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The role of the tumor microenvironment (TME) in immuno-oncology has

driven demand for technologies that deliver in situ, or spatial, molecular

information. Compartmentalized heterogeneity that traditional methods

miss is becoming key to predicting both acquired drug resistance to tar-

geted therapies and patient response to immunotherapy. Here, we describe

a novel method for assay-agnostic spatial profiling and demonstrate its

ability to detect immune microenvironment signatures in breast cancer

patients that are unresolved by the immunohistochemical (IHC) assessment

of programmed cell death ligand-1 (PD-L1) on immune cells, which repre-

sents the only FDA microenvironment-based companion diagnostic test

that has been approved for triple-negative breast cancer (TNBC). Two dis-

tinct physiological states were found that are uncorrelated to tumor muta-

tional burden (TMB), microsatellite instability (MSI), PD-L1 expression,

and intrinsic cancer subtypes.

1. Introduction

The role of the tumor microenvironment (TME) in

immuno-oncology has driven demand for technologies

that deliver in situ, or spatial, molecular information

[1,2]. Traditional molecular analysis methods do not

resolve compartmentalized heterogeneity, which is

becoming key to predicting both acquired drug resis-

tance to targeted therapies as well as patient response

to immunotherapy [3–6]. Due to its highly heteroge-

neous TME, triple-negative breast cancer (TNBC) is

one area of study that stands to benefit from such

spatial characterization. As an aggressive subtype that

represents 15–20% of all breast cancers, TNBC has a

high rate of metastasis and is particularly difficult to

treat due to the currently limited targeted therapeutics

[7,8]. Currently, the immunohistochemical (IHC)

assessment of PD-L1 of immune cells (SP142 clone,

Roche Tissue Diagnostics, Oro valley, AZ, USA) is the

only FDA microenvironment-based companion diag-

nostic test that has been approved for TNBC, serving

to select PD-L1 positive patients for treatment with ate-

zolizumab. This selection only increases the response

rate to 23%, from around 5% without selection [9,10].
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Emerging spatial technologies improve on the stain-

ing, IHC, and in situ hybridization (ISH) techniques

that have been in use for decades by integrating patho-

logical imaging with multiplexed molecular analysis.

However, the practicality of existing solutions limits

their utility and commercial adoption. Existing plat-

forms rely on custom chemistry, have limited multi-

plexing, experience low repeatability, rely on indirect

measurements that introduce variability, and have dif-

ficulty in detecting targets in low abundance [11,12].

Here, we present a novel tissue preparation method

that enables any pre-existing assay to produce spatial

maps from any tissue type and with any type of molecu-

lar analysis. This method, the Molecular FingerprintTM

(mPrintTM, bioSyntagma, Tempe, AZ, USA), uses micro-

fluidics and optical cavitation to remove cells from tissue

sections and indexes and transports them to a microplate

where they are processed using any desired modality,

such as next-generation sequencing (NGS), polymerase

chain reaction (PCR), and methylation analysis.

To demonstrate the utility of the mPrint in assessing

the tumor microenvironment, spatially correlated samples

were collected from primary tumors of 24 breast cancer

patients (four luminal, four HER2+, and 14 TNBC sam-

ples), and analyzed using a custom qPCR panel of 248

genes. Concordance to IHC data collected from the same

samples was assessed for method validation. Gene co-

expression networks were generated to identify correla-

tions between different sample subtypes and gene path-

ways. Results were analyzed in the context of the patient’s

overall tumor mutational burden (TMB), microsatellite

instability (MSI), and cancer subtype.

2. Materials and methods

2.1. Immunohistochemistry

The current study used remnant breast cancer tissue

samples from 22 patients provided by Caris Life Sci-

ences in 2019 (Phoenix, AZ, USA). Caris Life Sciences

de-identified all histopathologic reports and remnant

breast cancer tissue samples from the referring laborato-

ries. Based on this, the study complied with 45 CFR

46.101(b), was deemed exempt from Institutional

Review Board (IRB) approval, and waived consent

requirements. The study complied with the guidelines

for human studies provided by the World Medical Asso-

ciation Declaration of Helsinki. IHC analysis was per-

formed on formalin-fixed paraffin-embedded (FFPE)

tumor samples using automated staining techniques.

