
Citation: Junaidi, D.R.; Ma, M.; Su, R.

Secure Vehicular Platoon

Management against Sybil Attacks.

Sensors 2022, 22, 9000. https://

doi.org/10.3390/s22229000

Academic Editor: Unai Hernandez

Received: 11 October 2022

Accepted: 16 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Secure Vehicular Platoon Management against Sybil Attacks
Danial Ritzuan Junaidi 1 , Maode Ma 2 and Rong Su 1,*

1 School of Electrical and Electronic Engineering, Nanyang Technological University,
Singapore 639798, Singapore

2 College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
* Correspondence: rsu@ntu.edu.sg

Abstract: The capacity of highways has been an ever-present constraint in the 21st century, bringing
about the issue of safety with greater likelihoods of traffic accidents occurring. Furthermore, recent
global oil prices have inflated to record levels. A potential solution lies in vehicular platooning, which
has been garnering attention, but its deployment is uncommon due to cyber security concerns. One
particular concern is a Sybil attack, by which the admission of fake virtual vehicles into the platoon
allows malicious actors to wreak havoc on the platoon itself. In this paper, we propose a secure
management scheme for platoons that can protect major events that occur in the platoon operations
against Sybil attacks. Both vehicle identity and message exchanged are authenticated by adopting
key exchange, digital signature and encryption schemes based on elliptic curve cryptography (ECC).
Noteworthy features of the scheme include providing perfect forward secrecy and both group forward
and backward secrecy to preserve the privacy of vehicles and platoons. Typical malicious attacks
such as replay and man-in-the-middle attacks for example can also be resisted. A formal evaluation
of the security functionality of the scheme by the Canetti–Krawczyk (CK) adversary and the random
oracle model as well as a brief computational verification by CryptoVerif were conducted. Finally,
the performance of the proposed scheme was evaluated to show its time and space efficiency.

Keywords: authentication; digital signature; elliptic curve cryptography; key exchange; platoons;
Sybil attack

1. Introduction

The spontaneous formation of a network of mobile devices interconnected wirelessly
has introduced the concept of mobile ad hoc networks (MANETs). In recent years, the
iteration of MANETs utilizing vehicles as mobile devices has evolved the research field
to what it is known as today: vehicular ad hoc networks (VANETs). Throughout their
evolution, VANETs have seen much progress in terms of different applications. One notable
application that has been gaining much interest is vehicle platooning. Platooning, in brief,
involves having a manually driven vehicle, known as a platoon leader, spearheading a
convoy of semi-automated vehicles in a single lane on the road. These vehicles can be
referred to as platoon members, and among this train of vehicles, they are all spaced closely
and uniformly apart from each other [1].

The benefits of platooning include decreasing the headway time (gap) between platoon
members, thereby providing better traffic management. A platoon can also help to increase
the capacity on highways as vehicles in the platoon take up less space than when vehicles
are independently and individually controlled [2]. Other known benefits of platooning
include cutting down on fuel consumption due to the reduced aerodynamic drag from the
slipstream effect of travelling in a close convoy [3], increased driving comfort and the re-
moval of human errors in traffic accidents since trailing vehicles can be semi-autonomously
driven. The smoother cruise also reduces engine wear [4].

Due to the automated nature of platooning, vehicles need to periodically broadcast
messages containing crucial information such as vehicle identity, position and speed [2].

Sensors 2022, 22, 9000. https://doi.org/10.3390/s22229000 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22229000
https://doi.org/10.3390/s22229000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4316-3526
https://doi.org/10.3390/s22229000
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22229000?type=check_update&version=2

Sensors 2022, 22, 9000 2 of 29

Hence, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications are
needed to facilitate the broadcast of such messages among the vehicles as well as to base
stations. These base stations are situated along the sides of roads and are known as
roadside units (RSUs). Interactions with RSUs and other platoon members provide crucial
information such as knowing whom to interact with and how to behave while inside the
platoon, thereby allowing the vehicles to move in tandem smoothly [5]. However, if this
network and its supporting actors are compromised, it could potentially cause the platoon
to be unsafe.

Such a scenario could occur if the communication channel of the network is disrupted.
For instance, vehicle nodes could experience a loss of signal for technical reasons when
multiple simultaneous transmissions among vehicles interfere with one another. Vehicles
would share the same channel and transmit at the same time, causing transmission packets
to collide and subsequently be dropped. Researchers such as in [6] have addressed this issue
in the platoon context by devising a channel allocation algorithm based on the orientation
of vehicles in a platoon. Since platoon vehicles are ordered in a single file and separated
uniformly from one another, vehicles can be allocated specific channels depending on
their distances from the platoon leader. In short, only platoon vehicles that are out of the
interference range can use the same channel. Their real-world experiment using Android-
based mobile devices showed that their scheme outperformed typical platooning systems
with regards to packet drop rates and delays.

On the other hand, an alternative hazardous scenario could arise whereby nodes that
are intentionally malicious worm their way into the network to influence the behaviors of
the vehicles in the platoon. One case where these malicious nodes can inhibit the operation
of platoons is through a Sybil attack. The definition of such an attack is when a malicious
actor forges fake virtual vehicles via pseudonyms [1] so that it can mask itself as multiple
simultaneous vehicles that seem to be physically present on the roads [1,2,7–11]. These
illegitimate vehicles, known as Sybil vehicles, can be preloaded with any number of false
credentials that are not of the original malicious node [7]. They can also steal the credentials
of legitimate vehicles and use the stolen information to impersonate them. If these Sybil
vehicles are admitted into platoons, the malicious node can send false messages to the
other platoon members through these virtual vehicles. These false messages are shared
within the platoon to fabricate fake traffic scenarios. The platoon and its members would
then have to consider the given traffic scenario and act accordingly, altering the platoon’s
original intentions and affecting its overall performance as a result. Furthermore, within the
platoon itself, the sheer presence of these Sybil vehicles causes undesirable gaps to appear
between the platoon members as they have to accommodate for the “physical presence”
of these virtual Sybil vehicles. In turn, it directly impedes the platooning benefits such as
fuel economy and road capacity [8]. Thus, it is imperative that only honest vehicles be
authenticated and admitted into platoons.

Motivation and Contributions

We have reviewed existing research work utilizing technologies of our interest. We
then focused on cryptographic-based works and discovered that they exhibited incomplete
authentication of vehicle identity and messages. Those that achieve complete authentication
only do so at high computational costs.

To overcome the shortcomings of these existing solutions, we designed a hybrid
security scheme that authenticated both vehicle identity and messages exchanged into a
platoon management scheme to prevent threats by Sybil vehicles. The proposed solution is
called secure platoon management against Sybil attacks (SPMSA) and employs the ECC
to provide a secure yet lightweight solution against the Sybil attacks hampering platoon
operations. Other typical attacks that SPMSA resists include replay, man-in-the-middle
and distributed denial-of-service attacks. Lastly, to preserve the privacy of the vehicles
and the platoon, our scheme offers perfect forward secrecy as well as group forward and
backward secrecy.

Sensors 2022, 22, 9000 3 of 29

The remainder of the paper is as follows: Section 2 discusses existing research work
related to platoon management against Sybil attacks. Section 3 discloses the system model
and preliminaries. Section 4 describes the SPMSA scheme in detail. The security and
performance of SPMSA are evaluated in Sections 5 and 6, respectively. Section 7 concludes
the paper.

2. Related Works

In this section, we provide a holistic overview of existing research work that has ad-
dressed the problem of Sybil attacks on vehicular platoons. Although various technologies
have been used to address this research problem, we only focus on three main technologies:
blockchain, machine learning and cryptography. However, investigators found that there is
a scarcity of work that explicitly addressed securing against Sybil attacks in the context of
vehicle platoons [2]. To the best of our knowledge, a general approach was taken by most
researchers, who addressed the problem of Sybil attacks in VANETs instead. Nevertheless,
we review those works that we believe can be adapted for platooning.

2.1. Blockchain

Bochem et al. [12] proposed a fully decentralized blockchain that monetarily disin-
centivizes the creation of Sybil identities in MANETs. It works with any proof-of-work
(PoW)-based blockchains (e.g., Ethereum) and binds vehicular node identities to cryp-
tographic public–private key pairs known as blockchain wallet addresses. Whenever a
vehicle wants to join the network, an identity proof is created for it. In this process, the
vehicle sends a cryptocurrency deposit to the deposit wallet, where this transaction is
subsequently mined into a block in the blockchain. Through the mined block, an identity
proof is created for the joining vehicle that contains the details of the transaction and
the wallet address (i.e., vehicle’s identity in the form of its public key) responsible for it.
Before the vehicle nodes can start to communicate, they exchange their uniquely generated
identity proofs as part of a two-way handshake to verify their peers’ identities and prevent
Sybil nodes from entering the network for free. The vehicle it exchanges its identity proof
with (i.e., identifier) is selected at random to prevent a scenario where a malicious vehicle
colludes with one of its Sybil vehicles to disingenuously validate itself. The scheme was
initially used for the offline verification of identity proofs, but Bochem and Leiding [13]
later adapted the scheme for Internet-of-Things (IoT) environments as well and included
the functionality of revoking false identities: If the identity proof of a vehicle is rejected,
the identity is revoked. The identifier deems the vehicle a possible Sybil vehicle, and no
further communication takes place between the vehicles. Moreover, since generating new
identities is expensive and there are likely to be a considerable number of honest nodes in
the network, it is infeasible for a malicious entity to perform attacks utilizing Sybil vehicles.
However, disregarding the costs for malicious users, the costs to honest users in this scheme
could be cause for concern. As the scheme leverages PoW, the costs of transactions are
higher since more blocks are mined, and hence, more energy is consumed. As we stated,
the cost of a revocation transaction increased by more than tenfold in just one year.

On the other hand, Liu et al. [14] proposed a dual cyber-physical blockchain instead for
building a secure and trusted communication for connected vehicle (CV) applications. Their
approach involved using the proof-of-stake (PoS) as its consensus mechanism and adopting
sharding to partition vehicles into regions and decrease computation, communication, and
storage costs. Two blockchains were used in their scheme: the trust points blockchain
and the proof-of-travel blockchain. The former quickly identifies and records malicious
misbehavior and can be regarded as a misbehavior detector. Intuitively, telling the truth
and being acknowledged by most neighbor vehicles earn trust points, while telling a lie
loses trust points. Meanwhile, the second blockchain records each vehicle’s historical
contribution to the CV community and can be regarded as a reputation management
system. This contribution comes in the form of a vehicle’s travel activities. The more traffic
information a vehicle shares with other vehicles around it, the greater its contribution to

Sensors 2022, 22, 9000 4 of 29

the CV community, and the more proof-of-travel credits it receives. The outputs of the
two blockchains are then added up to form the stake of a vehicle. The higher the vehicle
stake, the more trustworthy it is within the network. Hence, Sybil vehicles in the network
are detected if they have a small stake from the two blockchains. However, breaking
the area into multiple regions does intuitively mean more transfers of records between
blockchains in different regions when a vehicle travels frequently between regions. This
could accumulate considerable latency as more blockchain mining should occur.

Didouh et al. [15] proposed a novel cyber-physical blockchain architecture to prevent
position spoofing attackers such as Sybil nodes from becoming validated nodes for the
highway ETC application. The scheme is a witness-based approach using proof-of-location
(PoL) as its consensus mechanism. Smart contracts were used as an authentication method
to determine the legitimacy of a node. A consortium blockchain was maintained by the
RSUs in the network, granting these RSUs access and authority over the network. Thus,
only RSUs can mine new blocks and permit nodes into the blockchain. When a vehicle
(prover) enters the network, RSUs collect the prover’s PoLs provided by other vehicles
(witnesses) and calculate its overall score. Since the witnesses are likely to be honest, the
prover’s PoL should prove that the prover is in the position where it claims to be. If the
prover’s PoL score is below a specified threshold, it is determined to be a Sybil vehicle and
denied entry into the network. To ensure that the PoL scores are transparent for any node
to view and verify the information without the need for an external party, smart contracts
were published in the blockchain as their nonrepudiation nature guarantees that no vehicle
can deny the authenticity of its information on the blockchain.

2.2. Machine Learning

A form of machine learning is the support vector machine (SVM), which Gu et al. [16]
used to detect Sybil attacks in VANETs. The SVM was used to classify the driving patterns
of vehicles such that Sybil vehicles could be distinguished from legitimate ones. The flexible
nature and good generalization performance of the SVM allow it to reduce overfitting of
the data and solve various problems without requiring major tuning. This makes SVM a
suitable learning algorithm for the dynamic environment of VANETs. The driving patterns
of vehicles are thus defined as aggregations of the quantifiable vehicle data, which include
time, location, velocity, acceleration and acceleration variation. Crucially, the scheme works
on the hypothesis that when traffic is dense, vehicles drive in a similar manner, and hence,
any obvious outliers with relatively high variance in their driving patterns can be detected
as Sybil vehicles.

Similarly, the authors in [17] used the mobility information of vehicles sent to the RSUs
to form the input matrix that represents the driving patterns of the vehicles. Rather than
use an SVM, their scheme used extreme learning machine (ELM) to determine the similarity
of the mobility patterns and detect the Sybil nodes. ELM was used over traditional artificial
neural networks due to its greater advantage with regards to stopping criteria, learning
rate and minimum local and over-tuning, contributing to a faster and lower complexity
feed-forward learning algorithm. In both schemes [16,17], however, there are doubts as to
how effective they are when traffic density is low because then there is greater variation in
the benign vehicles’ driving patterns.

The concept of radio frequency (RF) fingerprinting was explored by [18], who inserted
signatures into transmitted I (in-phase) and Q (quadrature) samples so that a transmitter
could be passively identified as a friendly or authorized party. This was carried out by the
detection of these signatures through a deep convolutional neural network (CNN) at the
physical layer. Reus-Muns et al. [19] adapted this concept for use in 5G and open radio
access networks (open RANs) to identify trustworthy base stations instead. Doing so could
prevent Sybil attacks whereby base stations attempt to spoof as other base stations. Using
real-world datasets, they were able to demonstrate an accuracy of 99.86% irrespective of
the training and testing time gap. This outlines the potential benefit of building trust for
future open RAN networks and then for use in platoon networks to identify spoofing-

Sensors 2022, 22, 9000 5 of 29

based attacks such as Sybil attacks. Similarly, Comert et al. [20] used deep learning-
based RF fingerprinting methods to identify the malicious transmitters in cyber-physical
systems. However, the authors found that using real-world datasets that considered all
environmental scenarios was impractical. Hence, they used unobserved data instead and
obtained a peak accuracy of 87.94%, a modest drop from the results obtained by [19].

2.3. Cryptography

The work in [8] is one such cryptography-based work that has explicitly addressed
securing platoons against Sybil attacks. The authors did so by integrating a hybrid key
management with a witness-based mechanism as a defense protocol. Evaluations per-
formed using OMNeT++, SUMO and Veins framework showed that Sybil attacks could be
significantly deterred with minimal overhead effect on network throughput and delay. The
minimal overhead is realized by bootstrapping the credentials of the public key infrastruc-
ture to establish pairwise symmetric keys, making the proposed protocol lightweight as
a result. The identities of the vehicles are encrypted during transmission and decrypted
upon reception with this symmetric key, ensuring the safe transfer of vehicle identities
from one vehicle to another. A vehicle in the network is then able to verify whether a
neighboring vehicle is a Sybil node or not by inspecting its witness table. The witness table
holds the information of the other vehicles (witnesses) it passed along the way to reach the
verifier node, i.e., the route to the verifier vehicle. If there are missing witnesses, the verifier
deems the route invalid, and the node is detected as a Sybil vehicle. Hence, by symmetric
key cryptography and the witness-based algorithm, vehicle identities are authenticated.
However, the scheme is unable to verify the authenticity of messages exchanged among
the vehicles, which brings about the possibility of supposed trustworthy vehicles sending
false messages.

