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Hierarchical honeycombs 

The first order of hierarchy is obtained by replacing all three-edge nodes of a regular hexagonal 

honeycomb with smaller, parallel hexagons. This procedure can be repeated at smaller scales to 

achieve higher orders of hierarchy, yet the thickness of the cell walls must be reduced 

simultaneously to keep the overall density fixed. Figure 1 shows the evolution of a regular 

hexagonal honeycomb and its corresponding cell as the order of hierarchy is increased. 

The structural organization of the structure at each order of hierarchy (𝛾𝑖) is defined by the ratio 

of the newly added hexagonal edge length (𝑏 for first order and 𝑐 for second order of hierarchy) 
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(see Fig. 1) to the original hexagon’s edge length (𝑎) (i.e., 𝛾1 = 𝑏 𝑎⁄  and 𝛾2 = 𝑐 𝑎⁄ )1. For first 

order of hierarchy, 0 ≤ 𝑏 ≤ 𝑎 2⁄  and thus, 0 ≤ 𝛾1 ≤ 0.5, where 𝛾1 = 0  represents the regular 

hexagonal honeycomb. For a structure with second order of hierarchy, 0 ≤ 𝑐 ≤ 𝑏 and 𝑐 ≤ 𝑎 2⁄ −

𝑏  and thus, 0 ≤ 𝛾2 ≤ 𝛾1  if 𝛾1 ≤ 0.25 , and 0 ≤ 𝛾2 ≤ (0.5 − 𝛾1)  if 0.25 ≤ 𝛾1 ≤ 0.5 . These 

geometrical constraints must be imposed on the structures to avoid overlapping edges. The 

dimensionless relative density (i.e., area fraction), compared to the material density, is given as: 

𝜌 = 2 √3⁄  . (1 + 2𝛾1 + 6𝛾2) . 𝑡 𝑎⁄  (S1) 

where 𝑡 is the wall thickness which is assumed to be uniform throughout the structure. 

 

Experimental specimen - material properties 

We used a rubber-like flexible material (commercial name TangoGray) as the bulk material to 

fabricate the specimen. To measure the material properties, five dog-bone specimens were 3D 

printed and tested under uniaxial tensile loading, and the stress-strain response of the material (i.e., 

engineering stress vs. engineering strain) is monitored up to the strain of 𝜀 = 0.3 (see Fig. S1). 

Since the test was performed quasi-statically, we neglected viscoelastic effect and captured the 

constitutive behavior using a nearly-incompressible Neo-Hookean hyperelastic model (Poisson’s 

ratio: ν0 = 0.49), whose strain energy is given by 𝑈 = 𝐺0(𝐼1̅ − 3)/2 + 𝐾0(𝐽 − 1)2/2, where 𝐼1̅ =

𝐽−2/3 tr[dev(𝐅T𝐅)], J = det (𝐅), and 𝐅 is the deformation gradient. We obtained the initial shear 

modulus (G0=1.7 MPa) and bulk modulus (K0=84.43 MPa) in the undeformed configuration by 

fitting the material model to the experimental data (see Fig. S1). The mechanical tests were 

performed based on ASTM-D638-10, which is the standard test method for measuring tensile 

properties of plastics. 



 

Figure S1. (Left) 3D printed dog-bone specimen for uniaxial tension test. (Right) Engineering 

stress vs. engineering strain for the tested material. 

 

Experiments 

The specimen was fabricated using PolyJet 3D printing technique out of TangoGray material 

which has an overall size of Width × Hight × Depth = 254 × 229 × 20 mm with wall thickness 

of 1 mm, maintaining a relative density of 8% for 𝛾1 = 0.25 . Next, we applied uniaxial 

compression along the y and x directions using an Instron 5582 testing machine with a 1 KN load 

cell. In order to calculate the Poisson’s ratio at each level of applied compression, the photographs 

of deformed configurations of the specimen was recorded using a digital camera. Then, we tracked 

RVEs’ boundary points (i.e., the points in touch with adjacent RVEs) to obtain their locations at 

different levels of deformation and used them to measure the horizontal and vertical distances (i.e., 

∆𝑥 and ∆𝑦, see Fig. S2) needed to evaluate the local strains (i.e., 𝜀𝑥𝑥 = ∆𝑥 ∆𝑥(0)⁄  and 𝜀𝑦𝑦 =

∆𝑦 ∆𝑦(0)⁄ ). The measurement was repeated at least at five different locations on the RVE at each 



level of compression. The Poisson’s ratio is then calculated as 𝜈𝑥𝑦 = −𝜀𝑦𝑦 𝜀𝑥𝑥⁄  and 𝜈𝑦𝑥 =

−𝜀𝑥𝑥 𝜀𝑦𝑦⁄ . 

 

Figure S2. Hierarchical honeycomb auxetic metamaterials: experimental setup. (left) Undeformed 

configuration of the fabricated first order hierarchical structure with 𝛾1 = 0.25. The representative 

volume element (RVE) is highlighted as yellow. (middle and right) Deformed configurations of 

the specimen and the RVE under compression along the y (𝜀𝑦𝑦 = −0.266, X-shape deformation 

mode) and x (𝜀𝑥𝑥 = −0.255, N-shape deformation mode) directions, respectively. 

 

Second order of hierarchy – additional results 

We performed FE simulations on second order hierarchical structures with 𝛾1 = 0.1 and 0.45 

under uniaxial compression along the x direction. The relative density was kept constant at 8%. 

The results are presented in Fig. S3 in the form of the normalized nominal stress (Fig. S3a) and 

Poisson’s ratio (Fig. S3b) versus the applied compressive strain. Deformed configuration of the 

RVEs at 20% compressive strain is also presented in Fig. S3c. The results presented in Fig. S3, 

which show the effect of the second order of hierarchy on auxetic response of hierarchical 

honeycombs, are similar to the results presented in Fig. 6 for compression in y direction. 



Next, Fig. S4 plots the evolution of Poisson’s ratio against 𝛾2 at 20% compressive strain for second 

order hierarchical structures with 𝛾1 = 0.1 and 0.45. The figure clearly shows that second order of 

hierarchy reduces the value of Poisson’s ratio for the structure with 𝛾1 = 0.1, whereas the opposite 

is true for the structure with 𝛾1 = 0.45. The reason for this behavior relies on the overall size of 

the smaller hexagons in the hierarchical structure. Introducing a higher order of hierarchy increases 

the overall size of the smaller hexagons, and this acts like increasing the value of 𝛾1 without 

increasing the order of hierarchy. This makes the structures with 𝛾1 < 0.375 to achieve a smaller 

Poisson’s ratio (moving from left to right in Fig. 5) with the opposite being true for 𝛾1 > 0.375 

(moving from left to right in Fig. 5). 

 

 



 

Figure S3. Honeycombs with second order of hierarchy. a) Stress-strain curves, and b) the 

evolution of Poisson’s ratio versus longitudinal strain, for second order hierarchical structure with 

𝛾1 = 0.1  and 𝛾1 = 0.45 , under uniaxial compression along the x direction. The stress is 

normalized with respect to the initial Young’s modulus of the cell wall material (𝐸0). c) Deformed 

configuration of the RVEs at 20%. 



 

Figure S4. Poisson’s ratio vs. 𝛾2 for second order hierarchical structures with 𝛾1=0.1 and 0.45. 
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