The primary antibody against CD3 was 2GV6 (Roche

Tissue Diagnostics), anti-CD4 was SP35 (Roche Tissue

Diagnostics), anti-CD8 was SP57 (Roche Tissue

Diagnostics), anti-CD20 was L26 (Roche Tissue Diag-

nostics), anti-CD45 was LCA 2B11 & PD7/26 (Cell

Marque, Rocklin, CA, USA), anti-CD68 was KP-1

(Roche Tissue Diagnostics), anti-PD-1 was NAT105

(Cell Marque), anti-PD-L1 was SP142 (Abcam, Cam-

bridge, UK), and anti-NY-ESO-1 was E978 (Sigma-

Aldrich, St. Louis, MO, USA).

2.2. Immunohistochemistry (IHC) quantification

QUPATH [13] (version 0.2.0-m2, open source) and IMAGEJ

(version 1.52o, open source) were used in conjunction

with a color deconvolution method to quantify the

amount of DAB stain present in an isolated portion of a

total IHC slide [13–15]. Initially, XY coordinates were

imported into QUPATH and aligned with isolated regions of

interest (ROIs) for IHC quantification. Each individual

ROI was imported into IMAGEJ with a down-sample factor

of 4. The color deconvolution method was applied per

ROI by selecting pixels that related to each stain type.

Stain 1: diaminobenzidine (DAB), Stain 2: hematoxylin,

and Stain 3: residual (background). After the stains were

selected, the ROI outline was added via the ROI manager,

and then, the IHC profiler Macro was used to quantify

the percentage contribution of pixels in the color-

deconvolved DAB image. The IHC profiler logged a per-

centage of high-positive, positive, low-positive, and nega-

tive pixel values as a percentage of the whole image which

was then used to assign the ROI (healthy, interface, can-

cer, necrotic) a specific score and calculate the area of the

ROI that is represented by DAB pixels. The score was set

by taking the sum of 3*[high-positive percentage], 2*[posi-
tive percentage], and 1*[low-positive] [16]. In addition, the

total percentage (high-positive, positive, and low-positive)

of DAB pixels was multiplied by the total pixel count to

find the total area of DAB-stained pixels in the area of

the ROI to supply an area vs. gene expression.

2.3. Microsatellite instability and tumor

mutational burden measurement

Microsatellite instability (MSI) and tumor mutational

burden (TMB) were assessed by NGS according to

previously published methods [17,18].

2.4. mPrint sample collection

Slides containing FFPE tissue samples were adhered to

a LightStream FloCellTM cartridge and attached to the

mPrint. Three separate tissue compartments were iden-

tified by a pathologist, consisting of (a) Normal—tis-

sue away from the tumor, (b) Interface—area between

viable tumor and inflammatory components, and (c)

1954 Molecular Oncology 17 (2023) 1953–1961 ª 2023 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Novel spatial diagnostic stratifies TNBC patients C. Ziegler et al.

 18780261, 2023, 10, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1878-0261.13515 by Q

atar U
niversitaet, W

iley O
nline L

ibrary on [18/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Cancer—viable carcinoma proper (> 90% cancer cells).

ROIs were then removed using microfluidic cavitation

techniques under fluid flow.

2.5. RNA extraction, reverse transcription, and

target preamplification

RNA was extracted from collected samples using the

RNeasy FFPE Kit (Qiagen, Hilden, Germany, Catalog

#73504). The FFPE RNA (1 ng) was reverse transcribed

using random hexamer priming in a 20 lL reaction using

PrimeScriptTM 1st strand cDNA Synthesis Kit (Takara

Bio USA, Inc., San Jose, CA, USA, Catalog #6110A)

following the manufacturer’s instructions. Half (10 lL)
of the cDNA reaction mix was then combined with

25 lL PreludeTM PreAmp Master Mix (Takara Bio USA,

Inc., Catalog #638541) and a pool of 248 oligo pairs

(400 nM each oligo; 496 total oligos) such that the target

concentration of each oligo in the final 50 lL PreLude

reaction was approximately 40 nM. After an initial

enzyme activation step (95 °C, 2 min), the reaction was

cycled for a limited number of cycles to increase the tar-

get yield 16 times (95 °C, 30 s; 50 °C, 5 min; 60 °C,
2 min), followed by a hold at 4 °C.