Authors in [9] proposed privacy-aware Sybil attack detection (PASAD) that aimed to
detect Sybil attacks in both V2V and V2I communications while preserving vehicle privacy.
The proposed scheme adopted the Boneh–Shacham (BS) short group signature and safe
physical authentication to set up a secure and privacy-aware communication channel for
the vehicles. The PASAD scheme is able to detect Sybil attacks on two levels. The first
level detects Sybil attacks from an outsider attacker by checking unique registrations of
vehicles for any double registrations. This level of detection utilizes the safe physical
authentication in trusted RSUs (TRSU) and the BS group signature in RSUs. Meanwhile, the
second level prevents insider Sybil attacks by checking for the retransmission of warning
messages in V2V communication and double-registrations of vehicles. At this level, the BS
group signature is used to ensure the uniqueness of warning messages and the vehicles
that sent them. In short, PASAD is able to prevent both outsider and insider attacks in a
decentralized manner, even when vehicles are out of range of the RSUs. Thus, the scheme
can achieve authentication by verifying both a vehicle’s physical presence and the short
group signatures attached to the broadcasted warning messages. Although additional
overhead is not imposed by the scheme, its increase in computational delay when there are
many invalid signatures is a cause for concern when VANETs have to be time efficient.

An alternative approach to detecting Sybil vehicles is seen in [10], who used times-
tamps in conjunction with a hybrid public key infrastructure. Specifically, a chain timestamp
was utilized to provide secure communication in the public channel. The proposed scheme
concatenated an encrypted message with a timestamp before it was transmitted to the
receiver. Another timestamp was generated upon the receipt of the message, and each
timestamp was subsequently recorded by the RSU. Under the chain timestamp concept, if
the RSU records consecutive timestamps that are the same, then a Sybil attack has been
detected and the session concludes. Otherwise, the message will be sent to the receiver as
normal. However, it is not shown how the identities of the vehicles are secured and hence
validated. Although a public key architecture is in place to ensure that a trusted authority
is in control of the private–public key pairs of the vehicles, the message exchange between
a sender and receiver only requires the receiver’s set of private and public keys. As it is

Sensors 2022, 22, 9000 6 of 29

a one-way communication system, the receiver is unaware of the identity of the sender,
who could very well be a malicious node. In such a scenario, the message received might
also not be safe. Thus, expanding the proposed scheme to authenticate the identity of the
sender and the messages received could help to provide greater security.

One work that adopted message authentication is [11], where elliptic curve cryptogra-
phy (ECC)-based digital signatures were attached to messages to verify their origin and
authenticity, thereby strengthening the vehicle’s privacy against Sybil attacks. The elliptic
curve digital signature algorithm (ECDSA) is a secure hash algorithm that generates and
verifies these signatures. When a vehicle sends a message, it signs the message using its
private key. The receiver is then able to verify the digital signature attached to the message
by using the sender’s public key. If the verification fails, the signature is rejected, and the
message is suspected of coming from a Sybil vehicle instead. Moreover, even if an attacker
were to steal this signature and use it as its own when communicating with other vehicles,
the verification process would still fail because the signature had been generated using the
private key and message of the original vehicle. The minimal delay in signature generation
and verification implies that the efficiency of the proposed scheme is dependent on the
traffic and message size instead. The proposed ECDSA can provide greater security and
safety for the vehicles during message transmission while being more time and memory
space efficient than other key cryptographic algorithms. In a future plan, one suggestion
was to extend the proposed scheme by assigning and registering unique identification
numbers (IDs) for vehicles to authenticate their identities. Although this would ensure
greater message security, it would also inherently increase the processing time.

3. System Model and Preliminaries
3.1. System Model

A typical highway scenario is considered wherein only vehicles equipped with the ap-
propriate on-board unit (OBU) can communicate wirelessly with other similarly equipped
vehicles and trusted RSUs within the VANET. Hence, these OBUs facilitate the vehicles’
communications. The fifth-generation cellular technology (5G), which is protected by
the security scheme specified as part of the Third Generation Partnership Project (3GPP)
standard, is used as the means for the V2I communication between the vehicles and the
RSU. Meanwhile, V2V communication that allowed vehicles to talk to one another utilized
dedicated short-range communication (DSRC). Each vehicle’s OBU was equipped with two
separate interfaces to allow for parallel V2I and V2V communications via 5G and DSRC,
respectively. A 5G core network database that was used to securely store the vehicles’
confidential data has a wired connection to each RSU. At least one platoon led by a platoon
leader is assumed to be present in the VANET at all times of the platoon operation. The
role of the platoon leader is assumed to remain with the same vehicle while the proposed
scheme is being run. In addition, no platoon members can communicate with any entities
outside of the platoon except for the platoon leader. A simple illustration of the architecture
of the system under the study can be found in Figure 1. In this paper, we focus on the
management of a platoon when a vehicle intends to join the platoon to the moment it
eventually leaves the same platoon.

3.2. Threat Model

The threat model we consider is the Canetti–Krawczyk (CK) adversary model [21–23],
which is defined as follows:

1. Participants: Let JV be the vehicle attempting to join a platoon, PL be the leader of
the specific platoon, RSU be a trusted RSU and P be any of the participants. All the
participants are considered oracles.

2. Partners: If two oracles. e.g., JV and PL, share the same session key, then they are
known as partners.

3. Adversary: A represents a Sybil vehicle adversary running in polynomial bounded
time that can attack by eavesdropping, modifying, injecting messages, etc.

Sensors 2022, 22, 9000 7 of 29

4. Queries: Various actions A can make are defined in the following queries:

a. Send(P, m): Amodifies and sends the message m to P, then receiving a response
from P.

b. Execute(JV, PL): A passively eavesdrops on the communication between JV and
PL, returning a copy of the information exchanged between the two participants.

c. Corrupt(P): A obtains a long-term private key of P.
d. ESReveal(P): A obtains the ephemeral private key of P.
e. SKReveal(P): A obtains the session key of P.
f. Expire(P): A deletes a completed session key of P.
g. Hash(m): A obtains random hash r due to the hashing of message m, i.e.,

Hash(m) = r. Any subsequent Hash(m) of the same m produces the same r.
h. Test(P): Used to test a session key’s semantic security. An unbiased coin c is

flipped. If c = 1, session key of P is sent to A. Otherwise, a random value is
sent to A.

5. Semantic Security: A semantically secure system is one in which within a reason-
able amount of time, it is infeasible for A to obtain significant information about a
plaintext message given only its ciphertext. Given that A’s objective is to predict the
result of a test query correctly, let Pr[S] denote the probability that A succeeds in its
prediction. Subsequently, the advantage of A in breaking the semantic security is
generally defined as Adv(A) = |2Pr[S]− 1|. Hence, if Adv(A) ≤ ε is satisfied for any
sufficiently small value ε > 0, the scheme is safe by the CK adversary model.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 31

Figure 1. System architecture.

3.2. Threat Model

The threat model we consider is the Canetti–Krawczyk (CK) adversary model [21–

23], which is defined as follows:

1. Participants: Let 𝐽𝑉 be the vehicle attempting to join a platoon, 𝑃𝐿 be the leader of

the specific platoon, 𝑅𝑆𝑈 be a trusted RSU and 𝑃 be any of the participants. All the

participants are considered oracles.

2. Partners: If two oracles. e.g., 𝐽𝑉 and 𝑃𝐿, share the same session key, then they are

known as partners.

3. Adversary: 𝒜 represents a Sybil vehicle adversary running in polynomial bounded

time that can attack by eavesdropping, modifying, injecting messages, etc.

4. Queries: Various actions 𝒜 can make are defined in the following queries:

a. Send(𝑃, 𝑚): 𝒜 modifies and sends the message 𝑚 to 𝑃, then receiving a re-

sponse from 𝑃.

b. Execute(𝐽𝑉, 𝑃𝐿): 𝒜 passively eavesdrops on the communication between 𝐽𝑉

and 𝑃𝐿, returning a copy of the information exchanged between the two partic-

ipants.

c. Corrupt(𝑃): 𝒜 obtains a long-term private key of 𝑃.

d. ESReveal(𝑃): 𝒜 obtains the ephemeral private key of 𝑃.

e. SKReveal(𝑃): 𝒜 obtains the session key of 𝑃.

f. Expire(𝑃): 𝒜 deletes a completed session key of 𝑃.

g. Hash(𝑚): 𝒜 obtains random hash 𝑟 due to the hashing of message 𝑚 , i.e.,

Hash(𝑚) = 𝑟. Any subsequent Hash(𝑚) of the same 𝑚 produces the same 𝑟.

h. Test(𝑃): Used to test a session key’s semantic security. An unbiased coin 𝑐 is

flipped. If 𝑐 = 1, session key of 𝑃 is sent to 𝒜. Otherwise, a random value is

sent to 𝒜.

5. Semantic Security: A semantically secure system is one in which within a reasonable

amount of time, it is infeasible for 𝒜 to obtain significant information about a

plaintext message given only its ciphertext. Given that 𝒜’s objective is to predict the

result of a test query correctly, let 𝑃𝑟[𝑆] denote the probability that 𝒜 succeeds in its

Figure 1. System architecture.

3.3. Elliptic Curve Cryptography

ECC is a type of public key cryptography that offers security equivalent to more
widely used cryptosystems such as the Rivest–Shamir–Adleman (RSA) algorithm while
requiring fewer bits for computation [11,22]. Hence, the ECC is ideal for systems that are
limited in terms of storage, bandwidth and power [11].

An elliptic curve in its simplest form satisfies the equation y2 = x3 + Ax + B, where
A, B ∈ FP are constants with 4A3 + 27B2 6= 0 mod p and p ≥ 5 is a prime number. Hence,
the constants A and B control the elliptic curve that is produced. The set of (x, y) 2-tuple

Sensors 2022, 22, 9000 8 of 29

that satisfies the elliptic curve equation lies on the curve itself and is referred to as E(FP).
One pair that fundamentally exists for an elliptic curve used in a system deploying ECC
is the generator point G, i.e., G is a point on the curve satisfying the equation and has
the coordinates of (x, y). Let d represent the private key, which is chosen randomly in the
interval [1, n− 1], where n is the order of G greater than 2Bit Size. This scalar multiplication
of d and G would then produce the public key D i.e., D = dG. It forms the basis of the ECC,
which works on the elliptic curve private–public key pair (d, D). Lastly, the security of the
ECC is guaranteed if the following computations hold [22]:

1. Elliptic curve discrete logarithm problem (ECDLP): Given two points G ∈ E(FP) and
aG ∈ E(FP), it is computationally hard for a polynomial time bound algorithm to
compute a ∈ FP.

2. Elliptic curve computational Diffie-Hellman (ECCDH) problem: Given three points
G ∈ E(FP), aG ∈ E(FP) and bG ∈ E(FP), it is computationally hard for a polynomial
time-bound algorithm to calculate abG where a, b ∈ FP are unknown parameters.

3. Elliptic curve decisional Diffie–Hellman (ECDDH) problem: Given four points G,
A = aG, B = bG and C = cG in E(FP), where a, b and c are unknown parameters and
a, b ∈ FP, it is difficult to determine if C = abG.

4. Proposed SPMSA

We proposed the SPMSA with the main motivation of establishing a platoon man-
agement scheme that would be secure against Sybil attacks. As mentioned, Sybil attacks
against platoons are defined as instances where fake virtual vehicles use forged identities
to admit themselves legitimately into platoons so as to disrupt the platoons’ operation. The
proposed scheme was designed with the intention of addressing most of the drawbacks of
current cryptographic implementations discussed in Section 2.3. These drawbacks include
incomplete identity and message authentication as well as high computation costs.

As it concerns platoon management, the proposed scheme operated over three main
events: platoon entry, platoon communication and platoon exit. In short, a vehicle’s entire
journey from joining the platoon to when it eventually leaves the platoon was covered.

4.1. Platoon Entry Event

Platoon entry is defined as when a vehicle is attempting to join a platoon by interacting
with its leader who has the authorization of admitting vehicles into its platoon. The major
security issue in this event is ascertaining the identity of the joining vehicle. The legitimacy
of this identity should be ensured by verifying that it truly is a registered vehicle. Another
security issue is verifying that the messages exchanged in the platoon were not altered.
Messages could be intercepted, altered and/or repeated by the Sybil vehicles to falsely
admit them into the platoon or deny entry to legitimate vehicles. Hence, the hybrid
authentication of both identity and message for this event is required and subsequently
provided by the SPMSA.

This event is further broken into four individual phases: initialization, identity authen-
tication, message authentication and platoon key update.

4.1.1. Initialization Phase

In the initialization phase, vehicles equipped with OBUs in the VANET first register
their unique vehicle IDs to the 5G core network database through an RSU to obtain the
common generator point G used throughout the network. The vehicles also obtain their
respective unique long-term private–public key pair (d, D) in return, which is used as
a pseudonym to preserve identity privacy [1]. Since a malicious node holds multiple
identities when carrying out a Sybil attack, each vehicle is only allowed one identity and
as such, can only possess one key pair (d, D) at one time. The initial platoon key qG is
generated so that all platoon members can use it to communicate with each other. Thus,
this platoon key is only shared among the platoon members. Timestamps were added to
each message throughout the operation of the platoon to ensure the freshness of messages,

Sensors 2022, 22, 9000 9 of 29

where T is the timestamp when a message is sent, while T′ is the timestamp when the
same message is received. Whenever a message is intercepted and relayed to the intended
recipient, additional time is taken up for the message transmission. Should the time delta
between reception and transmission exceed a specified threshold, that is, the estimated
time taken for the message to be in transit, i.e., if T′ − T > σ, the message might have
been intercepted, so the message and the associated session are discarded. Note that
the threshold adjusts independently for each message transmission to accommodate any
additional computational operations that could take place before a message is sent out as
well as after a message is received. Finally, it is assumed that the ECDLP, ECCDH and
ECDDH problems are hard to solve. The initialization phase happens before the start of
platoon operation.

4.1.2. Identity Authentication Phase

The identity authentication phase is visualized in Figure 2, where a Sybil vehicle is
detected whenever an if’ statement is not fulfilled. It is important to note that a Sybil
vehicle is detected in this manner throughout the entire operation of the platoon and not
just in this specific phase. The main objective of this phase is for the joining vehicle and
platoon leader to generate and agree upon a secret key that only they will share. This secret
key is commonly referred to as a session key and is used to encrypt and decrypt messages
so that unintended vehicles cannot decipher and read them. It can be seen as an attempt to
prevent external attacks, namely Sybil vehicles spoofing as authentic identities.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 31

6. 𝑟, 𝑠 ∉ [1, 𝑛 − 1]: Signature is invalid if this condition occurs

7. 𝑤 = 𝑠−1(𝑚𝑜𝑑 𝑛): Compute 𝑤

8. 𝑢1 = [(𝑆𝐻𝐴(𝑚) ∙ 𝑤 𝑚𝑜𝑑 𝑛]: Compute 𝑢1

9. 𝑢2 = (𝑟 ∙ 𝑤) 𝑚𝑜𝑑 𝑛: Compute 𝑢2

10. 𝑉 = (𝑢1 ∙ 𝐺 + 𝑢2 ∙ 𝐷) 𝑚𝑜𝑑 𝑛: Signature is valid if 𝑉 = 𝑟

As a result of the initialization phase, the joining vehicle 𝐽𝑉 and platoon leader 𝑃𝐿

own the private–public key pairs (𝑎, 𝐴) and (𝑏, 𝐵), respectively. To realize this exchange,

the existing elliptic curve Diffie–Hellman (ECDH) key exchange protocol is modified,

which itself is an ECC-based variant of the original Diffie–Hellman protocol [21]. The

identity authentication phase starts with the standard ECDH, where 𝐽𝑉 and 𝑃𝐿 ex-

change their public keys 𝐴 and 𝐵 so that they can each compute the same session key

thereafter. Upon receiving 𝐴, 𝑃𝐿 can then compute 𝑏𝐴 = 𝑏𝑎𝐺. Similarly, after receiving

𝐵, 𝐽𝑉 computes 𝑎𝐵 = 𝑎𝑏𝐺, which is equivalent, and thus, a common key is set up be-

tween the two vehicles.

