units, say νr, will be

EATISðnrÞ ¼ Eðn � mkÞ ¼
mk
M

XM

i¼1

Ki

Ni � Ki þ 1
; ð10Þ

where EATIS is the expected value for ATIS design. We may compare the expected number of

observed rare units, with that of a SRS design of size E(ν) which will be,

ESRSðnrÞ ¼ ð
mk
M
Þð
Kt

N
Þ
XM

i¼1

Ni þ 1

Ni � Ki þ 1
ð11Þ

where Kt ¼
PM

i¼1
Ki, the total rare units in the population. A fairer comparison is to compare

(10) with the expected number of observed rare units for a conventional two-sage sampling of

size m PSUs and of size E(ν)/m units in the selected PSUs which will be

ECTSðnrÞ ¼ ð
k
M
Þð
m
M
Þ
XM

i¼1

Ni þ 1

Ni � Ki þ 1

XM

i¼1

Ki

Ni
; ð12Þ

where ECTS is the expected value for CTS design. We will use these formulas in the next section

to compare the observed rare units of ATIS design with its counterparts.
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Study of ATIS properties

An example

To shed light on computation, we used data are from a study on Castle Hill buttercups found

within the Lance McCaskill Nature Reserve in the South Island of New Zealand [30]. The Cas-

tle Hill buttercup is one of New Zealand’s rarest plants [31]. Locations of buttercup plants

observed were mapped within a 3 hectare area using 300 10 by 10 m2 plots (Fig 1).

To illustrate, the population was partitioned into 12 PSUs each 2,500 m2 in size. All PSUs

were selected, m = M, in the first stage. (The PSU number is given on top-left of each PSU

within Fig 1). Setting the condition to adapt at yij> 0, ki = 3 and m = 12, three plots (secondary

units) were selected from each PSU, the gray light plots. Some buttercups were found in PSUs

2, 5, 6 and 8. We therefore continue to select plots one at a time until we have 3 non-rare plots

in those PSUs so that dark gray plots are selected. Plots with × indicate selection. The popula-

tion total estimators t̂ i ¼ ~t i ¼ 0, for i = 1, 3, 4, 7, 9, 10, 11, 12. For i = 5, the final sample size is

9, νi = 9, and we have,

~t5 ¼ 25ð
0þ 0þ 3þ 3þ 7þ 2þ 3þ 2

8
Þ ¼ 25ð2:5Þ ¼ 62:5

t̂5 ¼ 25½ð
2

8
Þ0þ ð

6

8
Þð

3þ 3þ 7þ 2þ 3þ 2

6
Þ� ¼ 62:5

For other PSUs ~t2 ¼ t̂2 ¼ 18:75; ~t6 ¼ t̂6 ¼ 25 and ~t8 ¼ t̂8 ¼ 75: Thus,

~t ¼ t̂ ¼ 181:25:

To compute variance estimator of ~t, we use (8) for which the first term is zero as all PSUs

are selected in the first stage, and the second term reduces to
PM

i¼1
cvarð~t iÞ. Substituting (9)

into (8), we have

cvarð~tÞ ¼
XM

i¼1

N2

i ð
1

ni � 1
�

1

Ni
Þs2

ni� 1
:

In S2 Appendix, we prove that cvarðt̂Þ is exactly the same as cvarð~tÞ when c is zero. For i = 1,

3, 4, 7, 9, 10, 11, 12, s2
ni

is zero; s2
n5 � 1
¼ 0:1925, s2

n6 � 1
¼ 0:4128 and s2

n8 � 1
¼ 0:16. We therefore

have

cvarðt̂Þ ¼ cvarð~tÞ ¼ 709:21:

The expected number of observed rare units

For the buttercup population, Fig 1, the size of PSUs are the same so that Ni ¼ N=M ¼ �N for

i = 1, 2, . . ., M. Therefore, the expected number of observed rare units for a conventional two-
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sage sampling will be