2.6. qPCR on the SmartChipTM Real-Time PCR

system

The analytical qPCR components were assembled and

dispensed as described in the SmartChip� MyDesign

Kit (Takara Bio USA, Inc., Catalog #640032) user

manual. Briefly, the cDNA preamplification reaction

mixture described above was diluted 1 : 10 with

nuclease-free water, combined with SmartChipTM TB

Green� Gene Expression Master Mix (Takara Bio

USA, Inc., Catalog #640211) and aliquoted into the

MSND 384-well sample source plate (Takara Bio

USA, Inc., Catalog #640018). Separately, each of the

248 assay pairs was combined with SmartChip TB

Green� Master Mix and aliquoted in separate wells of

the assay source plate so that each of the final single-

plex reactions in the chip would be present at 300 nM

in each 100 nL reaction. Samples and assays were dis-

pensed into the 5184 well SmartChip MyDesign Chip

using the SmartChip MultiSample NanoDispenser

(Takara Bio USA, Inc., Catalog #640001) in a 248-

assay 9 20 sample MyDesign dispense pattern. The

chips were sealed with optical cycling film, spun in an

Eppendorf refrigerated centrifuge (696 g, 4 °C, 5 min),

and then loaded into the SmartChip Real-Time PCR

Cycler (Takara Bio USA, Inc., Catalog #640023).

After an initial enzyme activation step (95 °C, 3 min),

the chip was cycled 35 times (95 °C, 20 s; 56 °C, 20 s;

60 °C, 15 s), followed by a melt curve program. Data

were analyzed according to the standard settings in the

SMARTCHIP QPCR software (Takara Bio USA, Inc.).

2.7. Hierarchical clustering of a single ROI

Normalized cycle threshold (CT) values were converted

to relative quantity (RQ) values assuming an amplifi-

cation efficiency value of 2 during on chip qPCR.

Hierarchical clustering was performed on the 248

genes across all patients using two-way Euclidean dis-

tance metrics. Clusters were evaluated by average link-

age for inter-cluster separation.

2.8. K-Means clustering for ‘spatial clustering’

Building on the groups discovered by the hierarchical

clustering, data from all regions were dimensionally

reduced via principal component analysis (PCA) from

a length of 248 genes 9 3 regions = 738 gene–region
pairs (e.g., WEE1—interface per patient to a latent

vector of length 11 per region, 11 9 3 = 33). These

latent vectors were clustered based on the K-Means

algorithm using Euclidean distance to ensure that

discovered clusters contained all region data and com-

pared with the previous hierarchical clustering. The K-

Means algorithm was run with varying cluster centers,

from 2 to 8. Cluster stability over multiple runs and

several performance metrics (Davies–Bouldin, Silhou-

ette, and Calinski–Harabaz scoring) were used to eval-

uate goodness of fit. K-Means clusters at K = 2 were

discovered to be similar to single ROI hierarchical

clustering (of the interface ROI) at a single-split level.

2.9. Gene co-expression visualizations

Based on RQ values across the n = 22 breast cancer

patients, modified versions of gene co-expression plots

were created. A subset of pathways was selected for

visualization: checkpoint, tumor suppressors, growth

regulation, DNA repair, receptors, and T-cell regula-

tion. This subset of pathways was selected based on a

need to simplify the amount of data being visualized,

as a larger number of pathways would make reading

the gene co-expression plots impractical. Some gene–
region pairs were removed from the visualization

based on a missing value threshold across the patients,

in order to remove the influence of correlations based

on gene–region pairs that are largely null, having been

removed by the qPCR quality control (QC) process

but represented as an arbitrary RQ value. Correlations

between gene–region pairs were then calculated based

on Pearson correlation at a confidence interval of 95%
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or greater. Based on thresholds for positive and

inverse correlations, subsets of purely intra-correlated

groups of gene–region pairs of arbitrary length in

threshold margins were created. Each node color is

assigned to a specific pathway, and each edge color

indicates a purely intra-correlated gene–region pair

group. Shared nodes between intra-correlated gene–
region groups indicate a shared gene–region pair

between groups. These central nodes shared between

many groups have a higher importance as they indi-

cate a high degree of potential causal correlations to

gene–region expression levels. This process was com-

pleted for both the un-clustered patient data and clus-

tered/split patient data, and for differing missing value

thresholds, positive correlation thresholds, and inverse

correlation thresholds. These co-expression graphs

were undirected and drawn in a circular layout. Visu-

alization of analysis was performed using python-

based Matplotlib (open source).