However, to secure this secret key further, another round of key exchange between

the two vehicles occurs. In this round, both vehicles first generate a random temporary

private key known as an ephemeral private key, which expires and is updated to a new

random value once the identity authentication phase ends. A corresponding ephemeral

public key is then generated such that 𝐽𝑉, for example, would have an ephemeral private–

public key pair (𝑥, 𝐴′) = (𝑥, 𝑥𝐴) where 𝑥 ∈ [1, 𝑛 − 1]. 𝐽𝑉 would send to 𝑃𝐿 its ephem-

eral public key 𝐴’ = 𝑥𝐴 with an ECDSA signature 𝑆𝐼𝐺𝐴−3 attached to it that has been

signed using its initial private key 𝑎 . Upon reception, 𝑃𝐿 first verifies the signature

𝑆𝐼𝐺𝐴−3 and then the timestamp 𝑇3. If either fails to be validated, the message and session

are discarded as a potential Sybil vehicle has been detected. Otherwise, 𝑃𝐿 carries out

similar actions as 𝐽𝑉 and sends back its own signed ephemeral public key as acknowl-

edgment. If all the timestamps and signatures are valid, a session key 𝑎𝑥𝐵′ = 𝑏𝑦𝐴′ =

𝑎𝑥𝑦𝑏𝐺 can be derived and secretly agreed upon on both sides. Finally, the ephemeral pri-

vate keys of both vehicles are refreshed.

Figure 2. Identity Authentication Phase of the SPMSA.

4.1.3. Message Authentication Phase

Figure 3 demonstrates the procedure of the message authentication phase. The main

purpose of this phase is to hand the platoon key over to the joining vehicle in a secure

manner. Hence, to establish a secure handover of the platoon key, message authentication

is used to ensure the data integrity, origin and authenticity of the messages being

if

Generate ephemeral key

Compute

Message

Signed using

if

Send message

if verified ‘Valid’ with

if

Generate ephemeral key

Compute

Message

Signed using

Compute Session Key

Update to a new ephemeral key
if verified ‘Valid’ with

if

Compute Session Key

Update to a new ephemeral key

Input:

Output:

Send message

Figure 2. Identity Authentication Phase of the SPMSA.

The ECDSA is used to secure the message. It is an elliptic curve variant of the DSA and
boasts a shorter key length than the RSA. The ECDSA allows a sender to sign a message
with its own private key and attach the generated digital signature to the message. By
verifying the attached signature with the sender’s public key, the recipient can check
whether the signature and hence the message it is attached to are authentic and came from
the sender instead of an adversary. The ECDSA works as follows [11]:

Key Generation:

1. Elliptic Curve Parameters: A, B ∈ FP: Domain Parameters; G ∈ E(FP): Generator
Point; n: Order of G greater than 2256; d ∈ [1, n− 1]: Randomly selected Private Key
of Sender; D = d·G: Generated Public Key of Sender

Signature Generation [Input: message m, d]:

2. t·G = (A1, B1): A point on elliptic curve of randomly selected number t ∈ [1, n− 1]

Sensors 2022, 22, 9000 10 of 29

3. r = A1 mod n: Go back to Step 1 if r = 0
4. s = (t−1(SHA(m) + d ∗ r) mod n: Go back to Step 1 if s = 0, where SHA is the hash

function
3. (r, s): Output ECDSA Signature

Signature Verification [Input: message m, (r,s), D]:

6. r, s /∈ [1, n− 1]: Signature is invalid if this condition occurs
7. w = s−1(mod n): Compute w
8. u1 = [(SHA(m)·w mod n]: Compute u1
9. u2 = (r·w) mod n: Compute u2
10. V = (u1·G + u2·D) mod n: Signature is valid if V = r

As a result of the initialization phase, the joining vehicle JV and platoon leader PL own
the private–public key pairs (a, A) and (b, B), respectively. To realize this exchange, the
existing elliptic curve Diffie–Hellman (ECDH) key exchange protocol is modified, which
itself is an ECC-based variant of the original Diffie–Hellman protocol [21]. The identity
authentication phase starts with the standard ECDH, where JV and PL exchange their
public keys A and B so that they can each compute the same session key thereafter. Upon
receiving A, PL can then compute bA = baG. Similarly, after receiving B, JV computes
aB = abG, which is equivalent, and thus, a common key is set up between the two vehicles.

However, to secure this secret key further, another round of key exchange between the
two vehicles occurs. In this round, both vehicles first generate a random temporary private
key known as an ephemeral private key, which expires and is updated to a new random
value once the identity authentication phase ends. A corresponding ephemeral public key
is then generated such that JV, for example, would have an ephemeral private–public key
pair (x, A′) = (x, xA) where x ∈ [1, n− 1]. JV would send to PL its ephemeral public
key A′ = xA with an ECDSA signature SIGA−3 attached to it that has been signed using
its initial private key a. Upon reception, PL first verifies the signature SIGA−3 and then
the timestamp T3. If either fails to be validated, the message and session are discarded as
a potential Sybil vehicle has been detected. Otherwise, PL carries out similar actions as
JV and sends back its own signed ephemeral public key as acknowledgment. If all the
timestamps and signatures are valid, a session key axB′ = byA′ = axybG can be derived
and secretly agreed upon on both sides. Finally, the ephemeral private keys of both vehicles
are refreshed.

4.1.3. Message Authentication Phase

Figure 3 demonstrates the procedure of the message authentication phase. The main
purpose of this phase is to hand the platoon key over to the joining vehicle in a secure
manner. Hence, to establish a secure handover of the platoon key, message authentication is
used to ensure the data integrity, origin and authenticity of the messages being transmitted.
In contrast to identity authentication, message authentication can prevent internal attacks,
particularly, which is an attack by a Sybil vehicle that has been authenticated as a legal user
within the VANET. A modified version of the elliptic curve variant of integrated encryption
scheme (ECIES) is used to provide semantic security in this phase. Briefly, the standard
ECIES encrypts a plaintext message and attaches a message authentication code (MAC) to
this encrypted message [24]. The MAC is also known as a keyed hash function as it takes as
input a secret key (i.e., MAC key) and the encrypted message to produce a hash i.e., MAC
as the output. The MAC guarantees the message’s integrity and authenticity because only
an actor who has the knowledge of the secret key can generate the MAC [25]. Thus, the
receiver can check the MAC for authenticity of the message. Since the receiver shares the
same secret key with the sender, if the MAC is deemed invalid by the receiver, then the
message might have been tampered and is not safe to be decrypted. The modified ECIES
works as follows:

Sensors 2022, 22, 9000 11 of 29

Sensors 2022, 22, x FOR PEER REVIEW 11 of 31

transmitted. In contrast to identity authentication, message authentication can prevent in-

ternal attacks, particularly, which is an attack by a Sybil vehicle that has been authenti-

cated as a legal user within the VANET. A modified version of the elliptic curve variant

of integrated encryption scheme (ECIES) is used to provide semantic security in this

phase. Briefly, the standard ECIES encrypts a plaintext message and attaches a message

authentication code (MAC) to this encrypted message [24]. The MAC is also known as a

keyed hash function as it takes as input a secret key (i.e., MAC key) and the encrypted

message to produce a hash i.e., MAC as the output. The MAC guarantees the message’s

integrity and authenticity because only an actor who has the knowledge of the secret key

can generate the MAC [25]. Thus, the receiver can check the MAC for authenticity of the

message. Since the receiver shares the same secret key with the sender, if the MAC is

deemed invalid by the receiver, then the message might have been tampered and is not

safe to be decrypted. The modified ECIES works as follows:

Encryption of message 𝒎 [Input: 𝒂𝒙𝒚𝒃𝑮]:

1. 𝐾𝐷𝐹(𝑎𝑥𝑦𝑏𝐺) = 𝐾𝐸||𝐾𝑀: A Key Derivation Function (KDF) is used to derive Sym-

metric Encryption Key 𝐾𝐸 and MAC Key 𝐾𝑀 from the shared Session Key 𝑎𝑥𝑦𝑏𝐺

2. 𝐸𝑁𝐶(𝐾𝐸; 𝑚) = 𝑐: Encrypt message 𝑚 using Symmetric Encryption Key 𝐾𝐸

3. 𝑀𝐴𝐶(𝐾𝑀; 𝑐) = 𝑑𝐴: Generate the MAC tag 𝑑𝐴 of encrypted message 𝑐 using MAC

Key 𝐾𝑀

4. 𝑐||𝑑𝐴: Ciphertext output of joining vehicle 𝐽𝑉

Decryption of ciphertext 𝒄||𝒅𝑨 [Input: 𝒄||𝒅𝑨, 𝒂𝒙𝒚𝒃𝑮]:

5. 𝐾𝐷𝐹(𝑎𝑥𝑦𝑏𝐺) = 𝐾𝐸||𝐾𝑀: Symmetric Encryption Key 𝐾𝐸 and MAC Key 𝐾𝑀 is de-

rived by 𝑃𝐿 in the same manner as 𝐽𝑉 did

6. 𝑀𝐴𝐶(𝐾𝑀; 𝑐) = 𝑑𝐵: MAC is Valid’ and encrypted message 𝑐 has not been tampered

with in transit if 𝑑𝐵 = 𝑑𝐴

7. 𝐸𝑁𝐶−1(𝐾𝐸; 𝑐) = 𝑚: Decrypt 𝑐 using Symmetric Encryption Key 𝐾𝑀 to obtain mes-

sage 𝑚

Figure 3. Message Authentication Phase of the SPMSA Scheme.

This phase is initiated by 𝐽𝑉 sending 𝑃𝐿 a request to join 𝑃𝐿’s platoon with a hash

of its ID, and the accompanying ECDSA signature 𝑆𝐼𝐺𝐴−5 belonging to 𝐽𝑉. The session

Generate by

Message

Message

Encrypt using

Attach using
if = ‘Valid’

Decrypt using

if verified ‘Valid’ with

if

if tallies with ID Records via

Generate new partial Platoon Key

Message

Signed using

Message

Encrypt using

Attach using

Update to new Platoon Key
Generate by

Add into

Share new partial Platoon Key if = ‘Valid’

Decrypt using

if verified ‘Valid’ with

if

Receive

Compute Platoon Key

Generate by

Input:

Output:

Generate by

Figure 3. Message Authentication Phase of the SPMSA Scheme.

Encryption of message m [Input: axybG]:

1. KDF(axybG) = KE||KM : A Key Derivation Function (KDF) is used to derive Sym-
metric Encryption Key KE and MAC Key KM from the shared Session Key axybG

2. ENC(KE; m) = c: Encrypt message m using Symmetric Encryption Key KE
3. MAC(KM; c) = dA: Generate the MAC tag dA of encrypted message c using MAC

Key KM
4. c||dA : Ciphertext output of joining vehicle JV

Decryption of ciphertext c||dA [Input: c||dA, axybG]:

5. KDF(axybG) = KE||KM : Symmetric Encryption Key KE and MAC Key KM is de-
rived by PL in the same manner as JV did

6. MAC(KM; c) = dB: MAC is Valid’ and encrypted message c has not been tampered
with in transit if dB = dA

7. ENC−1(KE; c) = m: Decrypt c using Symmetric Encryption Key KM to obtain mes-
sage m

This phase is initiated by JV sending PL a request to join PL’s platoon with a hash
of its ID, and the accompanying ECDSA signature SIGA−5 belonging to JV. The session
key axybG computed at the end of the identity authentication phase is used as the input
to the KDF to derive the symmetric encryption key KE and MAC key KM. The benefit
of generating the two keys from the KDF is that key diversification can be achieved. The
session key is essentially hashed because a master key (i.e., session key) is being separated
into two children keys (i.e., KE and KM). Thus, even if an attacker wants to obtain one of
the derived keys, it is unable to reverse engineer the stolen key to get the entire session key
or the other derived keys. Thus, JV uses KE to encrypt the concatenated message M5, and
KM to generate and attach a MAC to the encrypted form of M5 before sending them over
to PL. It ensures that any tamper attempt on the encrypted message (i.e., joining request,
ID, timestamp, and signature) can be checked and detected by the PL through this MAC
upon message reception.

Only if the following conditions occur in order is a new partial platoon key p
generated and JV’s identity added into the platoon members list PMList as a 2-tuple
(A, H(pG, H(IDA))):

Sensors 2022, 22, 9000 12 of 29

1. MAC from JV is valid
2. JV’s digital signature SIGA−5 is valid
3. Timestamp delta is within threshold range σ5
4. Hashed IDA tallies with the ID records in the 5G core network database after the PL

sends a database check query through the RSU

If the above conditions are satisfied, a new partial platoon key p is generated and sent
to JV using the same message composition procedures conducted by JV at the start of
the message authentication phase. It allows JV to compute the updated platoon key pG,
thereby authenticating it as an official platoon member PM that can communicate with
others from now on. At the same time, PL shares this new partial platoon key p with other
current PMs, who will update their platoon key according to the new key pG to preserve
the privacy of the previous platoon key qG from the new platoon member, JV. This can
ensure group backward secrecy on the old platoon key qG achieved.

Platoon-wide symmetric encryption and MAC key are then generated by a KDF of the
common platoon key pG upon JV entering the platoon, and these keys are referred to as
PKE and PKM, respectively. Consequently, all authenticated platoon members PMs share
the same set of PKE and PKM keys. As can be seen, the use of digital signatures and MACs
ensures the origin, data integrity and authenticity of messages exchanged in this phase.

4.1.4. Platoon Key Update Phase (Entry)

This phase occurs whenever a vehicle is authenticated to enter the platoon. As
mentioned in the message authentication phase, all existing platoon members will have the
new platoon key pG shared with them by the PL. Hence, the primary objective is to allow
the PL to distribute the new partial platoon key p to the existing members in its platoon. In
this phase, the PL will send out an update request UpdateREQ and the partial platoon key
p it generated to all current platoon members by attaching a timestamp and old platoon
signature SIGqG−7 to it. The platoon signature is similarly signed using the old partial
platoon key q.

Subsequently, the message is encrypted with a MAC attached to it. Once again, the
previous set of platoon encryption and MAC keys PKE′ and PKM′ are used to carry these
actions out. When the validity of the MAC, platoon signature and timestamp attached to
the message sent are verified by the PM, the PM is able to derive the new platoon key
pG and thereby generate a new set of platoon encryption and MAC keys PKE and PKM.
A platoon key sends acknowledgment UpdateACK back to the PL to indicate the correct
reception of the new platoon keys. This acknowledgment is accompanied by a timestamp
and new platoon signature SIGpG−8 before being encrypted and tagged with a MAC using
the new keys PKE and PKM instead of the previous keys PKE′ and PKM′. The algorithm
works as shown in Figure 4.

4.2. Platoon Communication Event

The platoon communication event refers to a scenario where successfully authenticated
platoon members PMs intend to transmit payload information to other members during
platooning. Message authentication is once again used, but this time its purpose is to
conduct payload communication rather than transfer a platoon key. Let JV be the vehicle
that has just joined the platoon and is the latest authenticated PM. Additionally, let an
example scenario for this event be a PM informing JV to close the physical distance between
them. The message exchange algorithm for this event is similar to that of the message
authentication phase found in Section 4.1.3.

However, to protect the privacy of the vehicles in the platoon, the only information
being sent over the communication channel of the platoon in this event is action requests
and acknowledgements. In this instance, only CloseUpREQ and CloseUpACK messages
are exchanged between the two vehicles. Each message is assigned with a timestamp and
signed afterward using the partial platoon key p. The messages are then encrypted using
the PKE key, and a MAC generated by the PKM key is attached to the resulting ciphertext.