ECTSðnrÞ ¼ ð
k
M
Þ
XM

i¼1

Ni þ 1

Ni � Ki þ 1
ð
m
M
Þ
XM

i¼1

Ki

Ni

¼
k
M

XM

i¼1

�N þ 1

�N � Ki þ 1
ð
m
M �N
Þ
XM

i¼1

Ki

¼
k
M

XM

i¼1

�N þ 1

�N � Ki þ 1
ð
m
N
ÞKt

¼ ð
mkKt

MN
Þ
XM

i¼1

�N þ 1

�N � Ki þ 1

¼ ESRSðnrÞ

Since ECTSðnrÞ ¼ ESRSðnrÞ, we focus on the ratio of EATIS (νr) over ECTS(νr), which we call the

relative expected observed rare units for ATIS and compute as

RNATISðnrÞ ¼
EATISðnrÞ

ECTSðnrÞ
¼

N
PM

i¼1
ðKiÞ=ð

�N � Ki þ 1Þ

Kt

PM
i¼1
ð �N þ 1Þ=ð �N � Ki þ 1Þ

:

The relative expected number of observed rare units does not depend on m or k. Using

Lagrange method, it can be shown that RNATIS(νr) is minimized when all Ki are equal to Kt/M
and its minimum would be N/(N + M). This will happen when the rare units are uniformly dis-

tributed over the population area, which implies that the population is not clustered.

The relative expected number of observed rare units for the buttercup population is 1.35,

which means that ATIS will yield 35 percent more rare units, on average than SRS and CTS

with the same final effective sample sizes. The RNATIS(νr) depends on the spatial distribution

of the rare units over the study area. In Table 1, we compute RNATIS(νr) for 8 artificial popula-

tions with the same rarity as the buttercup population but with different spatial distributions

of those 49 rare units over 12 PSUs. The highest value for RNATIS(νr) is 4.80 where all 49 rare

Table 1. Eight imaginary populations are considered. Each population consists of 49 rare units. Those rare units are distributed among 12 PSUs which are resembling

the buttercup population with different distribution of rare units. The numbers inside the table are the number of rare units in each PSU. The relative expected number of

observed rare units, RNATIS(νr) are computed for each population.

Population 1 2 3 4 5 6 7 8

PSU

1 25 20 20 20 20 10 5 4

2 24 19 19 19 10 10 5 4

3 0 10 5 2 10 10 5 4

4 0 0 5 2 9 10 5 4

5 0 0 0 2 0 9 5 4

6 0 0 0 2 0 0 5 4

7 0 0 0 2 0 0 5 4

8 0 0 0 0 0 0 5 4

9 0 0 0 0 0 0 5 4

10 0 0 0 0 0 0 4 4

11 0 0 0 0 0 0 0 4

12 0 0 0 0 0 0 0 5

RNATIS(νr) 4.8041 2.2735 2.2406 2.2274 1.9008 1.2823 1.0324 1.0001

https://doi.org/10.1371/journal.pone.0255256.t001
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units are located in two PSUs. The lowest is 1.00 where 4 rare units are located in 11 PSUs and

5 rare units is located in the last PSU. Theoretically, RNATIS(νr) can be as low as 300/

312 = 0.962 but it cannot practically be smaller than 1 because it is impossible to allocate 49/

12 = 4.08 rare units in each PSU.

Simulation study

In the simulations, we distinguish between studies with the objective of estimating density

(mean) and abundance (total) versus estimating occupancy (proportion). The written R codes

for running the simulation are given in the S1 File.

Estimation of density and abundance. To study the efficiency of the estimators of ATIS,

we simulated sampling of the buttercup population (Fig 1). The ATIS has similarities to the

Gap-based inverse sampling (GIS) introduced by Panahbehagh and Brown [32]. However,

SRS sampling and the conventional two-stage sampling outperform Gap-Based Inverse sam-

pling (GIS) by a wide margin. Panahbehagh [11] reported that the SRS sample mean has

smaller variance than GIS estimator. The GIS design is based on stratified sampling which is a

special case of two-stage sampling where m = M. Using Table 1 of Panahbehagh and Brown

[32] on page 9645, we computed the relative efficiency of Gap-based inverse sampling over the

conventional two-stage (stratified) sampling and we found out that it ranges between 0.466 to

0.832 which means 53.4% to 16.8% loss of efficiency. Therefore we focused our simulation on

the comparison between ATIS with the CTS and SRS designs.