3. Results and Discussion

3.1. mPrint validation

The initial goal of this study was to validate the

mPrint workflow and demonstrate that samples col-

lected using the mPrint (Fig. 1) were both of sufficient

quality for downstream analysis, as well as reasonably

concordant with molecular profiles measured by the

current standard. To address concerns that nucleic

acids might be damaged by optical cavitation and fluid

exposure, whole tissue slices collected using the mPrint

were compared with slices of the same tissue collected

using the current industry standard of hand scraping.

As measured by RNA Integrity (RIN) and DV200,

there were no significant differences in quality between

mPrint and hand scraping (Fig. 2A). The samples had

DV200 values well above the industry standard of

30% required for reliable downstream analysis [19].

While the average RIN value of ~ 2.5 is relatively low,

this is well within the range expected from FFPE tis-

sues. Notably, the measurements are very similar

regardless of the collection method. Combined, these

factors indicate that the mPrint does not affect sample

quality.

The next step for method validation was to demon-

strate concordance of IHC quantitation with qPCR

gene expression measurements collected using mPrint.

Based on available IHC data, 22 samples were ana-

lyzed for CD3, CD8, and CD20 expression, and the

qPCR-IHC concordance indicated by R2 values was

0.74 for CD3, 0.56 for CD8, and 0.88 for CD20

(Fig. 2B). These R2 values were comparable to or

higher than currently available concordance measured

on an existing spatial analysis platform [20]. The same

analysis was also performed on ROIs collected using

the mPrint compared with the same regions isolated

on IHC images (Fig. 2C). Interestingly, the samples

Fig. 1. mPrint workflow and study overview. Molecular Fingerprint (mPrint) uses microfluidics and optical cavitation to remove cells from

tissue sections and indexes and transports them to a microplate where they are processed using any desired modality, such as next-

generation sequencing (NGS), quantitative polymerase chain reaction (qPCR), and methylation analysis. (A1) A tissue slide is imaged and sin-

gle cells or regions of interest (ROIs) are selected for removal. (A2) The tissue slide or serial section is attached to microfluidic cartridge.

(A3) Laser-induced cavitation bubbles lift cells from the slide and fluid flow transports material away. (A4) Collected material is dispensed

onto a 96-well plate, or other compatible format. (A5) DNA, RNA, or protein is isolated and (A6) material is analyzed using any commercially

available assay such as NGS or qPCR. (B1) A cohort of 22 patients consisting of 14 triple-negative breast cancer (TNBC), 4 HER2+, and 4

luminal-like patients was identified. (B2) Tissues from each patient were analyzed using hematoxylin and eosin (H&E) and standard immuno-

histochemistry staining (IHC). (B3) ROIs were identified by a pathologist and imported into the system’s software. (B4) ROIs were removed

using optical cavitation. (B5) Material was analyzed using qPCR on a panel of 248 genes, and results were digitally reconstructed, as a map

overlaid on the original tissue imagery for analysis. (B6) Correlations between gene expression and spatial location were assessed.
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varied greatly in expression based on location in the

TME, but followed the same general pattern with each

method of measurement. Notably, differences observed

in each comparison may be due to differences in z-axis

location inherent in using serial slices, or the fact that

RNA expression does not necessarily directly correlate

to protein levels, in addition to possible variations

introduced by the different methods. However, overall,

tissue samples collected using the mPrint seem to be

comparable to samples analyzed using the current

industry standard.

3.2. Whole tissue analysis masks heterogeneity

Gene expression profiles from isolated tissue compart-

ments were compared with profiles from whole tissue

scrapes from serial sections and, as expected, differ-

ences in expression profiles were identified (Fig. 3).

Hierarchical clustering of the whole tissue based on

the expression of the 248 gene panel stratified patients

differently as compared to interface or tumor ROIs.

Rather than characterizing the whole patient tumor as

‘hot’ (upregulated—up arrows in Fig. 3) or ‘cold’

(downregulated), each compartment within the

resected tissue was uniquely characterized as hot/cold

within the same patient. Since the current method of

evaluating patients for atezolizumab treatment

of TNBC based on overall PD-1/PD-L1 expression is

considerably ineffective, we propose that spatial molec-

ular profiles should be evaluated for the improvement

of stratifying patients more accurately according to

their likelihood of treatment response.