Sensors 2022, 22, 9000 13 of 29

The receiving party of the request message, i.e., JV, then verifies the attached MAC and
decrypts the ciphertext using the same set of PKE and PKM keys used by PM. If the
platoon signature can be verified as valid using platoon key pG and the timestamp delta is
less than the threshold σ9, JV is able to acknowledge PM’s request and execute it. JV then
replies to PM in an equivalent manner by attaching a timestamp and platoon signature to
the message before encrypting it and tagging it with a MAC using the same PKE and PKM
keys. At the end of the message exchange, PM receives an acknowledgement CloseUpACK
informing it that JV is executing the CloseUp action. Figure 5 details the algorithm for
this event.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 31

Figure 4. Platoon Key Update Phase of the SPMSA Scheme when a Vehicle Enters the Platoon.

4.2. Platoon Communication Event

The platoon communication event refers to a scenario where successfully authenti-

cated platoon members 𝑃𝑀𝑠 intend to transmit payload information to other members

during platooning. Message authentication is once again used, but this time its purpose is

to conduct payload communication rather than transfer a platoon key. Let 𝐽𝑉 be the ve-

hicle that has just joined the platoon and is the latest authenticated 𝑃𝑀. Additionally, let

an example scenario for this event be a 𝑃𝑀 informing 𝐽𝑉 to close the physical distance

between them. The message exchange algorithm for this event is similar to that of the

message authentication phase found in Section 4.1.3.

However, to protect the privacy of the vehicles in the platoon, the only information

being sent over the communication channel of the platoon in this event is action requests

and acknowledgements. In this instance, only 𝐶𝑙𝑜𝑠𝑒𝑈𝑝𝑅𝐸𝑄 and 𝐶𝑙𝑜𝑠𝑒𝑈𝑝𝐴𝐶𝐾 messages

are exchanged between the two vehicles. Each message is assigned with a timestamp and

signed afterward using the partial platoon key 𝑝. The messages are then encrypted using

the 𝑃𝐾𝐸 key, and a MAC generated by the 𝑃𝐾𝑀 key is attached to the resulting cipher-

text. The receiving party of the request message, i.e., 𝐽𝑉, then verifies the attached MAC

and decrypts the ciphertext using the same set of 𝑃𝐾𝐸 and 𝑃𝐾𝑀 keys used by 𝑃𝑀. If the

platoon signature can be verified as valid using platoon key 𝑝𝐺 and the timestamp delta

is less than the threshold 𝜎9, 𝐽𝑉 is able to acknowledge 𝑃𝑀’𝑠 request and execute it. 𝐽𝑉

then replies to 𝑃𝑀 in an equivalent manner by attaching a timestamp and platoon signa-

ture to the message before encrypting it and tagging it with a MAC using the same 𝑃𝐾𝐸

and 𝑃𝐾𝑀 keys. At the end of the message exchange, 𝑃𝑀 receives an acknowledgement

𝐶𝑙𝑜𝑠𝑒𝑈𝑝𝐴𝐶𝐾 informing it that 𝐽𝑉 is executing the 𝐶𝑙𝑜𝑠𝑒𝑈𝑝 action. Figure 5 details the

algorithm for this event.

Previous by

Message

Message

Encrypt using

Attach using if = ‘Valid’

Decrypt using

if verified ‘Valid’ with

if

Update to new Platoon Key

Generate by

Message

Signed using

Message

Encrypt using

Attach using
if = ‘Valid’

Decrypt using

if verified ‘Valid’ with

if

Receive

Input:

Output:

Current by

Figure 4. Platoon Key Update Phase of the SPMSA Scheme when a Vehicle Enters the Platoon.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 31

Figure 5. Platoon Communication Event of the SPMSA Scheme.

4.3. Platoon Exit Event

A platoon exit occurs when a current platoon member informs its platoon leader that

it wishes to leave the platoon. Once again, since it is an interaction between authenticated

platoon members, the message comes from the leaving vehicle, and it should be confirmed

that the message has not been tampered with by a malicious platoon member. Hence, only

message authentication is used throughout the two phases of this event.

4.3.1. Exit Request Phase

The aim of this phase is to allow a vehicle to leave the platoon without compromising

the privacy of the platoon afterwards. For simplicity’s sake, it is assumed that the leaving

vehicle is 𝐽𝑉, which holds the same set of keys and maintains information after the pla-

toon entry and communication events. The JV is denoted as 𝐿𝑉 to indicate it is a leaving

vehicle. Once again, the algorithm for this phase is similar to that in Section 4.1.3 as it

ultimately is the inverse operation of the message authentication phase. The contents of

the message sent by 𝐿𝑉 contains a platoon leaving request 𝐿𝑒𝑎𝑣𝑒𝑅𝐸𝑄 and a hashed 2-

tuple of the current platoon key 𝑝𝐺 and 𝐿𝑉’𝑠 hashed identity 𝐻(𝐼𝐷𝐴) i.e.,

𝐻(𝑝𝐺, 𝐻(𝐼𝐷𝐴)). The composition of the message is the same as that of Section 4.2, where a

timestamp and platoon signature are attached to the message before 𝑃𝐾𝐸 and 𝑃𝐾𝑀 keys

are used to encrypt the message and tag it with a MAC.

On the reception of the encrypted message, the 𝑃𝐿 first checks the validity of the

MAC, platoon signature and timestamp. If they are all valid, the 𝑃𝐿 then verifies if 𝐿𝑉’𝑠

double identity is in the platoon members list 𝑃𝑀𝐿𝑖𝑠𝑡, i.e., if 𝐿𝑉 is an authenticated mem-

ber of the platoon. If 𝐿𝑉’𝑠 record is in the 𝑃𝑀𝐿𝑖𝑠𝑡, its entry is removed from the list and

a platoon exit acknowledgment 𝐿𝑒𝑎𝑣𝑒𝐴𝐶𝐾 is sent back to the 𝐿𝑉. Similar to the first mes-

sage sent by 𝐿𝑉 in this phase, the same procedure is used by 𝑃𝐿 to prepare the message

for transmission to the 𝐿𝑉. At the same time, a partial platoon key 𝑟 is generated by 𝑃𝐿

so that it can update its current platoon key 𝑝𝐺 to the latest key 𝑟𝐺. This updated partial

platoon key is then shared only with the other platoon members 𝑃𝑀𝑠 that will be staying

in the platoon.

Upon receipt of 𝐿𝑒𝑎𝑣𝑒𝐴𝐶𝐾, the 𝐿𝑉 can leave the platoon as it has been deemed safe

to exit. This is because the 𝐿𝑉 does not retain any significant information pertaining to

the platoon and its members. For example, to ensure group forward secrecy, the platoon

key 𝑟𝐺 being used by the platoon after 𝐿𝑉’s exit is different from the one that 𝐿𝑉 still

Message

Message

Encrypt using

Attach using

if = ‘Valid’

Decrypt using

if verified ‘Valid’ with

if

Message

Signed using

Message

Encrypt using

Attach using

Execute
if = ‘Valid’

Decrypt using

if verified ‘Valid’ with

if

Receive

Input:

Output:

Figure 5. Platoon Communication Event of the SPMSA Scheme.

4.3. Platoon Exit Event

A platoon exit occurs when a current platoon member informs its platoon leader that
it wishes to leave the platoon. Once again, since it is an interaction between authenticated
platoon members, the message comes from the leaving vehicle, and it should be confirmed
that the message has not been tampered with by a malicious platoon member. Hence, only
message authentication is used throughout the two phases of this event.

Sensors 2022, 22, 9000 14 of 29

4.3.1. Exit Request Phase

The aim of this phase is to allow a vehicle to leave the platoon without compromising
the privacy of the platoon afterwards. For simplicity’s sake, it is assumed that the leaving
vehicle is JV, which holds the same set of keys and maintains information after the platoon
entry and communication events. The JV is denoted as LV to indicate it is a leaving vehicle.
Once again, the algorithm for this phase is similar to that in Section 4.1.3 as it ultimately is
the inverse operation of the message authentication phase. The contents of the message sent
by LV contains a platoon leaving request LeaveREQ and a hashed 2-tuple of the current
platoon key pG and LV’s hashed identity H(IDA) i.e., H(pG, H(IDA)). The composition
of the message is the same as that of Section 4.2, where a timestamp and platoon signature
are attached to the message before PKE and PKM keys are used to encrypt the message
and tag it with a MAC.

On the reception of the encrypted message, the PL first checks the validity of the MAC,
platoon signature and timestamp. If they are all valid, the PL then verifies if LV’s double
identity is in the platoon members list PMList, i.e., if LV is an authenticated member of the
platoon. If LV’s record is in the PMList, its entry is removed from the list and a platoon exit
acknowledgment LeaveACK is sent back to the LV. Similar to the first message sent by LV
in this phase, the same procedure is used by PL to prepare the message for transmission to
the LV. At the same time, a partial platoon key r is generated by PL so that it can update
its current platoon key pG to the latest key rG. This updated partial platoon key is then
shared only with the other platoon members PMs that will be staying in the platoon.

Upon receipt of LeaveACK, the LV can leave the platoon as it has been deemed safe to
exit. This is because the LV does not retain any significant information pertaining to the
platoon and its members. For example, to ensure group forward secrecy, the platoon key rG
being used by the platoon after LV′s exit is different from the one that LV still possesses, i.e.,
pG. The only information that LV retains with regards to the platoon is the PL’s long-term
public key B. The algorithm for this phase can be found in Figure 6.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 31

possesses, i.e., 𝑝𝐺. The only information that 𝐿𝑉 retains with regards to the platoon is the

𝑃𝐿’𝑠 long-term public key 𝐵. The algorithm for this phase can be found in Figure 6.

Figure 6. Exit Request Phase of the SPMSA Scheme.

4.3.2. Platoon Key Update Phase (Exit)

This phase is initiated when a vehicle is allowed to exit the platoon, and its primary

goal is to allow the 𝑃𝐿 to distribute a new platoon key 𝑟 to the 𝑃𝑀𝑠 that remain in the

platoon. Its operation is similar to that in the platoon key update phase in Section 4.1.4.

The differences merely lie in the keys being used. From the exit request phase in Section

4.3.2, it is clear that the new platoon key to be used in the platoon is now 𝑟𝐺 instead of

𝑝𝐺. Hence, the partial platoon key 𝑟 needs to be shared with all 𝑃𝑀𝑠 so that they can

derive the new platoon key 𝑟𝐺 and preserve the privacy of the platoon from outgoing

vehicle 𝐿𝑉. The old platoon signature 𝑆𝐼𝐺𝑝𝐺 is attached to the update request and new

partial platoon key 𝑟 before being sent over by using the old platoon encryption and

MAC keys 𝑃𝐾𝐸 and 𝑃𝐾𝑀. The usual verification of the received message is performed

by the 𝑃𝑀 before it can safely generate the new set of platoon keys: 𝑟𝐺, 𝑃𝐾𝐸′′, 𝑃𝐾𝑀′′.

The new platoon signature 𝑆𝐼𝐺𝑟𝐺 and timestamp are attached to the update acknowledg-

ment 𝑈𝑝𝑑𝑎𝑡𝑒𝐴𝐶𝐾 and encapsulated as an encrypted message using the new 𝑃𝐾𝐸′′ key.

The new MAC key 𝑃𝐾𝑀′′ is duly used to tag the encrypted message where the 𝑃𝐿 is able

to verify its validity. The algorithm can be found in Figure 7 and concludes the SPMSA

scheme.

Message

Message

Encrypt using

Attach using if = ‘Valid’

Decrypt using

if verified ‘Valid’ with

if

if is in

Message

Signed using

Message

Encrypt using

Attach using

Generate new partial Platoon Key

Generate by

Update and Share new Platoon Key

Remove from if = ‘Valid’

Decrypt using

if verified ‘Valid’ with

if

Receive

Execute

Platoon Key unchanged

Input:

Output:

Figure 6. Exit Request Phase of the SPMSA Scheme.

4.3.2. Platoon Key Update Phase (Exit)

This phase is initiated when a vehicle is allowed to exit the platoon, and its primary
goal is to allow the PL to distribute a new platoon key r to the PMs that remain in the
platoon. Its operation is similar to that in the platoon key update phase in Section 4.1.4. The
differences merely lie in the keys being used. From the exit request phase in Section 4.3.2, it

Sensors 2022, 22, 9000 15 of 29

is clear that the new platoon key to be used in the platoon is now rG instead of pG. Hence,
the partial platoon key r needs to be shared with all PMs so that they can derive the new
platoon key rG and preserve the privacy of the platoon from outgoing vehicle LV. The old
platoon signature SIGpG is attached to the update request and new partial platoon key r
before being sent over by using the old platoon encryption and MAC keys PKE and PKM.
The usual verification of the received message is performed by the PM before it can safely
generate the new set of platoon keys: rG, PKE′′ , PKM′′ . The new platoon signature SIGrG
and timestamp are attached to the update acknowledgment UpdateACK and encapsulated
as an encrypted message using the new PKE′′ key. The new MAC key PKM′′ is duly used
to tag the encrypted message where the PL is able to verify its validity. The algorithm can
be found in Figure 7 and concludes the SPMSA scheme.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 31

Figure 7. Platoon Key Update Phase of the SPMSA Scheme when a Vehicle Leaves the Platoon.

5. Security Evaluation

5.1. Formal Proof of Security by Random Oracle Model

We first evaluate the SPMSA scheme formally by proving its semantic security under

the CK adversary with random oracle model. With the CK adversary model, a probabil-

istic polynomial–time adversary 𝒜 can eavesdrop, modify and inject information into the

message exchange process by interacting with the participants involved. In the random

oracle model [23], there exists a random oracle that models cryptographic hash functions

as ideally random functions. With this model, all participants can interact with one an-

other including 𝒜. The queries covered in Section 3.2 that detail the various actions 𝒜 can

take are assumed to be sent to this random oracle for execution [22].

5.1.1. Formal Proof of Platoon Entry Event

Ultimately, the goal of adversary 𝒜 is to determine the real platoon key 𝑝𝐺 from a

random number that occurs in the test query. It requires 𝒜 to break the semantic security

of the SPMSA for the entry event. To evaluate whether the SPMSA can withstand 𝒜’s

attempt, it is run through a series of games outlined by the random oracle model. In this

section, we omit the initialization phase as it involves the preparation of the keying mate-

rials for the system rather than the running of the SPMSA. Meanwhile, the platoon key

update phase will be verified in Section 5.2.1. Thus, the proof will only cover the identity

and message authentication phases of the platoon entry event. Let 𝑃𝑟[𝑆𝑖] be the probabil-

ity that 𝒜 succeeds in predicting the results of the test query for Game 𝑖. Let the joining

vehicle and platoon leader be denoted by 𝐽𝑉 and 𝑃𝐿. 𝑞ℎ , 𝑞𝑠 , 𝑞𝑒 and 𝑞 represent the

number of hash, send, execute and total random oracle queries sent by 𝒜, respectively,

while 𝐻 denotes the hash space size such that 𝐻 = 2𝐻𝑎𝑠ℎ 𝐿𝑒𝑛𝑔𝑡ℎ (𝑖𝑛 𝐵𝑖𝑡𝑠). As mentioned in

Section 3.2, the entry event of the SPMSA offers semantic security under the CK adversary

with random oracle model if the advantage for 𝒜 winning all the games is 𝐴𝑑𝑣𝐸𝑛𝑡𝑟𝑦(𝒜) ≤

𝜀 for any sufficiently small value 𝜀 > 0.