We computed Relative Efficiency of the estimators over CTS as follows,

REð:Þ ¼
varðt̂tsÞ
varð:Þ

; ð13Þ

where “.” stands for t̂ in (5) or ~t in (7) which we computed by Monte Carlo simulation method

with 50,000 replications. But varðt̂ tsÞ is computed using its formula (e.g. Cochran, 1977) with

equal sample size of �n=m in each selected PSU, �n is the mean of final sample size over those

50,000 replications of ATIS. The variance formula for conventional two-stage estimator is,

varðt̂tsÞ ¼
MðM � mÞ

m
1

M � 1

XM

i¼1

ðti � �tÞ
2
þ
M
m

XM

i¼1

NiðNi �
�n

m
Þ
m
�n

PNi
j¼1
ðyij � ti=NiÞ2

Ni � 1
;

where �t ¼ ð1=MÞ
P
ti. We also computed the efficiencies, based on the efficiency definition

by Särndal et al. [33], which is as follows,

EFð:Þ ¼
varðt̂SRSÞ
varð:Þ

; ð14Þ

where varðt̂SRSÞ is again computed by its formula with size of �n. The simulation study was com-

prehensive for values of, m, c and k. The population was partitioned into M = 12 and M = 6

PSUs.

For the case of M = 12, m = 12, k = 2, 3, . . ., 10, and c = 0, 1, 2 the detailed results are pre-

sented in Table 2. For c = 0, the gain in relative efficiency for the Murthy’s estimator, t̂, and

the inadmissable estimator, ~t, are equivalent and ranges from 24% to 257%. The gain in effi-

ciency ranges from 56% to 351%. The gains in relative efficiency increase as ki increases.

For c = 1, the gains in relative efficiency ranges from 19% to 134% for the Murthy’s estima-

tor and from 17% to 132% for the inadmissible estimator. The efficiency gains for Murthy’s

estimator is (50%, 195%) and for the inadmissable estimator is (48%, 193%). The differences
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between the gain in efficiency of Murthy’s estimator and those of the inadmissable estimators

range from 0% to 2%. As in previous cases, the gains in efficiency increase as ki’s increase.

For c = 2, the gains in relative efficiency for the Murthy’s estimator ranges from 11% to 56%

and for the inadmissible estimator ranges from 4% to 53%. The range of efficiency gains for

the Murthy’s estimator is (41%, 96%) and for the inadmissible estimator is (31% to 93%). The

range in the difference between efficiency gains for the Murthy’s estimator and the inadmissa-

ble estimator is from 2% to 7%. As in previous cases, the gains again increase as ki increases.

As c increases, efficiency gains decrease ostensibly as a result of decreasing cluster sizes. We

found that the inadmissable estimator is more efficient than SRS and CTS, RE > 1 and EF> 1

for all cases, and its gains are very close to Murthy’s estimator gains.

In Fig 2 we present the relative efficiency for the population partitioned into 12 PSUs with

equal size of 25. In this case, we ran the simulation for m = 4, 5, . . ., 12. The REs increase as ms

increase. We found that the efficiency is much higher for m = 12 indicating the design per-

forms better when the sampling design approaches the adaptive stratified inverse sampling

design. Both estimators are more efficient than CTS in all cases. The behavior of the inadmissa-

ble estimator is very similar to the admissible estimator and there is little difference in RE. The

Table 2. The variances of t̂, ~t, t̂ ts and t̂SRS are computed with the same effective sample sizes for the buttercups population when the population was partitioned

into 12 PSUs. The relative efficiencies and the efficiencies of both estimators of ATIS are computed where m = 12.

c k varð~tÞ varð~tÞ varðt̂ tsÞ varðt̂srsÞ REðt̂Þ EFðt̂Þ REð~tÞ EFð~tÞ
0 2 7173.01 7173.01 8865.71 11186.62 1.24 1.56 1.24 1.56