3.3. Gene expression at the tumor interface does

not group by tumor mutational burden,

microsatellite instability, or subtype

In addition to PD-1/PD-L1 analysis, cancer subtype,

tumor mutational burden, and microsatellite instability

are all factors that are currently taken into account

when making treatment recommendations. However,

patient grouping by hierarchical clustering (Fig. 4A)

Fig. 2. RNA quality and correlation to protein expression detected by immunohistochemistry (IHC). (A) High-quality nucleic acids are impor-

tant for successful downstream analysis by methods such as next-generation sequencing (NGS) or quantitative polymerase chain reaction

(qPCR). To evaluate the effect of optical cavitation on RNA quality, cells isolated by mPrint were compared with hand-scraped cells directly

from the tissue block, and their quality was compared. Using a bioanalyzer, the RNA integrity number (RIN) was determined to measure the

overall fragmentation of nucleic acids, and the percentage of RNA fragments greater than 200 base pairs (DV200) was measured to estab-

lish its suitability for sequencing. Ten samples were tested with N = 5/group, and SD plotted on the graph, showing no significant differ-

ences in quality between mPrint and hand-scraping specimen. (B) Representative whole slide and ROI images used for

immunohistochemistry (IHC) quantification. Shown is CD3 expression by IHC with pathologist annotations indicating regions of healthy,

interface, cancer, and necrotic tissue. The scale bar is 2 mm in the main image, and 250 lm in the image inserts. (C) Protein expression

measured by IHC was correlated with gene expression of the protein-encoding gene measured by qPCR. Overall coefficients of correlation

(R2) were determined for CD3, CD8, and CD20 across N = 22 patients. Representative correlative graphs are shown for each gene where

protein expression is plotted by quantifying the level of diaminobenzidine (DAB) in the IHC image, and gene expression is co-plotted by mea-

suring linearized cycle threshold (CT) values from qPCR.
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did not clearly correlate with any of these factors, indi-

cating that spatial analysis may be another variable to

take under consideration for improved patient stratifi-

cation. The tumor interface was of particular interest

because of its insight into the inflammatory and

immune response, and the hierarchical clustering of

patients based on gene expression in the interface

revealed two strongly distinct cohorts of hot and cold

microenvironments that were not correlated to the

patient’s overall TMB, MSI, or cancer subtype, as

shown in the ‘Inflamed’ and ‘Suppressed’ categories

shown in Fig. 4A,B.

Modified gene co-expression networks (Fig. 4C)

were generated for each patient group to visualize the

correlations between genes and their compartments for

the pathways of DNA repair, checkpoint, growth regu-

lation, tumor suppressors, T-cell regulation, and recep-

tors. Many genes were correlated not only to other

genes in their own compartment but also to genes in

adjacent compartments. These relationships may prove

useful in discovering biomarkers consisting of network

signatures rather than single gene relationships. For

example, in the cohort of patients with upregulated

microenvironments, PD-1 in the tumor interface was

correlated (R = 0.83) to the expression of CD8a, as

well as other genes involved in immune response

PIK3CG (R = 0.74) and CCL3 (R = 0.96). However,

in the downregulated patient group, PD-1 expression

Fig. 3. Patients cluster differently based on the tumor microenvironment (TME). A 248-gene panel measuring gene expression in the tumor

microenvironment (TME) was performed on N = 22 patients. Whole tissue sections of formalin-fixed paraffin-embedded (FFPE) tissues were

analyzed in addition to pathologist-identified regions of interest (ROI) from the tumor center and tumor interface from each patient. Hierarchi-

cal clustering is shown based on whole tissue sections (Left) compared with clustering based on only interface ROIs (Middle) and tumor

ROIs (Right). Clear groups of samples with overall upregulated or downregulated gene expression are observed in the whole tissue slices,

and patients considered ‘hot’ based on whole tissue analysis are designated by arrows. However, both the expression levels and patient

clustering differ drastically in ROI-specific analysis, illustrated in the redistribution of ‘hot’ patients across new clusters due to heterogeneity

in the TME.