Lemma (Difference Lemma): Let 𝐸1, 𝐸2, 𝐹 denote events in a certain probability

distribution where 𝐹 is known as the failure event. The two events 𝐸1 and 𝐸2 will exe-

cute in a similar manner as long as the failure event 𝐹 does not happen, i.e., 𝐸1 ∧ ¬𝐹 ⇔

𝐸2 ∧ ¬𝐹. As both 𝑃𝑟[𝐸1] and 𝑃𝑟[𝐸2] are between 0 and 𝑃𝑟[𝐹]. The subsequent difference

between the probabilities of the two events is |𝑃𝑟[𝐸1] − 𝑃𝑟[𝐸2]| ≤ 𝑃𝑟[𝐹].

Game 0: This game is the initial attacking game set out in Section 3.2. It is a real attack

by 𝒜 in the semantic security framework under a random model. Hence, the advantage

to 𝒜 is:

Previous by

Message

Message

Encrypt using

Attach using if = ‘Valid’

Decrypt using

if verified ‘Valid’ with

if

Update to new Platoon Key

Generate by

Message

Signed using

Message

Encrypt using

Attach using
if = ‘Valid’

Decrypt using

if verified ‘Valid’ with

if

Receive

Input:

Output:

Current by

Figure 7. Platoon Key Update Phase of the SPMSA Scheme when a Vehicle Leaves the Platoon.

5. Security Evaluation
5.1. Formal Proof of Security by Random Oracle Model

We first evaluate the SPMSA scheme formally by proving its semantic security under
the CK adversary with random oracle model. With the CK adversary model, a probabilistic
polynomial–time adversary A can eavesdrop, modify and inject information into the
message exchange process by interacting with the participants involved. In the random
oracle model [23], there exists a random oracle that models cryptographic hash functions
as ideally random functions. With this model, all participants can interact with one another
including A. The queries covered in Section 3.2 that detail the various actions A can take
are assumed to be sent to this random oracle for execution [22].

5.1.1. Formal Proof of Platoon Entry Event

Ultimately, the goal of adversary A is to determine the real platoon key pG from a
random number that occurs in the test query. It requiresA to break the semantic security of
the SPMSA for the entry event. To evaluate whether the SPMSA can withstandA’s attempt,
it is run through a series of games outlined by the random oracle model. In this section,
we omit the initialization phase as it involves the preparation of the keying materials for
the system rather than the running of the SPMSA. Meanwhile, the platoon key update
phase will be verified in Section 5.2.1. Thus, the proof will only cover the identity and
message authentication phases of the platoon entry event. Let Pr[Si] be the probability that
A succeeds in predicting the results of the test query for Game i. Let the joining vehicle
and platoon leader be denoted by JV and PL. qh, qs, qe and q represent the number of hash,
send, execute and total random oracle queries sent by A, respectively, while H denotes the
hash space size such that H = 2Hash Length (in Bits). As mentioned in Section 3.2, the entry

Sensors 2022, 22, 9000 16 of 29

event of the SPMSA offers semantic security under the CK adversary with random oracle
model if the advantage for A winning all the games is AdvEntry(A) ≤ ε for any sufficiently
small value ε > 0.

Lemma 1 (Difference Lemma). Let E1, E2, F denote events in a certain probability distribution
where F is known as the failure event. The two events E1 and E2 will execute in a similar manner as
long as the failure event F does not happen, i.e., E1 ∧ ¬F ⇔ E2 ∧ ¬F . As both Pr[E1] and Pr[E2]
are between 0 and Pr[F]. The subsequent difference between the probabilities of the two events is
|Pr[E1]− Pr[E2]| ≤ Pr[F].

Game 0: This game is the initial attacking game set out in Section 3.2. It is a real attack
by A in the semantic security framework under a random model. Hence, the advantage to
A is:

AdvEntry(A) = |2Pr[S0]− 1| (1)

Game 1: A launches a passive attack on both parties in the authentication agree-
ment in this game. A sends an Execute(JV, PL) query to acquire the information ex-
changed between both parties, which includes {A, B, A′, B′, SIGA−3, SIGB−4, ENCKE(M5),
ENCKE(M6), MACKM(ENCKE(M5)), MACKM(ENCKE(M6)), T1, T2, T3, T4 }. A is then un-
able to compute session key axybG and thus is unable to derive the symmetric decryption
key KE. As such,A cannot acquire partial platoon key p, which is encrypted in ENCKE(M6).
Thus, the probability that A succeeds is:

Pr[S1] = Pr[S0] (2)

Game 2: This game follows Game 1, with A now using send queries to initiate active
attacks. The following events are omitted, however, as either event would cause the game
to be over instantly:

Event E1: The collision of the hash query outputs in different sessions. The birthday

paradox states that E1 happens with probability |Pr[E1]| ≤
q2

h
2H .

Event E2: The collision of the random numbers generated in different sessions. As the

random numbers are only generated in send and execute queries, |Pr[E2]| ≤ (qs+qe)
2

2q .
As long as the ECDLP and ECCDH assumptions hold, A does not have sufficient

information to reconstruct the previous session key axybG to decrypt ENCKE(M2) and
obtain partial platoon key p. A is also unable to establish a new ephemeral key x (or y)
using a send query as it needs either JV’s or PL’s long-term private key to sign the message
so that its identity can be verified by the other party. Therefore, according to the difference
lemma, (3) is obtained as follows:

|Pr[S2]− Pr[S1]| ≤
q2

h
2H

+
(qs + qe)

2

2q
+ qh·max{AdvECDLP(A), AdvECCDH(A)} (3)

Game 3: Game 3 involves running Game 2 while A then tries to guess the hash values
KDF(axybG) = KE||KM and H(IDA) without querying the random oracle. If the guess is
correct, the game is over. Thus, the resulting polynomial is:

|Pr[S3]− Pr[S2]| ≤
q2

s
2H

(4)

Game 4: This game continues from Game 3 but with the consideration of semantic
security. A obtains any two of {a, b, x, y} by making ESReveal and corrupt queries to the
random oracle. However, according to the CK adversary model, A is unable to obtain
both the long-term and ephemeral private keys of the same vehicle at the same time (e.g.,
acquiring JV’s a and x). As a result, A is unable to recompute the session key axybG and
subsequently obtain platoon key pG because it needs both private keys of the same vehicle.

Sensors 2022, 22, 9000 17 of 29

The only way it can do so is to solve the ECDLP and find a or x from A and A′, respectively,
or to solve the ECCDH problem. Thus, since Game 4 is similar to Game 3,

Pr[S4] = Pr[S3] (5)

Subsequently, A initiates a test query where an unbiased coin c is flipped. Since the
probability of such an event is 1

2 ,

Pr[S4] =
1
2

(6)

Combining all the advantages from Game 0 to Game 4 i.e., Equations (1) to (6) through
back substitution, we can obtain (7):

AdvEntry(A) ≤
q2

h
H

+
(qs + qe)

2

q
+

q2
s

H
+ 2qh·max{AdvECDLP(A), AdvECCDH(A)} (7)

Since AdvEntry(A) ≤ ε, where ε > 0, the entry event of the SPMSA is safe under the
CK adversary with random oracle model.

5.1.2. Formal Proof of Platoon Exit Event

For the formal proof of platoon exit, the platoon key update phase will also be verified
in Section 5.2.1. Thus, we only evaluate Section 4.3.1 of the SPMSA, i.e., the exit request
phase. We evaluate a scenario where JV in the platoon is now looking to exit the platoon.
Following the notation in Figure 6, JV is synonymous with LV. It is assumed that no
vehicle has joined or left the platoon since LV’s entry into the platoon. In other words, the
platoon key that is established throughout all platoon members is pG.

A goal of adversary A is to determine the current platoon key pG from a random
number that occurs in the test query. Since a vehicle leaving the platoon causes the platoon
key to be updated, Amust intercept the LeaveREQ from LV to prevent it from reaching PL.
It ensures that the platoon key A obtained will remain valid for use in the platoon and not
be outdated. The notations used for the formal proof of the platoon entry phase are reused
here. There is no change to the lemma difference or the games conducted. Similarly, we can
say that the exit phase of our scheme offers semantic security under the CK adversary with
the random oracle model if the advantage forAwinning all of the games is AdvExit(A) ≤ ε
for any sufficiently small ε > 0.

Game 0: This is the initial attacking game set out in Section 3.2, which outlines a
real attack by A in the semantic security framework under a random model. Hence, the
advantage of A is the same as that of (1).

Game 1: A passive attack on both parties is first launched byA in this game. A sends
an Execute(LV, PL) query to steal the information exchanged between the parties, which inclu-
des {ENCPKE(M11), ENCPKE(M12), MACPKM(ENCPKE(M11)), MACPKM(ENCPKE(M12))}.
Since A does not hold platoon key pG, it is unable to decrypt the information it has stolen
as it cannot generate the necessary platoon encryption and MAC keys PKE and PKM.
Hence, A cannot obtain partial platoon key r, and the probability that A succeeds is found
in (2).

Game 2: Once again, this game follows Game 1 with A using send queries thereafter
to initiate active attacks. Similarly, the following events are omitted:

Event E1: The collision of the hash query outputs in different sessions. The birthday

paradox states that E1 happens with probability |Pr[E1]| ≤
q2

h
2H

Event E2: The collision of the random numbers generated in different sessions. As the

random numbers are only generated in send and execute queries, |Pr[E2]| ≤ (qs+qe)
2

2q

Sensors 2022, 22, 9000 18 of 29

Only if the two events above occur will A have a plausible amount of information to
potentially forge a legitimate message to intercept the communication between LV and PL.
Therefore, according to the Difference Lemma, (8) is obtained as follows:

|Pr[S2]− Pr[S1]| ≤
q2

h
2H

+
(qs + qe)

2

2q
(8)

Game 3: After the conclusion of Game 2,A tries to guess the hash values KDF(pG) =
PKE||PKM and H(pG, H(IDA)) without querying the random oracle. Recall that the
platoon encryption and MAC keys PKE and PKM are generated from KDF(pG). If the
guess is correct, the game is over, and the resulting polynomial is (4).

Game 4: Following Game 3, semantic security is taken into consideration. A obtains
any two of {a, b, x′, y′} by making ESReveal and corrupt queries to the random oracle.
However, obtaining any of them will not enable A to procure platoon key pG. This is
because the queries only uncover the components of session key axybG. As shown in
Figure 6, this key is not involved in this phase. Hence, with no additional advantage for A
to obtain platoon key pG, Game 4 is no different from Game 3 which can be seen in (5).

A then initiates a test query in which an unbiased coin c is flipped and the probability
of such an event is 1

2 , as shown in (6).
Finally, we combine the advantages from Game 0 to Game 4, i.e., Equations (1), (2), (4),

(5), (6) and (8) through back substitution to get the advantage of A, as seen in (9).

AdvExit(A) ≤
q2

h
H

+
(qs + qe)

2

q
+

q2
s

H
(9)

Since AdvExit(A) ≤ ε, where ε > 0, the platoon exit event of the SPMSA is also safe
under the CK adversary with random oracle model.

5.2. Formal Verification of Security Functionality by CryptoVerif

In this section, we verify the security functionality of the platoon key update phases
of the SPMSA that we covered in Sections 4.1.4 and 4.3.2. Although these phases occur in
two different events, the algorithms are the same, with the only difference the names of the
keys. Hence, verifying the security of one of the platoon key update phases could verify
the security of another.

First, we briefly review CryptoVerif. CryptoVerif is an automatic protocol verifier on
security that is sound in the computational model. It can verify secrecy and correspondences
such as authentication. It provides formal verifications as a sequence of games, similar to
the CK adversary model that we used to prove the other parts of the SPMSA. However,
instead of being manually implemented, CryptoVerif can be automatically executed via a
programming model. The generated verifications are valid for any number of sessions of
the protocol. Hence, it can provide an upper bound on the probability of the success of an
adversary against the protocol as a function of the likelihood of breaking each cryptographic
primitive and of the number of sessions it takes to do so [25].

The input script for CryptoVerif to run contains the cryptographic assumptions and
properties to verify. CryptoVerif uses the technique of game hopping where the first game
models the actual protocol that we wrote in the input script to verify. From the second game
onwards, CryptoVerif applies syntactic transformations on the game until the game satisfies
the security properties realized. Note that an adversary is unable to distinguish one game
from another after transformation as the difference of probability between consecutive
games is negligible, i.e., |Pr[Si]− Pr[Sj]| ≈ 0, where j = i + 1. Consequently, the advantage
of the adversary for the final game is Adv(A) = 0. Figure 8 shows the game-hopping
procedure of the CryptoVerif. After CryptoVerif finishes execution, it will output the
sequence of games that occurred, a brief explanation of the transformations that took place
between the games and finally, the upper bound of probability of an adversary being
successful against the protocol [26]. For our formal verification results, we show the first

Sensors 2022, 22, 9000 19 of 29

and last games and the upper bound probability of the adversary of breaking the security
properties of the SPMSA.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 31

𝒜 then initiates a test query in which an unbiased coin c is flipped and the probability

of such an event is
1

2
, as shown in (6).

Finally, we combine the advantages from Game 0 to Game 4, i.e., Equations (1), (2),

(4), (5), (6) and (8) through back substitution to get the advantage of 𝒜, as seen in (9).

𝐴𝑑𝑣𝐸𝑥𝑖𝑡(𝒜) ≤
𝑞ℎ

2

𝐻
 +

 (𝑞𝑠 + 𝑞𝑒)2

𝑞
+

𝑞𝑠
2

𝐻
 (9)

Since 𝐴𝑑𝑣𝐸𝑥𝑖𝑡(𝒜) ≤ 𝜀, where 𝜀 > 0, the platoon exit event of the SPMSA is also safe

under the CK adversary with random oracle model.

5.2. Formal Verification of Security Functionality by CryptoVerif

In this section, we verify the security functionality of the platoon key update phases

of the SPMSA that we covered in Sections 4.1.4 and 4.3.2. Although these phases occur in

two different events, the algorithms are the same, with the only difference the names of

the keys. Hence, verifying the security of one of the platoon key update phases could ver-

ify the security of another.

First, we briefly review CryptoVerif. CryptoVerif is an automatic protocol verifier on

security that is sound in the computational model. It can verify secrecy and correspond-

ences such as authentication. It provides formal verifications as a sequence of games, sim-

ilar to the CK adversary model that we used to prove the other parts of the SPMSA. How-

ever, instead of being manually implemented, CryptoVerif can be automatically executed

via a programming model. The generated verifications are valid for any number of ses-

sions of the protocol. Hence, it can provide an upper bound on the probability of the suc-

cess of an adversary against the protocol as a function of the likelihood of breaking each

cryptographic primitive and of the number of sessions it takes to do so [25].

The input script for CryptoVerif to run contains the cryptographic assumptions and

properties to verify. CryptoVerif uses the technique of game hopping where the first game

models the actual protocol that we wrote in the input script to verify. From the second

game onwards, CryptoVerif applies syntactic transformations on the game until the game

satisfies the security properties realized. Note that an adversary is unable to distinguish

one game from another after transformation as the difference of probability between con-

secutive games is negligible, i.e., |𝑃𝑟[𝑆𝑖] − 𝑃𝑟[𝑆𝑗]| ≈ 0, where 𝑗 = 𝑖 + 1. Consequently,

the advantage of the adversary for the final game is 𝐴𝑑𝑣(𝒜) = 0. Figure 8 shows the

game-hopping procedure of the CryptoVerif. After CryptoVerif finishes execution, it will

output the sequence of games that occurred, a brief explanation of the transformations

that took place between the games and finally, the upper bound of probability of an ad-

versary being successful against the protocol [26]. For our formal verification results, we

show the first and last games and the upper bound probability of the adversary of break-

ing the security properties of the SPMSA.

Figure 8. Security Verification by the Game-Hopping Process of CryptoVerif.

Is () =
0?

Scheme
verified
secure

Scheme
to be

verified =
Game 1

Game

Game
Yes

No, transform Game

Figure 8. Security Verification by the Game-Hopping Process of CryptoVerif.