3 3944.57 3944.57 5569.68 7027.74 1.41 1.78 1.41 1.78

4 2506.73 2506.73 3924.37 4951.71 1.57 1.98 1.57 1.98

5 1730.62 1730.62 2937.95 3707.07 1.70 2.14 1.70 2.14

6 1226.99 1226.99 2278.44 2874.90 1.86 2.34 1.86 2.34

7 876.13 876.13 1807.45 2280.62 2.06 2.60 2.06 2.60

8 617.47 617.47 1454.91 1835.79 2.36 2.97 2.36 2.97

9 426.84 426.84 1180.89 1490.04 2.77 3.49 2.77 3.49

10 269.05 269.05 961.19 1212.82 3.57 4.51 3.57 4.51

1 2 8170.04 8307.66 9723.35 12268.78 1.19 1.50 1.17 1.48

3 4666.58 4708.53 6145.24 7753.97 1.32 1.66 1.31 1.65

4 3078.24 3097.05 4356.06 5496.41 1.42 1.79 1.41 1.77

5 2176.36 2191.40 3281.63 4140.72 1.51 1.90 1.50 1.89

6 1600.59 1608.72 2566.13 3237.90 1.60 2.02 1.60 2.01

7 1173.07 1181.01 2053.86 2591.53 1.75 2.21 1.74 2.19

8 883.24 887.22 1670.80 2108.19 1.89 2.39 1.88 2.38

9 664.54 668.13 1372.46 1731.75 2.07 2.61 2.05 2.59

10 485.49 488.18 1133.74 1430.53 2.34 2.95 2.32 2.93

2 2 9549.18 10242.79 10636.93 13421.52 1.11 1.41 1.04 1.31

3 5733.32 5950.00 6755.19 8523.60 1.18 1.49 1.14 1.43

4 3876.63 3980.21 4810.68 6070.05 1.24 1.57 1.21 1.53

5 2856.13 2924.76 3645.15 4599.39 1.28 1.61 1.25 1.57

6 2152.17 2194.61 2869.08 3620.16 1.33 1.68 1.31 1.65

7 1656.64 1685.76 2315.14 2921.21 1.40 1.76 1.37 1.73

8 1328.43 1352.29 1898.54 2395.55 1.43 1.80 1.40 1.77

9 1054.40 1071.50 1574.72 1986.96 1.49 1.88 1.47 1.85

10 845.48 859.13 1316.13 1660.68 1.56 1.96 1.53 1.93

https://doi.org/10.1371/journal.pone.0255256.t002
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REs generally increase as kis increase but for smaller ms there are some cases that REs sightly

decrease as ks increase. The REs decrease as c increase from 0 to 2.

To investigate the relationship between relative efficiency of ATIS and the size of PSUs, we

partitioned the buttercup population into M = 6 PSUs of size 50 (Fig 3). We computed RE for

m = 3, 4, 5, 6; k = 12, 15, 18, 21, 24, 27 and c = 0, 1, 2. The pattern in REs resembled the results

Fig 2. The buttercup population is partitioned into 12 PSUs of size 25 and the relative efficiency of Murthy’s and

the inadmissable estimators of ATIS are computed for different values of m, k and c which are presented in 5

graphs.

https://doi.org/10.1371/journal.pone.0255256.g002
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for M = 12. Nevertheless, REs were higher for Ni = 25 than for Ni. However, REs of both esti-

mators exceeded 1 in all cases.

To understand the efficiency of ATIS in comparison to existing methods for rare and clus-

ter sampling, we compared ATIS with TACS. We simulated sampling of the buttercup popula-

tion (Fig 1) partitioned into 12 PSUs. Final sample sizes are random for TACS and ATIS so it

is not possible to compare variances directly. Thus, we first compared each sampling design

Fig 3. The buttercup population is partitioned into 6 PSUs of size 50 and the relative efficiency of Murthy’s and the

inadmissable estimators of ATIS are computed for different values of m, k and c which are presented in 5 graphs.

https://doi.org/10.1371/journal.pone.0255256.g003
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estimator with SRS with sample size equal to the effective final sample size of either ATIS or

TACS by computing the estimator efficiency as (14).

Applying the Monte Carlo method, we computed the empirical variances of ATIS estima-

tors for m = 9, 12; c = 0, 1, 2 and different kis. Then, we computed the variance of a SRS of the

same size as the effective final sample size of ATIS design corresponding to each case. Using

the same approach, we computed the efficiency of Horvitz-Thompson estimator, t̂HT , and

Hansen-Hurwitz estimator, t̂HH for TACS for m = 9, 12; c = 0, 1, 2 and different nis where ni is

the initial sample size from PSU i. For TACS details and notations see Seber and Salehi [1, 17].