Fig. 4. Spatial clustering analysis identifies correlations unrelated to tumor subtype or PD-1/PD-L1 expression. (A) Hierarchical clustering

analysis from a 248-gene panel performed on interface regions of the tumor microenvironment (TME) on N = 22 patients reveals two main

subgroups with overall gene expression upregulation or downregulation. Samples were also assessed for molecular subtype and pro-

grammed death ligand 1 (PD-L1) expression as determined by immunohistochemistry (IHC). (B) Patients within the same upregulated sub-

group demonstrated both high and low expression of PD-L1 as measured by IHC. The scale bar for patient 13 is 2 mm, and the image

insert is 200 lm. The scale bar for patient 4 is 2 mm, and its insert is 400 um. (C) Gene co-expression networks for up- and downregulated

subgroups visualizing correlations between genes and their TME compartments (healthy, interface, tumor, necrotic). In the diagram, each

node represents a gene from a TME compartment (gene–region pair), the node color indicates the gene pathway it belongs to, lines indicate

correlations between gene–region pairs (positive correlation greater than R2 = 0.7 or inverse correlations greater than R2 = 0.5), and line

colors indicate purely intra-correlated groups. Shared nodes between groups indicate a shared gene–region pair between groups. In the

upregulated cohort, programmed cell death 1 (PD-1) in the tumor interface correlates to expression of other immune genes, while in the

downregulated cohort no such correlations are present.
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in the interface did not correspond to any other genes

involved in the immune response. This could represent

an area for future study and possible targets for immu-

notherapy screening beyond the currently used PD-L1.

3.4. Limitations and future directions

While the mPrint method presents a novel approach to

spatial profiling with promising applications, it is
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important to acknowledge its limitations. Spatial tech-

nologies are generally characterized by their degree of

multiplexing (measured by the number of targets or

‘omics measured and their resolution (sub-cellular vs.

cellular). The mPrint is a high-plex, cellular-resolution

technology. However, the current embodiment of its

microfluidic design is not ideally suited for high-

throughput single-cell analysis (SCA), where thousands

or millions of cells are individually analyzed. As reso-

lution requirements for spatial technologies vary by

application, the mPrint is currently more compatible

with translational and clinical applications, rather than

discovery efforts that commonly employ high-

throughput SCA.

Looking ahead, the design of this novel platform

lends itself to integration with other methods like

auto-stainers and molecular tools such as sequencers

to provide automated sample-to-results solutions.

Beyond tissue collection, the unique results generated

by the mPrint function as an ideal input for novel

informatics approaches as well. It is currently

unknown what spatial resolution is necessary to

extract clinically relevant information from patient

samples. Ongoing preliminary studies by the authors

using machine learning and generative AI have demon-

strated promise in extracting clinically relevant

markers from high-resolution spatial data sets and

identifying those same clinical markers in low-

resolution data sets such as those produced by the

mPrint. High-resolution datasets are costly to generate,

typically only performed on physically small speci-

mens, and computationally expensive to analyze since

their files range from gigabytes to terabytes in size for

a single specimen. Further development of these AI/

ML methods would make companion diagnostic

(CDx) development less costly and more readily trans-

lated to the clinic.

4. Conclusions

The mPrint represents an effective, innovative

approach to gaining spatially dependent insights such

as the compartmentalized heterogeneity within the

tumor microenvironment. Building on this study to

narrow down prognostic indicators will be a focus of

future work, as the patients in this study were still

undergoing treatment at the time of this work, and

consequently, outcome data is not currently available

to determine which microenvironment factors contrib-

ute to therapeutic response. In the meantime, results

from this study suggest that patient stratification based

on molecular characteristics of the tumor microenvi-

ronment differs from existing methods of patient

stratification that rely on molecular subtyping of the

entire tumor and has the potential as an additional

variable to improve patient treatment selection.

Acknowledgements

This research was supported by the National Science

Foundation SBIR program (Awards: 1647818 and

1758649). We thank our colleagues from Takara Bio,

USA who provided support with custom assay devel-

opment, as well as Caris Life Sciences who provided

samples and clinical insights for this project.

Conflict of interest

The authors declare no conflict of interest.

Author contributions

CZ, AM, AF, ZG, DR, and DND conceived and

designed the project. CZ, AM, SA, PM, EC, BW, ZG,

DR, and DND acquired the data. CZ, AM, PM, IS,

CD, AF, SV, ZG, DR, and DND analyzed and inter-

preted the data. CZ, SA, PM, CD, SV, DR wrote the

paper. All authors contributed to the manuscript

review.

Data accessibility

The data that support the findings of this study are

available upon reasonable request from the corre-

sponding author.