5.2.1. Formal Verification of Platoon Key Update Phases

As mentioned beforehand, the platoon key update phases for entry and exit events
have the same algorithm, with the name of the keys being the only difference. The actors in-
volved in both phases are the same, i.e., a platoon leader and its members, and the messages
exchanged are of the same structure. Specifically, the messages being exchanged exist in
the structure of an encrypted message ENCPKE(M), and a MAC MACPKM(ENCPKE(M)),
where M is the plaintext encapsulated message, while PKE and PKM are the platoon
encryption and MAC keys, respectively. Since the algorithm encrypts the plaintext mes-
sage before attaching a MAC of the encrypted message, we can therefore deem it an
Encrypt-then-MAC cryptographic scheme.

CryptoVerif has a library of predefined cryptographic primitives that can be used to
model the SPMSA scheme. For the platoon key update phases of the SPMSA scheme, the
core principle is Encrypt-then-MAC. We use the following primitives that have already
been specified in CryptoVerif’s library [26]:

• Expand IND_CPA_sym_enc(key, cleartext, ciphertext, enc, dec, injbot, Z, Penc). This
primitive defines an indistinguishable under a chosen plaintext attack (IND-CPA)
probabilistic symmetric encryption scheme. In other words, given the encryption of
two messages of the same length, an adversary has a negligible probability of telling
the two encryptions apart. We denote this probability as Penc.

• Expand SUF_CMA_det_mac(mkey, macinput, macres, mac, check, Pmac). This primi-
tive defines a strongly unforgeable under chosen message attacks (SUF-CMA) deter-
ministic MAC. This means that for an adversary that is given access to the MAC and
verification oracles, it has a negligible probability of forging a MAC. This probability
is denoted as Pmac.

We use the oracle front-end of CryptoVerif, which is more suitable in our case because
its syntax of games resembles manual cryptographic verification better. This falls in line
with the previous proofs of the SPMSA scheme in Section 5.1 that were performed manually.
We adopt the input scripts written by the author in [25] to verify two security properties
of the platoon key update phases of the SPMSA scheme: that the encryption of plaintext
message is indistinguishable (IND-CPA) and that the integrity of the ciphertext generated
by the encryption is hard to break (INT_CTXT). By verifying these two properties, we
can safely say that the partial platoon key, update request and timestamp are transferred
securely to the PMs with the SPMSA.

For the IND-CPA property verification, two oracles called L and R are required. Cryp-
toVerif uses equivalences to transform the processes that call the L oracles into processes
that call the R oracles. If the oracles on the two sides return different results, the event is
deemed unreachable, and CryptoVerif declares that the two sides, i.e., the encryption of
messages, are indistinguishable.

Sensors 2022, 22, 9000 20 of 29

To verify the IND-CPA property in a discernible manner, a query secret Boolean b is
used where if b = 1, then message = m1, while if b = 0, message = m2. After a specific game
transformation, if b has no influence on which message is encrypted, then we can confirm
the IND-CPA property [26]. Figure 9 shows the process of this verification.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 31

5.2.1. Formal Verification of Platoon Key Update Phases

As mentioned beforehand, the platoon key update phases for entry and exit events

have the same algorithm, with the name of the keys being the only difference. The actors

involved in both phases are the same, i.e., a platoon leader and its members, and the mes-

sages exchanged are of the same structure. Specifically, the messages being exchanged

exist in the structure of an encrypted message 𝐸𝑁𝐶𝑃𝐾𝐸(𝑀), and a MAC

𝑀𝐴𝐶𝑃𝐾𝑀(𝐸𝑁𝐶𝑃𝐾𝐸(𝑀)), where 𝑀 is the plaintext encapsulated message, while 𝑃𝐾𝐸 and

𝑃𝐾𝑀 are the platoon encryption and MAC keys, respectively. Since the algorithm en-

crypts the plaintext message before attaching a MAC of the encrypted message, we can

therefore deem it an Encrypt-then-MAC cryptographic scheme.

CryptoVerif has a library of predefined cryptographic primitives that can be used to

model the SPMSA scheme. For the platoon key update phases of the SPMSA scheme, the

core principle is Encrypt-then-MAC. We use the following primitives that have already

been specified in CryptoVerif’s library [26]:

• Expand IND_CPA_sym_enc(key, cleartext, ciphertext, enc, dec, injbot, Z, Penc).

This primitive defines an indistinguishable under a chosen plaintext attack (IND-

CPA) probabilistic symmetric encryption scheme. In other words, given the encryp-

tion of two messages of the same length, an adversary has a negligible probability of

telling the two encryptions apart. We denote this probability as Penc.

• Expand SUF_CMA_det_mac(mkey, macinput, macres, mac, check, Pmac).

This primitive defines a strongly unforgeable under chosen message attacks (SUF-

CMA) deterministic MAC. This means that for an adversary that is given access to

the MAC and verification oracles, it has a negligible probability of forging a MAC.

This probability is denoted as Pmac.

We use the oracle front-end of CryptoVerif, which is more suitable in our case be-

cause its syntax of games resembles manual cryptographic verification better. This falls in

line with the previous proofs of the SPMSA scheme in Section 5.1 that were performed

manually. We adopt the input scripts written by the author in [25] to verify two security

properties of the platoon key update phases of the SPMSA scheme: that the encryption of

plaintext message is indistinguishable (IND-CPA) and that the integrity of the ciphertext

generated by the encryption is hard to break (INT_CTXT). By verifying these two proper-

ties, we can safely say that the partial platoon key, update request and timestamp are

transferred securely to the 𝑃𝑀𝑠 with the SPMSA.

For the IND-CPA property verification, two oracles called L and R are required.

CryptoVerif uses equivalences to transform the processes that call the L oracles into pro-

cesses that call the R oracles. If the oracles on the two sides return different results, the

event is deemed unreachable, and CryptoVerif declares that the two sides, i.e., the encryp-

tion of messages, are indistinguishable.

To verify the IND-CPA property in a discernible manner, a query secret Boolean b is

used where if b = 1, then message = m1, while if b = 0, message = m2. After a specific game

transformation, if b has no influence on which message is encrypted, then we can confirm

the IND-CPA property [26]. Figure 9 shows the process of this verification.

Figure 9. Game-Hopping to Verify IND-CPA Property of Platoon Key Update Phases.

Is () =
0?

SPMSA
verified
IND-CPA
secure

SPMSA
scheme =
Game 1

Game

Game

No, transform Game

Is ‘b’
removed
from the
Game ?

No, transform Game

Yes Yes

Figure 9. Game-Hopping to Verify IND-CPA Property of Platoon Key Update Phases.

Figure 10 shows the initial game of the verification, while Figure 11 shows it takes
eight games (seven game transformations) for the query secret b to not be used in the
games anymore because the line of code containing b is missing and the game goes straight
into encrypting the message. This is because CryptoVerif merges the two “if” branches
of the test “m0: bitstring <- (if b then m1 else m2);” as the same code to be executed in
either branch. In short, m1 and m2 are indistinguishable because the two use the same
code. Finally, the RESULT header shows the upper bound probability of the adversary to
be successful in telling the encryption of messages apart. This upper bound is shown to
be double that of Penc, which is the probability of breaking the IND-CPA property of the
underlying encryption scheme, as previously discussed.

Sensors 2022, 22, x FOR PEER REVIEW 21 of 31

Figure 10 shows the initial game of the verification, while Figure 11 shows it takes

eight games (seven game transformations) for the query secret b to not be used in the

games anymore because the line of code containing b is missing and the game goes

straight into encrypting the message. This is because CryptoVerif merges the two “if”

branches of the test “m0: bitstring <- (if b then m1 else m2);” as the same code to be executed

in either branch. In short, m1 and m2 are indistinguishable because the two use the same

code. Finally, the RESULT header shows the upper bound probability of the adversary to

be successful in telling the encryption of messages apart. This upper bound is shown to

be double that of Penc, which is the probability of breaking the IND-CPA property of the

underlying encryption scheme, as previously discussed.

Figure 10. First Game of Verifying the IND-CPA Property of Platoon Key Update Phases.

Figure 11. Final Output of IND-CPA Verification of Platoon Key Update Phases.

For the INT_CTXT property verification, encryption and decryption test oracles are

required. A query event “bad” is used to show whether the adversary has successfully

broken the INT_CTXT property. If event bad occurs, the adversary has managed to pro-

duce a ciphertext that decrypted successfully and has not been produced by the encryp-

tion oracles. Hence, the verification is only successful when event bad does not happen,

i.e., when the occurrence of event bad is false [26]. Figure 12 shows the process of the

INT_CTXT property verification.

Figure 10. First Game of Verifying the IND-CPA Property of Platoon Key Update Phases.

Sensors 2022, 22, x FOR PEER REVIEW 21 of 31

Figure 10 shows the initial game of the verification, while Figure 11 shows it takes

eight games (seven game transformations) for the query secret b to not be used in the

games anymore because the line of code containing b is missing and the game goes

straight into encrypting the message. This is because CryptoVerif merges the two “if”

branches of the test “m0: bitstring <- (if b then m1 else m2);” as the same code to be executed

in either branch. In short, m1 and m2 are indistinguishable because the two use the same

code. Finally, the RESULT header shows the upper bound probability of the adversary to

be successful in telling the encryption of messages apart. This upper bound is shown to

be double that of Penc, which is the probability of breaking the IND-CPA property of the

underlying encryption scheme, as previously discussed.

Figure 10. First Game of Verifying the IND-CPA Property of Platoon Key Update Phases.

Figure 11. Final Output of IND-CPA Verification of Platoon Key Update Phases.

For the INT_CTXT property verification, encryption and decryption test oracles are

required. A query event “bad” is used to show whether the adversary has successfully

broken the INT_CTXT property. If event bad occurs, the adversary has managed to pro-

duce a ciphertext that decrypted successfully and has not been produced by the encryp-

tion oracles. Hence, the verification is only successful when event bad does not happen,

i.e., when the occurrence of event bad is false [26]. Figure 12 shows the process of the

INT_CTXT property verification.

Figure 11. Final Output of IND-CPA Verification of Platoon Key Update Phases.

Sensors 2022, 22, 9000 21 of 29

For the INT_CTXT property verification, encryption and decryption test oracles are
required. A query event “bad” is used to show whether the adversary has successfully
broken the INT_CTXT property. If event bad occurs, the adversary has managed to produce
a ciphertext that decrypted successfully and has not been produced by the encryption
oracles. Hence, the verification is only successful when event bad does not happen, i.e.,
when the occurrence of event bad is false [26]. Figure 12 shows the process of the INT_CTXT
property verification.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 31

Figure 12. Game-Hopping to Verify INT_CTXT Property of Platoon Key Update Phases.

Figure 13 portrays the initial game of the INT_CTXT verification where event bad

can be seen in the fifth and last line. The final result of the INT_CTXT security verification

in Figure 14 shows that nine games (eight game transformations) are required for event

bad to no longer occur in the game. Hence, CryptoVerif has verified that the adversary

will not be able to forge a ciphertext that can be decrypted successfully and has not been

produced by the encryption oracles. Finally, the RESULT header shows the upper bound

probability that the adversary will be successful in breaking the ciphertext integrity to be

equivalent to Pmac, which is the probability of breaking the SUF-CMA property of the

MAC.

Figure 13. First Game of Verifying the INT_CTXT Property of Platoon Key Update Phases.

Is () =
0?

SPMSA
verified

INT_CTXT
secure

SPMSA
scheme =
Game 1

Game

Game

No, transform Game

Yes

Is ‘event
bad’

removed
from the
Game ?

No, transform Game

Yes

Figure 12. Game-Hopping to Verify INT_CTXT Property of Platoon Key Update Phases.

Figure 13 portrays the initial game of the INT_CTXT verification where event bad can
be seen in the fifth and last line. The final result of the INT_CTXT security verification in
Figure 14 shows that nine games (eight game transformations) are required for event bad
to no longer occur in the game. Hence, CryptoVerif has verified that the adversary will not
be able to forge a ciphertext that can be decrypted successfully and has not been produced
by the encryption oracles. Finally, the RESULT header shows the upper bound probability
that the adversary will be successful in breaking the ciphertext integrity to be equivalent to
Pmac, which is the probability of breaking the SUF-CMA property of the MAC.

To conclude, through the use of a computational verifier tool CryptoVerif, we showed
that the platoon key update phases of the SPMSA resist an adversary A distinguishing
between encrypted messages. It is also resistant to A forging ciphertexts that can be
decrypted to obtain the original plaintext message, which in our case crucially includes the
partial platoon key p for the entry event and r for the exit event.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 31

Figure 12. Game-Hopping to Verify INT_CTXT Property of Platoon Key Update Phases.

Figure 13 portrays the initial game of the INT_CTXT verification where event bad

can be seen in the fifth and last line. The final result of the INT_CTXT security verification

in Figure 14 shows that nine games (eight game transformations) are required for event

bad to no longer occur in the game. Hence, CryptoVerif has verified that the adversary

will not be able to forge a ciphertext that can be decrypted successfully and has not been

produced by the encryption oracles. Finally, the RESULT header shows the upper bound

probability that the adversary will be successful in breaking the ciphertext integrity to be

equivalent to Pmac, which is the probability of breaking the SUF-CMA property of the

MAC.

Figure 13. First Game of Verifying the INT_CTXT Property of Platoon Key Update Phases.

Is () =
0?

SPMSA
verified

INT_CTXT
secure

SPMSA
scheme =
Game 1

Game

Game

No, transform Game

Yes

Is ‘event
bad’

removed
from the
Game ?

No, transform Game

Yes

Figure 13. First Game of Verifying the INT_CTXT Property of Platoon Key Update Phases.

Sensors 2022, 22, 9000 22 of 29Sensors 2022, 22, x FOR PEER REVIEW 23 of 31

Figure 14. Output of INT_CTXT Verification of Platoon Key Update Phases.

To conclude, through the use of a computational verifier tool CryptoVerif, we

showed that the platoon key update phases of the SPMSA resist an adversary 𝒜 distin-

guishing between encrypted messages. It is also resistant to 𝒜 forging ciphertexts that can

be decrypted to obtain the original plaintext message, which in our case crucially includes

the partial platoon key 𝑝 for the entry event and 𝑟 for the exit event.

5.2.2. Formal Verification of Security Functionality for Communication Event

In fact, by nature, the communication event is a much more simplified version of the

key update phases. They both have a pair of request and acknowledgment messages ex-

changed using Encrypt-then-MAC. However, the platoon communication event involves

purely payload communication. In comparison, the key update phases require an addi-

tional partial platoon key to be transmitted over the channel to generate the platoon key.

Transferring these additional data does not make the algorithms more complex; rather, it

introduces additional potential vulnerability.

Thus, since we have verified that the key update phases are secure by CryptoVerif,

we can then deduce that the algorithm of the platoon communication event that has fewer

potential data vulnerabilities is secure as a result. To conclude, the platoon communica-

tion event resists an adversary 𝒜 distinguishing between its encrypted messages as well

as 𝒜 forging ciphertexts of valid plaintext messages. To reiterate, these messages only

include platoon requests/acknowledgments and the accompanying timestamps.

5.3. Security Analysis

In this section, a qualitative analysis of the security properties and the abilities against

some of the typical malicious attacks of the SPMSA scheme is presented.

Mutual authentication: Mutual authentication can be achieved by both identity and

message authentication as discussed in Sections 4.1.2 and 4.1.3. Digital signatures are used

to ensure the identity of the vehicle, while MACs are used to confirm the message’s origin

and integrity.

As stated in Section 3.2, the Canetti–Krawczyk (CK) adversary model was used

against the SPMSA to test it for any vulnerabilities. Participants, partners and the

Figure 14. Output of INT_CTXT Verification of Platoon Key Update Phases.

5.2.2. Formal Verification of Security Functionality for Communication Event

In fact, by nature, the communication event is a much more simplified version of
the key update phases. They both have a pair of request and acknowledgment messages
exchanged using Encrypt-then-MAC. However, the platoon communication event involves
purely payload communication. In comparison, the key update phases require an addi-
tional partial platoon key to be transmitted over the channel to generate the platoon key.
Transferring these additional data does not make the algorithms more complex; rather, it
introduces additional potential vulnerability.