We chose the closest effective final sample sizes of TACS, say E(νTACS)’s, and of ATIS, say E

(νTACS)’s for given m and c with different ni and ki (Table 3). We found that for m = 12,t̂HH of

TACS was the least efficient estimator. ATIS estimators were more efficient for moderate effec-

tive sample sizes whereas t̂HT , of TACS was more efficient for large effective final sample sizes.

For example, when the effective final sample sizes were approximately larger than 90, t̂HT of

TACS became more efficient than ATIS estimators for m = 12. For m = 9, TACS estimators

Table 3. The efficiencies of t̂ and ~t for ATIS and, those of t̂HT and t̂HT for TACS are computed for the buttercups population. They are computed for m = 9, 12 and

c = 0, 1, 2. The initial sample sizes ki and ni are chosen in the way that we have closest E(νTACS) and E(νATIS) in each row.

m c E(νTACS) EFðt̂HTÞ EFðt̂HHÞ E(νATIS) EFðt̂Þ EFð~tÞ
12 0 42.92 0.86 0.86 30.79 1.56 1.56

69.78 1.54 0.99 61.56 1.98 1.98

88.60 2.82 1.13 92.39 2.34 2.34

103.48 5.10 1.25 107.81 2.60 2.60

116.32 8.59 1.64 123.20 2.97 2.97

1 35.28 0.85 0.89 28.33 1.50 1.48

59.80 1.32 0.99 56.64 1.79 1.77

77.86 2.12 1.10 70.81 1.90 1.89

92.39 3.42 1.22 84.96 2.02 2.01

104.97 5.38 1.32 99.15 2.21 2.21

2 20.84 0.87 1.10 26.11 1.41 1.31

39.06 1.01 1.14 39.15 1.49 1.43

55.33 1.19 1.18 52.22 1.57 1.53

70.13 1.40 1.23 65.29 1.61 1.57

83.85 1.64 1.26 78.33 1.68 1.65

9 0 32.19 0.96 1.02 34.65 1.26 1.26

52.31 1.43 1.14 57.72 1.33 1.33

77.61 1.96 1.29 80.90 1.32 1.32

87.24 1.98 1.32 92.41 1.31 1.31

104.25 1.85 1.34 103.96 1.29 1.29

1 26.46 0.95 1.02 21.23 1.16 1.14

44.85 1.33 1.14 42.52 1.27 1.26

58.40 1.67 1.23 53.12 1.27 1.26

69.29 1.88 1.29 74.33 1.27 1.27

87.33 1.96 1.34 84.99 1.26 1.26

2 15.63 0.95 1.02 19.59 1.08 1.02

29.30 1.10 1.17 29.37 1.13 1.10

52.60 1.36 1.32 58.74 1.17 1.15

90.71 1.59 1.35 88.12 1.16 1.16

107.79 1.58 1.33 97.88 1.16 1.16

https://doi.org/10.1371/journal.pone.0255256.t003
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were more efficient for large and moderate effective final sample sizes and ATIS estimators

were more efficient for smaller effective sample sizes. However, the relative efficiency for ATIS

estimators were greater than one for all cases. But relative efficiency for TACS were less than 1

for some cases.

We also partitioned the buttercup population into 3 PSUs of size 100 and the simulation

results are given in the S1 Fig.

Estimation of occupancy. The relative performance of adaptive cluster sampling and its

different versions including TACS depends on neighborhood definition while ATIS is a neigh-

borhood-free adaptive sampling design. On the other hand, when the within-network variance

is small relative to the between-network variance, TACS performs poorly. In the extreme case

the variable of interest is a binary, such as the presence or absence of an object a species within

a sampling unit termed occupancy in the conservation literature [15, 19].