References

1 Binnewies M, Roberts EW, Kersten K, Chan V, Fearon

DF, Merad M, et al. Understanding the tumor immune

microenvironment (TIME) for effective therapy. Nat

Med. 2018;24:541–50. https://doi.org/10.1038/s41591-
018-0014-x

2 Mani NL, Schalper KA, Hatzis C, Saglam O, Tavassoli

F, Butler M, et al. Quantitative assessment of the

spatial heterogeneity of tumor-infiltrating lymphocytes

in breast cancer. Breast Cancer Res. 2016;18:78. https://

doi.org/10.1186/s13058-016-0737-x

3 Pitt JM, Marabelle A, Eggermont A, Soria J. Targeting

the tumor microenvironment: removing obstruction to

anticancer immune responses and immunotherapy. Ann

Oncol. 2016;27:1–43.
4 Finotello F, Eduati F. Multi-Omics profiling of the

tumor microenvironment: paving the way to precision

immuno-oncology. Front Oncol. 2018;8:430. https://doi.

org/10.3389/fonc.2018.00430

1960 Molecular Oncology 17 (2023) 1953–1961 ª 2023 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Novel spatial diagnostic stratifies TNBC patients C. Ziegler et al.

 18780261, 2023, 10, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1878-0261.13515 by Q

atar U
niversitaet, W

iley O
nline L

ibrary on [18/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1186/s13058-016-0737-x
https://doi.org/10.1186/s13058-016-0737-x
https://doi.org/10.3389/fonc.2018.00430
https://doi.org/10.3389/fonc.2018.00430


5 Allegrezza MJ, Conejo-Garcia JR. Targeted therapy

and immunosuppression in the tumor

microenvironment. Trends Cancer. 2017;3(1):19–27.
https://doi.org/10.1016/j.trecan.2016.11.009

6 K€onig L, Mairinger FD, Hoffmann O, Bittner AK,

Schmid KW, Kimmig R, et al. Dissimilar patterns of

tumor-infiltrating immune cells at the invasive tumor

front and tumor center are associated with response to

neoadjuvant chemotherapy in primary breast cancer.

BMC Cancer. 2019;19(1):1–13. https://doi.org/10.1186/
s12885-019-5320-2

7 Deepak KGK, Vempati R, Nagaraju GP, Dasari VR,

Nagini S, Rao DN, et al. Tumor microenvironment:

challenges and opportunities in targeting metastasis of triple

negative breast cancer. Pharmacol Res. 2020;153:104683.

https://doi.org/10.1016/j.phrs.2020.104683

8 Bareche Y, Buisseret L, Gruosso T, Girard E, Venet

D, Dupont F, et al. Unraveling triple-negative breast

cancer tumor microenvironment heterogeneity:

towards an optimized treatment approach. J Natl

Cancer Inst. 2020;112(7):708–19. https://doi.org/10.
1093/jnci/djz208

9 Blackley EF, Loi S. Targeting immune pathways in

breast cancer: review of the prognostic utility of TILs

in early stage triple negative breast cancer (TNBC).

Breast. 2019;48:S44–8. https://doi.org/10.1016/S0960-
9776(19)31122-1

10 Emens LA, Cruz C, Eder JP, Braiteh F, Chung C,

Tolaney SM, et al. Long-term clinical outcomes and

biomarker analyses of Atezolizumab therapy for

patients with metastatic triple-negative breast cancer: a

phase 1 study. JAMA Oncol. 2019;5(1):74–82. https://
doi.org/10.1001/jamaoncol.2018.4224

11 Lee JH, Daugharthy ER, Scheiman J, Kalhor R,

Ferrante TC, Terry R, et al. Fluorescent in situ

sequencing (FISSEQ) of RNA for gene expression

profiling in intact cells and tissues. Nat Protoc. 2015;10

(3):442–58. https://doi.org/10.1038/nprot.2014.191
12 Decalf J, Albert ML, Ziai J. New tools for pathology: a

user’s review of a highly multiplexed method for in situ

analysis of protein and RNA expression in tissue. J Pathol.

2019;247:650–61. https://doi.org/10.1002/path.5223

13 Bankhead P, Loughrey MB, Fern�andez JA,

Dombrowski Y, McArt DG, Dunne PD, et al. QuPath:

open source software for digital pathology image

analysis. Sci Rep. 2017;7(1):1–7. https://doi.org/10.1038/
s41598-017-17204-5

14 Ruifrok AC, Katz RL, Johnston DA. Comparison of

quantification of histochemical staining by hue-

saturation-intensity (HSI) transformation and color-

deconvolution. Appl Immunohistochem Mol Morphol.