Thus, since we have verified that the key update phases are secure by CryptoVerif,
we can then deduce that the algorithm of the platoon communication event that has fewer
potential data vulnerabilities is secure as a result. To conclude, the platoon communication
event resists an adversary A distinguishing between its encrypted messages as well as A
forging ciphertexts of valid plaintext messages. To reiterate, these messages only include
platoon requests/acknowledgments and the accompanying timestamps.

5.3. Security Analysis

In this section, a qualitative analysis of the security properties and the abilities against
some of the typical malicious attacks of the SPMSA scheme is presented.

Mutual authentication: Mutual authentication can be achieved by both identity and
message authentication as discussed in Sections 4.1.2 and 4.1.3. Digital signatures are used
to ensure the identity of the vehicle, while MACs are used to confirm the message’s origin
and integrity.

As stated in Section 3.2, the Canetti–Krawczyk (CK) adversary model was used against
the SPMSA to test it for any vulnerabilities. Participants, partners and the adversary are
the parties involved based on the model. The adversary represents a Sybil vehicle that
can make queries to disrupt and obtain information to authorize itself as a legitimate
platoon member. The adversary’s main goal is to obtain a valid and working platoon key
by tethering the communication between any pair of partners, including JV/LV, PL and
RSU. With the help of the CK threat model, the SPMSA is secure against Sybil attackers.

Sensors 2022, 22, 9000 23 of 29

Key agreement: The session key axybG and platoon key pG can be computed by
both JV and PL after the mutual authentication. As long as the long-term private key is
inaccessible and the ECDLP and the ECCDH assumptions hold, an attacker cannot compute
the session key.

Perfect forward secrecy: The previously established session key axybG will still be
secure even if the long-term private keys a and b are compromised. This is due to an
attacker’s inability to obtain the previous ephemeral private keys x or y, which have
expired and have been erased from the OBU’s memory.

Group backward secrecy: Whenever a vehicle joins a platoon, even if the platoon is
one it has joined before, it cannot compute or possess the previously used platoon key qG.

Group forward secrecy: Whenever a vehicle leaves a platoon, it is unable to compute
or possess the new platoon key rG.

Ability against replay attacks: A replay attack is launched so that A can spoof a
legitimate vehicle by sending previous data to the vehicles. Adding short-term keys
generated by random numbers and timestamps can ensure the freshness of messages.

Ability against man-in-the-middle (MitM) Attacks: With a MitM attack, A tries to
establish connections with vehicles individually to make them mistakenly believe that they
are connected to each other. In the entry event of the SPMSA, where JV and PL try to set
up a session key and new platoon key, we mentioned in Game 4 of Section 5.1.1 that an
attacker cannot acquire both the long-term and the ephemeral private keys of the same
vehicle at the same time. Hence, even if the messages are intercepted and modified by A, it
cannot have the generator point G forge a signature that will be validated by JV and PL.
The other phases of the scheme involve authenticated communication between platoon
members PMs, so A can only establish a connection with vehicles individually if it has the
platoon key. Otherwise, a MitM attack will fail.

Ability against distributed denial-of-service (DDoS) attacks: A DDoS attack is an
attack in which multiple malicious attackers overwhelm a single server/node to deny other
nodes access to it. Identity authentication should be able to detect and disregard these
malicious vehicles in time before the platoon leader is overwhelmed.

Ability against Sybil attacks: We discussed in Section 4 that Sybil vehicles can be
detected by the SPMSA with a combination of identity and message authentications. This
detection can be achieved by invalidating timestamps, digital signatures, MACs and hashed
vehicle identities that accompany transmitted messages. When detected, the message and
session pertaining to that Sybil vehicle are discarded afterwards, and the vehicle is denied
entry into the platoon.

6. Performance Evaluation

The performance of the SPMSA was evaluated by estimating computation and com-
munication overheads as well as simulation experiments to determine the average elapsed
time. We primarily contrasted the performance of the SPMSA with that of PASAD in [9].
We deem it a comparable and appropriate scheme to use for platooning purposes, in large
part due to its group membership phase.

Since the platoon entry event is where the major performance issues lie, only Section 4.1
of the SPMSA is considered for the entirety of the performance evaluation. For a fair
comparison of the two schemes, we only apply PASAD when a vehicle joins a new RSU
group. This is because this event can plausibly resemble a platoon entry event where a
vehicle tries to join a platoon. Hence, only Algorithms 4–7 of PASAD are considered. Since
this instance of PASAD only involves the initial authentication of vehicles for entry into
the new RSU group, we also exclude the platoon key update phase in Section 4.1.4 of the
SPMSA from this point onwards.

For reference, the PASAD scheme in [9] is executed through seven algorithms. We
shall provide a brief description of each algorithm as follows:

Algorithm 1: System initialization that is conducted by the Center of Authority (CA)
to generate the common parameters for the TRSUs and RSUs to register the vehicles.

Sensors 2022, 22, 9000 24 of 29

Algorithm 2: Generation of the first private key for a vehicle by a TRSU.
Algorithm 3: Generation of a signature by a vehicle to prove its unique existence.
Algorithm 4: RSU ensures no double-registrations of vehicles entering its group by

verifying the signature provided by the entering vehicle.
Algorithm 5: Group initialization by TRSU or RSU to generate the local group param-

eters as well as the vehicles’ secondary private key.
Algorithm 6: A vehicle that has joined a group generates a signature for issuing

event-reporting messages.
Algorithm 7: Verification of signatures by the vehicles which have received a specific

event from another vehicle within the group.

6.1. Computational Overheads

The various cryptographic operations that comprise the SPMSA and PASAD are
estimated to find the computational delay of these schemes. We adopt the evaluation
method in [27] using the following parameters in our experiments including an Intel
Core i3 2.4-GHz processor with MIRACL and Crypto++ libraries. Table 1 summarizes the
execution times of the cryptographic operations.

Table 1. Execution Time of Cryptographic Operations.

Notation Description Execution Time (ms)

Pair Bilinear Pairing Operation 23.625
Exp Exponentiation Operation 3.3421
Mul Scalar Multiplication 1.258
Hash SHA256 Hash Function 0.005

ECIES Operation of ECIES 4.35
ECDSA− S Signing Operation of ECDSA 3.01
ECDSA−V Verifying Operation of ECDSA 8.89

To calculate the computational delay of the two schemes, we only consider time-
consuming operations that are not involved in the initialization stages. Hence, Section 4.1.1
of the SPMSA and Algorithm 5 of PASAD were excluded. Low computational modular
arithmetic operations such as addition and subtraction were also excluded. The computa-
tional delay for the SPMSA scheme is calculated in (10):

TSPMSA = 4TECIES + 4TECDSA−S + 4TECDSA−V + 6TMul + 2THash = 72.558 ms (10)

We assume a best-case scenario where there are no invalid signatures i.e., no Sybil
nodes. The computational costs for Algorithms 4, 6 and 7 of PASAD are as follows:

TPASAD−Alg4 = 2TMul + 4TPair (11)

TPASAD−Alg6 = 8TExp + 7TMul + TPair + THash (12)

TPASAD−Alg7−Best = 9nTExp + (9n + 2)TMul + (2n + 4)TPair (13)

To create a similar environment to compare with the SPMSA, we assume a minimalist
VANET system for PASAD where two vehicles communicate in isolation as in the SPMSA.
Hence, n = 1, and the total computation overhead of PASAD is

TPASAD = TPASAD−Alg4 + TPASAD−Alg6 + TPASAD−Alg7−Best = 323.1189 ms (14)

Comparing (10) and (14) shows that the SPMSA has an estimated lower time complex-
ity than that of PASAD.

Sensors 2022, 22, 9000 25 of 29

6.2. Communication Overheads

We estimate the communication delay of the two schemes by calculating the total sum
of transmission and propagation delays of each. The transmission delay is the amount of
time to transmit the packets of data onto the transmission medium. It can be determined
by L/R, where L is the size of a data packet in bits and R is the data transmission rate in
bits per second (bps). We can assume that the data rates of V2V and V2I communication,
i.e., DSRC and 5G, to be 6 and 50 Mbps, respectively.

To determine the transmission delay, we first approximate the amount of memory
required to run the two schemes. The keys and hashes used in the SPMSA scheme require
256 bits of data each as the secp256r1 and SHA256 protocols have been used as the initial
parameters of the elliptic curve and hash function, respectively. In addition, the MACs
attached to the encrypted messages also take up 256 bits each. Meanwhile, plaintext
messages and timestamps require 32 bits each, while each ECDSA signature uses up
512 bits. Lastly, an additional parity bit is needed for each key and signature. It culminates
in a data size of 5642 bits being transmitted by the SPMSA scheme. Meanwhile, assuming
that PASAD also uses the ECIES for its symmetric encryption, it requires an estimated
5324 bits to be transmitted [9].

On the other hand, propagation delay is the amount of time for the packets of data
to reach the destination over the physical medium. The formula for the propagation
delay is thus D/S, where D is the physical distance between the two vehicles and S is
the propagation speed of the communication link. On average, we assume that a single
V2V link covers a distance of 50 m while a V2I link covers about 200 m. In both cases,
the communication is wireless, so a common propagation speed of the speed of light
(3× 108 m/s) can be assumed. For each scheme, the number of transmissions that occur
using DRSC and 5G technology are summed up to determine their respective propagation
delays. We ignore queuing and processing delays as they are dependent on several factors
that we cannot predict well. The communication delays of the two schemes as well as that
of another relevant scheme by Santhosh et al. [8] can be found in Table 2.

Table 2. Comparison of the Communication Delays of Schemes.

PASAD SPMSA Santhosh [8]

Transmitted Data (bits) 5324 (DSRC) 5354 (DSRC)
288 (5G) 8192 (DSRC)

Transmission Delay (ms) 0.88733 0.89809 1.36533

Number of Transmissions 3 V2I (DSRC) 6 V2V (DSRC)
2 V2I (5G)

6 V2V (DSRC)
2 V2I (DSRC)

Propagation Delay (ms) 0.00200 0.00233 0.00233
Total Communication Delay (ms) 0.88933 0.90042 1.36767

It can be seen that the propagation delay makes a tiny contribution to the overall
communication delay for all schemes. Instead, the communication overhead is predom-
inantly determined by the transmission delay. Both PASAD and the SPMSA performed
considerably better than the scheme by Santhosh et al.

Focusing only on PASAD and the SPMSA, they portrayed comparable communication
delays despite the SPMSA requiring a couple hundred more bits to be transmitted than
PASAD. However, since their respective communication delays are relatively insignificant
when compared with the computational overheads for both schemes, the computational
overhead will be the dominant factor in the execution times of the schemes.

6.3. Performance Comparison by Simulations

In this section, we evaluate the performance of the SPMSA using simulations. First,
we observe its performance under some unknown attacks and compare it with that of
PASAD. The simulation is built on MATLAB software. A known attack is an attack that
should have been picked up by the SPMSA or by PASAD. In contrast, an unknown attack

Sensors 2022, 22, 9000 26 of 29

is one that was not analyzed or claimed previously. Intuitively, numerous unknown attacks
could be launched at any time. They could break the execution of a protocol, and if they
did so, they would likely break it at different points of execution. The probability that
they will do either is difficult to predict with full certainty. Thus, we model these two
processes as independent random processes with uniform probability. In turn, the objective
of this simulation is to predict the negative effects to the performance of the system of
unknown attacks.

In the simulation, one million attacks were launched for each specified ratio of the
unknown attacks to the total attacks, with ratio ranging from 0 to 0.8 in increments of 0.1.
An unknown attack has a uniform probability of breaking the scheme at a random step in
the execution of the protocol. Note that the execution time of a protocol is defined as the
sum of the computational overhead and communication delay that has been calculated
beforehand in Sections 6.1 and 6.2. If a protocol can resist an attack, we consider the scheme
successful. However, when an unknown attack breaks the scheme, only the execution time
up till the point the scheme stops running is recorded. Subsequently, it is not deemed a
successful run. For a given ratio of unknown attack:

Average Execution Time =
Total Execution Time A f ter 1 Million Attacks

Number o f Success f ul Runs o f Scheme
(15)

The average execution times of the SPMSA and PASAD at each ratio of unknown
attacks is plotted in Figure 15. When the ratio of unknown attacks is 0, it represents both
the execution time as well as the communication reconnection time of the schemes in the
event of disturbances such as channel interference that was discussed in Section 1. There is
an exponential increase in the execution/reconnection times of both schemes that is to be
expected when there are more unknown attacks obstructing the schemes from completion.
More importantly, our SPMSA is less time-consuming than PASAD regardless of the ratio
of the unknown attacks that appear, peaking at 155.4 ms while achieving a similar major
goal of preventing Sybil attacks.

Sensors 2022, 22, x FOR PEER REVIEW 28 of 31

Figure 15. Performance of the Two Schemes against Unknown Attacks.

We conducted a second simulation experiment to evaluate the performance of the

SPMSA when Sybil nodes were present in the VANETs. We compared the performance

with regards to the time it takes to authenticate all honest vehicles with that of PASAD.

Let 𝑛 represent the number of vehicles intending to join the platoon, while 𝑥 represents

the number of Sybil vehicles among these 𝑛 vehicles. We assume an average-case sce-

nario of PASAD this time around. Hence, the equation in (13) becomes (16), and the total

computation cost of PASAD is seen in (17):

𝑇𝑃𝐴𝑆𝐴𝐷−𝐴𝑙𝑔7−𝐴𝑣𝑔 = 9𝑛𝑇𝐸𝑥𝑝 + (3𝑛 log 𝑥 + 𝑥 log (
𝑛

𝑥
) + 11𝑛 − 𝑥 +

𝑛(𝑛 + 1)

2
) 𝑇𝑀𝑢𝑙

+ (2𝑥 log (
𝑛

𝑥
) + 4𝑥 + 𝑛(𝑛 + 1)) 𝑇𝑃𝑎𝑖𝑟

(16)

𝑇𝑃𝐴𝑆𝐴𝐷−𝐴𝑣𝑔 = 𝑇𝑃𝐴𝑆𝐴𝐷−𝐴𝑙𝑔4 + 𝑇𝑃𝐴𝑆𝐴𝐷−𝐴𝑙𝑔6 + 𝑇𝑃𝐴𝑆𝐴𝐷−𝐴𝑙𝑔7−𝐴𝑣𝑔 (17)

Since the SPMSA discards the message and session of a detected Sybil vehicle, only

the time taken to reach such an occurrence was recorded by the scheme as the authentica-

tion time of a Sybil vehicle. In contrast, in the case of the authentication of an honest vehi-

cle, the time taken for a full run of the SPMSA was recorded. For both schemes, we assume

that at least one honest node is present in the VANET such that 𝑛 − 𝑥 ≥ 1. In this simula-

tion, we set 𝑛 to be 9 throughout and vary the number of Sybil vehicles 𝑥 from 1 to 8.

Thus, there will be eight independent runs of the simulation to outline the authentication

time cost of each scheme when the number of Sybil vehicles varies. For example, in the

first run, there is 𝑥 = 1 Sybil vehicle among the 𝑛 = 9 vehicles that would like to join the

platoon. The total time taken to authenticate all 9 vehicles is cumulatively summed up

and denoted by 𝑇𝐴𝑢𝑡ℎ. To calculate the average authentication time 𝑇𝐴𝑢𝑡ℎ, the cumulative

authentication time is divided by the number of honest vehicles, as seen in (18). This pro-

cess will then be repeated for 𝑥 = 2, 3, … ,8 for both schemes.

Figure 15. Performance of the Two Schemes against Unknown Attacks.