To investigate the performance of ATIS for estimating occupancy, we created a population

using a binary variable with two large networks (Fig 4). If we use the usual neighborhood defi-

nition for which neighbors are the north, south, east and west, the two rare networks in the

population will be broken into small networks. The relative efficiency (13) for ATIS estimators

were computed where c = 0, M = 12 and ki = 2, 3, . . ., 9, 10. The relative efficiency for TACS

estimators were computed where c = 0, M = 12 and the initial sample, ni = 2, 3, . . ., 9, 10. We

found that the relative efficiency of TSAC estimators were less than 1, for all cases while those

of ATIS estimators were substantially greater than 1 (Table 4). The reduced relative efficiency

Fig 4. A population of 300 quadrats is partitioned into 12 PSUs of size 25. The variable of interest is binary. The

value of those empty quadrats are 0. The value of each quadrat indicates the presence, 1, or the absence, 0, of a species.

Two-stage adaptive cluster sampling is carried out and the neighborhood of a quadrat is the north, south, east and west

quadrats. The highlighted quadrats are networks of size greater than one.

https://doi.org/10.1371/journal.pone.0255256.g004
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for TACS ranged from 16% to 23% for t̂HT and from 29% to 49% for t̂HH . The gain in relative

efficiency for ATIS ranged between 11% to 146%.

Conclusion

The introduced ATIS design is a neighborhood-free and efficient adaptive sampling method

that mimics how biologist would naturally search for a rare and clustered population. In addi-

tion, the design comes with an easy-to-compute estimator. The ATIS design yields signifi-

cantly more rare units than its conventional counterparts. In comparison with TACS, ATIS is

more efficient for small and moderate effective final sample sizes while TACS is more efficient

for large effective final sample sizes. However, ATIS is considerably efficient when the variable

of interest is binary whereas TACS performance is very poor for binary variable. Simulation

studies indicate that ATIS is robustly efficient compared to TACS as there are cases that both

estimators of TACS are less efficient than the conventional two-stage sampling even for rare

and clustered populations.

When the population is rare and very clustered such that when a large cluster is located

inside only one PSU, then there is a chance that all rare units will be missed unless all PSUs are

not selected in the first stage. We therefore recommend implementing the stratified version of

ATIS to whenever the budget and logistical constraints allow. We recommend choosing ki pro-

portional to size of the PSU. If ki is too small the likelihood not sequentially sampling is high.

The countervailing concern is that if ki’s are too large the budget and resources will be wasted

in PSUs without rare units. Whenever the condition C is chosen such that the variable of inter-

est for non-rare units are zero the easy-to-compute, inadmissable, estimator is as efficient as

Murthy’s estimator. We therefore recommend choosing C such that the variable of interest for

non-rare units is zero where possible.

Supporting information

S1 Fig. Simulation results. The graph presents the simulation study when the population is

partitioned into 3 PSUs.

(TIF)

S1 File. R codes. The R codes are used to run simulation studies.

(PDF)

Table 4. The relative efficiencies of t̂ and ~t for ATIS and, those of t̂HT and t̂HT for TACS are computed for population of Fig 4, the presence and absence population.

The relative efficiencies of ATIS and TACS are computed for m = 12, c = 0, with ki = 2, 3, . . ., 10 for ATIS, and with ni = 2, 3, . . ., 10 for TACS. For ATIS estimators, the rel-

ative efficiencies are calculated based on the effective final sample sizes of ATIS, EðnATISÞ. For TACS estimators, the relative efficiencies are calculated based on the effective

final sample sizes of TACS, E(νTACS).

ki; ni E(νTACS) REðt̂HTÞ REðt̂HHÞ EðnATISÞ REðt̂Þ REð~tÞ
2 30.41 0.77 0.71 27.18 1.11 1.11

3 44.73 0.78 0.69 40.78 1.27 1.27

4 58.57 0.79 0.67 54.36 1.39 1.39

5 71.96 0.80 0.64 67.93 1.52 1.52

6 84.98 0.81 0.62 81.53 1.62 1.62

7 97.66 0.82 0.59 95.12 1.77 1.77

8 110.06 0.82 0.57 108.73 1.95 1.95

9 122.20 0.83 0.54 122.34 2.16 2.16

10 134.12 0.84 0.51 135.91 2.46 2.46

https://doi.org/10.1371/journal.pone.0255256.t004
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S2 File.

(ZIP)

S1 Appendix. Derivation of t̂i.

(PDF)

S2 Appendix. Proof of cvarðt̂Þ ¼ cvarð~tÞ when c = 0.

(PDF)
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