2003;11(1):85–91. https://doi.org/10.1097/00129039-
200303000-00014

15 Schneider CA, Rasband WS, Eliceiri KW. NIH image

to ImageJ: 25 years of image analysis. Nat Methods.

2012;9(7):671–5. https://doi.org/10.1038/nmeth.2089

16 Varghese F, Bukhari AB, Malhotra R, De A. IHC

profiler: an open source plugin for the quantitative

evaluation and automated scoring of

immunohistochemistry images of human tissue samples.

PLoS ONE. 2014;9(5):e96801. https://doi.org/10.1371/

journal.pone.0096801

17 Vanderwalde A, Spetzler D, Xiao N, Gatalica Z,

Marshall J. Microsatellite instability status determined

by next-generation sequencing and compared with PD-

L1 and tumor mutational burden in 11,348 patients.

Cancer Med. 2018;7(3):746–56. https://doi.org/10.1002/
cam4.1372

18 Gargano SM, Senarathne W, Feldman R, Florento E,

Stafford P, Swensen J, et al. Novel therapeutic targets

in salivary duct carcinoma uncovered by comprehensive

molecular profiling. Cancer Med. 2019;8:7322–9. https://
doi.org/10.1002/cam4.2602

19 Illumina. Evaluating RNA quality from FFPE samples.

[Online]. Available from: https://www.illumina.com/

content/dam/illumina-marketing/documents/products/

technotes/evaluating-rna-quality-from-ffpe-samples-

technical-note-470-2014-001.pdf

20 Ziai J, Caplazi P, Decalf J, Liang Y, de Almeida P,

Zollinger D, et al. Multiplexed analysis of immune cell

subsets in non-small cell lung cancer: validation of

protein and RNA analysis by the Nanostring digital

spatial profiling (DSP) platform. Cancer Immunother.

2018;78:2089.

1961Molecular Oncology 17 (2023) 1953–1961 ª 2023 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

C. Ziegler et al. Novel spatial diagnostic stratifies TNBC patients

 18780261, 2023, 10, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1878-0261.13515 by Q

atar U
niversitaet, W

iley O
nline L

ibrary on [18/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.trecan.2016.11.009
https://doi.org/10.1186/s12885-019-5320-2
https://doi.org/10.1186/s12885-019-5320-2
https://doi.org/10.1016/j.phrs.2020.104683
https://doi.org/10.1093/jnci/djz208
https://doi.org/10.1093/jnci/djz208
https://doi.org/10.1016/S0960-9776(19)31122-1
https://doi.org/10.1016/S0960-9776(19)31122-1
https://doi.org/10.1001/jamaoncol.2018.4224
https://doi.org/10.1001/jamaoncol.2018.4224
https://doi.org/10.1038/nprot.2014.191
https://doi.org/10.1002/path.5223
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1097/00129039-200303000-00014
https://doi.org/10.1097/00129039-200303000-00014
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1371/journal.pone.0096801
https://doi.org/10.1371/journal.pone.0096801
https://doi.org/10.1002/cam4.1372
https://doi.org/10.1002/cam4.1372
https://doi.org/10.1002/cam4.2602
https://doi.org/10.1002/cam4.2602
https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf

	Outline placeholder
	mol213515-aff-0001
	mol213515-aff-0002
	mol213515-aff-0003
	mol213515-aff-0004
	mol213515-fig-0001
	mol213515-fig-0002
	mol213515-fig-0003
	mol213515-fig-0004
	mol213515-bib-0001
	mol213515-bib-0002
	mol213515-bib-0003
	mol213515-bib-0004
	mol213515-bib-0005
	mol213515-bib-0006
	mol213515-bib-0007
	mol213515-bib-0008
	mol213515-bib-0009
	mol213515-bib-0010
	mol213515-bib-0011
	mol213515-bib-0012
	mol213515-bib-0013
	mol213515-bib-0014
	mol213515-bib-0015
	mol213515-bib-0016
	mol213515-bib-0017
	mol213515-bib-0018
	mol213515-bib-0019
	mol213515-bib-0020