We conducted a second simulation experiment to evaluate the performance of the
SPMSA when Sybil nodes were present in the VANETs. We compared the performance
with regards to the time it takes to authenticate all honest vehicles with that of PASAD.
Let n represent the number of vehicles intending to join the platoon, while x represents

Sensors 2022, 22, 9000 27 of 29

the number of Sybil vehicles among these n vehicles. We assume an average-case scenario
of PASAD this time around. Hence, the equation in (13) becomes (16), and the total
computation cost of PASAD is seen in (17):

TPASAD−Alg7−Avg = 9nTExp +
(

3n log x + x log
(n

x
)
+ 11n− x + n(n+1)

2

)
TMul

+
(
2x log

(n
x
)
+ 4x + n(n + 1)

)
TPair

(16)

TPASAD−Avg = TPASAD−Alg4 + TPASAD−Alg6 + TPASAD−Alg7−Avg (17)

Since the SPMSA discards the message and session of a detected Sybil vehicle, only the
time taken to reach such an occurrence was recorded by the scheme as the authentication
time of a Sybil vehicle. In contrast, in the case of the authentication of an honest vehicle,
the time taken for a full run of the SPMSA was recorded. For both schemes, we assume that
at least one honest node is present in the VANET such that n− x ≥ 1. In this simulation,
we set n to be 9 throughout and vary the number of Sybil vehicles x from 1 to 8. Thus, there
will be eight independent runs of the simulation to outline the authentication time cost of
each scheme when the number of Sybil vehicles varies. For example, in the first run, there
is x = 1 Sybil vehicle among the n = 9 vehicles that would like to join the platoon. The
total time taken to authenticate all 9 vehicles is cumulatively summed up and denoted by
TAuth. To calculate the average authentication time TAuth, the cumulative authentication
time is divided by the number of honest vehicles, as seen in (18). This process will then be
repeated for x = 2, 3, . . . , 8 for both schemes.

TAuth =
TAuth
n− x

(18)

The average authentication times for the two schemes for a varying number of Sybil
vehicles is plotted in Figure 16. As more Sybil vehicles are added, the difference in per-
formance of the two schemes in terms of authentication time cost grows greater. The
performance achieved by PASAD is not a surprise as its computational delay increases
considerably when there are many invalid signatures, as mentioned in Section 2.3. More
notably, the number of Sybil vehicles in the VANET is not a factor in determining which
scheme is faster in authenticating honest vehicles as our scheme has been shown to be
consistently faster. At its peak, PASAD takes roughly 3.6 s. In comparison, the SPMSA only
consumes approximately 0.34 s.

Sensors 2022, 22, x FOR PEER REVIEW 29 of 31

𝑇𝐴𝑢𝑡ℎ =
𝑇𝐴𝑢𝑡ℎ

𝑛 − 𝑥
 (18)

The average authentication times for the two schemes for a varying number of Sybil

vehicles is plotted in Figure 16. As more Sybil vehicles are added, the difference in perfor-

mance of the two schemes in terms of authentication time cost grows greater. The perfor-

mance achieved by PASAD is not a surprise as its computational delay increases consid-

erably when there are many invalid signatures, as mentioned in Section 2.3. More notably,

the number of Sybil vehicles in the VANET is not a factor in determining which scheme

is faster in authenticating honest vehicles as our scheme has been shown to be consistently

faster. At its peak, PASAD takes roughly 3.6 s. In comparison, the SPMSA only consumes

approximately 0.34 s.

Figure 16. Performance of the Two Schemes in the Presence of Sybil Nodes.

7. Conclusions

In this paper, we have proposed a secure management scheme for platoon access that

is resistant to Sybil attacks using elliptic curves. The SPMSA can achieve both identity and

message authentication between a platoon leader and a vehicle intending to join the pla-

toon and maintain message authentication throughout the vehicle’s tenure in the platoon.

The security functionality of the proposed SPMSA was then proven in the CK adversarial

model with the random oracle model as well as with the CryptoVerif protocol verifier. We

also conducted a qualitative analysis of the scheme’s security to show its security features

including perfect forward secrecy and both group forward and backward secrecy. Finally,

we evaluated the performance of the proposed scheme with numerical analysis and sim-

ulation experiments to show its time efficiency in the face of unknown attacks and the

minimal resource costs when Sybil vehicles are present. Future work is expected to ex-

plore the authentication of a new platoon leader when the existing leader intends to leave

the platoon. As evidenced by the proposed scheme, the platoon leader carries important

information that needs to be handed over to the right vehicle in a secure manner.

Figure 16. Performance of the Two Schemes in the Presence of Sybil Nodes.

Sensors 2022, 22, 9000 28 of 29

7. Conclusions

In this paper, we have proposed a secure management scheme for platoon access that
is resistant to Sybil attacks using elliptic curves. The SPMSA can achieve both identity and
message authentication between a platoon leader and a vehicle intending to join the platoon
and maintain message authentication throughout the vehicle’s tenure in the platoon. The
security functionality of the proposed SPMSA was then proven in the CK adversarial
model with the random oracle model as well as with the CryptoVerif protocol verifier.
We also conducted a qualitative analysis of the scheme’s security to show its security
features including perfect forward secrecy and both group forward and backward secrecy.
Finally, we evaluated the performance of the proposed scheme with numerical analysis
and simulation experiments to show its time efficiency in the face of unknown attacks and
the minimal resource costs when Sybil vehicles are present. Future work is expected to
explore the authentication of a new platoon leader when the existing leader intends to leave
the platoon. As evidenced by the proposed scheme, the platoon leader carries important
information that needs to be handed over to the right vehicle in a secure manner.

Author Contributions: Conceptualization, D.R.J. and M.M.; methodology, D.R.J.; software, D.R.J.;
validation, M.M.; formal analysis, D.R.J.; investigation, D.R.J.; resources, M.M.; data curation, D.R.J.;
writing—original draft preparation, D.R.J.; writing—review and editing, D.R.J. and M.M.; visualiza-
tion, D.R.J.; supervision, M.M.; project administration, R.S.; funding acquisition, M.M. and R.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by A*STAR under its RIE2020 Advanced Manufacturing and
Engineering (AME) Industry Alignment Fund–Pre Positioning (IAF-PP) (Award A19D6a0053). Any
opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not reflect the views of A*STAR. The APC is funded by the Guest Editor,
Peter Chong.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Boeira, F.; Barcellos, M.P.; de Freitas, E.P.; Vinel, A.; Asplund, M. On the Impact of Sybil Attacks in Cooperative Driving Scenarios.

In Proceedings of the 2017 IFIP Networking Conference and Workshops, Stockholm, Sweden, 12–16 June 2017. [CrossRef]
2. Boeira, F.; Barcellos, M.P.; de Freitas, E.P.; Vinel, A.; Asplund, M. Effects of colluding Sybil nodes in message falsification attacks

for vehicular platooning. In Proceedings of the 2017 IEEE Vehicular Networking Conference (VNC), Torino, Italy, 27–29 November
2017. [CrossRef]

3. Solyom, S.; Coelingh, E. Performance Limitations in Vehicle Platoon Control. IEEE Intell. Transp. Syst. Mag. 2013, 5, 112–120.
[CrossRef]

4. Vahidi, A.; Eskandarian, A. Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Trans. Intell.
Transp. Syst. 2003, 4, 143–153. [CrossRef]

5. Samara, G.; Al-Raba’nah, Y. Security Issues in Vehicular Ad Hoc Networks (VANET): A survey. Int. J. Sci. Appl. Res. 2015, 2, 50–55.
[CrossRef]

6. Sarker, A.; Qiu, C.; Shen, H. Connectivity Maintenance for Next-Generation Decentralized Vehicle Platoon Networks. IEEE ACM
Trans. Netw. 2020, 28, 1449–1462. [CrossRef]

7. Rabieh, K.; Mahmoud, M.M.; Guo, T.N.; Younis, M. Cross-Layer Scheme for Detecting Large-scale Colluding Sybil attack in
VANETs. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015.
[CrossRef]

8. Santhosh, J.; Sankaran, S. Defending against Sybil Attacks in Vehicular Platoons. In Proceedings of the 2019 IEEE International
Conference on Advanced Networks and Telecommunications Systems (ANTS), Goa, India, 16–19 December 2019. [CrossRef]

9. Parham, M.; Pouyan, A.A. An Effective Privacy-Aware Sybil Attack Detection Scheme for Secure Communication in Vehicular
Ad Hoc Network. Wirel. Pers. Commun. 2020, 113, 1149–1182. [CrossRef]

10. Soni, M.; Jain, A. Secure Communication and Implementation Technique for Sybil Attack in Vehicular Ad-Hoc Networks. In
Proceedings of the 2018 Second International Conference on Computing Methodologies and Communication (ICCMC), Erode,
India, 15–16 February 2018. [CrossRef]

http://doi.org/10.23919/IFIPNetworking.2017.8264890
http://doi.org/10.1109/VNC.2017.8275641
http://doi.org/10.1109/MITS.2013.2272174
http://doi.org/10.1109/TITS.2003.821292
http://doi.org/10.48550/arXiv.1712.04263
http://doi.org/10.1109/TNET.2020.2986252
http://doi.org/10.1109/ICC.2015.7249492
http://doi.org/10.1109/ANTS47819.2019.9117945
http://doi.org/10.1007/s11277-020-07272-8
http://doi.org/10.1109/ICCMC.2018.8487887

Sensors 2022, 22, 9000 29 of 29

11. Kushwah, R.; Kulshreshtha, A.; Singh, K.; Sharma, S. ECDSA for Data Origin Authentication and Vehicle Security in VANET. In
Proceedings of the 2019 Twelfth International Conference on Contemporary Computing (IC3), Noida, India, 8–10 August 2019.
[CrossRef]

12. Bochem, A.; Leiding, B.; Hogrefe, D. Unchained identities: Putting a price on sybil nodes in mobile ad hoc networks. In
Proceedings of the International Conference on Security and Privacy in Communication Systems, Singapore, 8–10 August 2018;
pp. 358–374. [CrossRef]

13. Bochem, A.; Leiding, B. Rechained: Sybil-resistant distributed identities for the Internet of Things and mobile ad hoc networks.
Sensors 2021, 21, 3257. [CrossRef] [PubMed]

14. Liu, X.; Luo, B.; Abdo, A.; Abu-Ghazaleh, N.; Zhu, Q. Securing Connected Vehicle Applications with an Efficient Dual Cyber-
Physical Blockchain Framework. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July
2021. [CrossRef]

15. Didouh, A.; Lopez, A.B.; Hillali, Y.E.; Rivenq, A.; Faruque, M.A.A. Eve, You Shall Not Get Access! A Cyber-Physical Blockchain
Architecture for Electronic Toll Collection Security. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent
Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020. [CrossRef]

16. Gu, P.; Khatoun, R.; Begriche, Y.; Serhrouchni, A. Support Vector Machine (SVM) Based Sybil Attack Detection in Vehicular
Networks. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA,
USA, 19–22 March 2017. [CrossRef]

17. Quevedo, C.H.O.O.; Quevedo, A.M.B.C.; Campos, G.A.; Gomes, R.L.; Celestino, J.; Serhrouchni, A. An Intelligent Mechanism for
Sybil Attacks Detection in VANETs. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications
(ICC), Dublin, Ireland, 7–11 June 2020. [CrossRef]

18. Mohanti, S.; Soltani, N.; Sankhe, K.; Jaisinghani, D.; Di Felice, M.; Chowdhury, K. AirID: Injecting a custom RF fingerprint for
enhanced UAV identification using deep learning. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications
Conference, Taipei, Taiwan, 7–11 December 2020. [CrossRef]

19. Reus-Muns, G.; Jaisinghani, D.; Sankhe, K.; Chowdhury, K.R. Trust in 5G Open RANs through Machine Learning: RF Fingerprint-
ing on the POWDER PAWR Platform. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference,
Taipei, Taiwan, 7–11 December 2020. [CrossRef]

20. Comert, C.; Kulhandjian, M.; Gul, O.M.; Touazi, A.; Ellement, C.; Kantarci, B.; D’Amours, C. Analysis of Augmentation Methods
for RF Fingerprinting under Impaired Channels. In Proceedings of the 2022 ACM Workshop on Wireless Security and Machine
Learning (WiseML’22), San Antonio, TX, USA, 19 May 2022; Association for Computing Machinery: New York, NY, USA, 2022;
pp. 3–8. [CrossRef]

21. Canetti, R.; Krawczyk, H. Analysis of Key-Exchange Schemes and Their Use for Building Secure Channels. In Proceedings of
the International Conference on the Theory & Application of Cryptographic Techniques, Innsbruck, Austria, 6–10 May 2001;
Pfitzmann, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2000; Volume 2045, pp. 453–474. [CrossRef]

22. Chen, W.-C.; Huang, Y.-T.; Wang, S.-D. Provable Secure Group Key Establishment Scheme for Fog Computing. IEEE Access. 2021,
9, 158682–158694. [CrossRef]

23. Bellare, M.; Pointcheval, D.; Rogaway, P. Authenticated Key Exchange Secure against Dictionary Attacks. In Proceedings of
the International Conference on the Theory and Applications of Cryptographic Techniques, Bruges, Belgium, 14–18 May 2000;
Preneel, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1807, pp. 139–155. [CrossRef]

24. Martínez, V.G.; Encinas, L.H.; Dios, A.Q. Security and Practical Considerations When Implementing the Elliptic Curve Integrated
Encryption Scheme. Cryptologia 2015, 39, 244–269. [CrossRef]

25. Blanchet, B. CryptoVerif: A Computationally-Sound Security Protocol Verifier; Techical Report; Centre Inria de Paris: Paris,
France, 2017.

26. Blanchet, B.; Cadé, D. CryptoVerif Computationally Sound, Automatic Cryptographic Protocol Verifier User Manual; User Manual;
Centre Inria de Paris: Paris, France, 2021.

27. Pan, J.; Cui, J.; Wei, L.; Xu, Y.; Zhong, H. Secure data sharing scheme for VANETs based on edge computing. J. Wirel. Com. Netw.
2019, 2019, 169. [CrossRef]

http://doi.org/10.1109/IC3.2019.8844912
http://doi.org/10.1007/978-3-030-01701-9_20
http://doi.org/10.3390/s21093257
http://www.ncbi.nlm.nih.gov/pubmed/34066711
http://doi.org/10.1109/IV48863.2021.9575869
http://doi.org/10.1109/ITSC45102.2020.9294334
http://doi.org/10.1109/WCNC.2017.7925783
http://doi.org/10.1109/ICC40277.2020.9149371
http://doi.org/10.1109/GLOBECOM42002.2020.9322561
http://doi.org/10.1109/GLOBECOM42002.2020.9348261
http://doi.org/10.1145/3522783.3529518
http://doi.org/10.1007/3-540-44987-6_28
http://doi.org/10.1109/ACCESS.2021.3130471
http://doi.org/10.1007/3-540-45539-6_11
http://doi.org/10.1080/01611194.2014.988363
http://doi.org/10.1186/s13638-019-1494-1

	Introduction
	Related Works
	Blockchain
	Machine Learning
	Cryptography

	System Model and Preliminaries
	System Model
	Threat Model
	Elliptic Curve Cryptography

	Proposed SPMSA
	Platoon Entry Event
	Initialization Phase
	Identity Authentication Phase
	Message Authentication Phase
	Platoon Key Update Phase (Entry)

	Platoon Communication Event
	Platoon Exit Event
	Exit Request Phase
	Platoon Key Update Phase (Exit)

	Security Evaluation
	Formal Proof of Security by Random Oracle Model
	Formal Proof of Platoon Entry Event
	Formal Proof of Platoon Exit Event

	Formal Verification of Security Functionality by CryptoVerif
	Formal Verification of Platoon Key Update Phases
	Formal Verification of Security Functionality for Communication Event

	Security Analysis

	Performance Evaluation
	Computational Overheads
	Communication Overheads
	Performance Comparison by Simulations

	Conclusions
	References

