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Genome-wide association study identifies several
loci for HEV seropositivity

Maria K. Smatti,1,5 Yasser A. Al-Sarraj,1,2 Omar Albagha,1,3,* and Hadi M. Yassine4,*
SUMMARY

Hepatitis E viral (HEV) infection imposes a heavy global health burden. The variability in the prevalence of
serological markers of HEV infection between different ethnic groups proposes a host genetic influence.
Here, we report genetic polymorphisms associated with anti-HEV antibody positivity and level using
binary- and quantitative-trait genome-wide association studies (GWAS) on a population from Qatar
(n = 5829). We identified a region in 12p11.1 (lead SNP: rs559856097, allele: A, p = 2.3 3 10�10) signifi-
cantly associatedwith anti-HEV antibodies level. This intergenic variant is located near SNORD112, a small
nucleolar RNA (snoRNA). Additional gene-set and pathway enrichment analyses highlighted a strong cor-
relation with anti-viral response-related pathways, including IFNs (alpha/beta) and interleukin-21 (IL-21)
signaling. This is the first GWAS on the response to HEV infection. Further replication and functional
experimentation are warranted to validate these findings.

INTRODUCTION

Hepatitis E virus (HEV) is a long-neglected RNA virus belonging to the Hepeviridae family. It is a major causative agent of acute viral hep-

atitis and jaundice cases worldwide.1 HEV is an emerging zoonotic virus with a broad host range including humans, pigs, dogs, rhesusmon-

keys, and many others.2 Hepatitis E is a serious public health concern especially in developing countries. The virus primarily causes acute

infections in young adults, with a mortality rate reaching 2%. Infection with HEV is usually asymptomatic or self-limited in immunocompe-

tent individuals, but can progress to chronicity and lead to fulminant hepatitis in immunocompromised patients and other risk groups such

as pregnant women.3 High HEV-relatedmorbidity andmortality rates are reported among pregnant women, infants <2 years old, and solid

organ transplant recipients.4 Up to 20–25% of pregnant women can die if they get hepatitis E in the third trimester according to the WHO

estimates.5

Globally, at least 20million HEV infections occur every year, accounting for approximately 3.3 million symptomatic cases of acute illness. In

a relatively recent study, it has been estimated that 110million individuals have recent/current infection based on anti-HEV IgM antibody pos-

itivity, while 15 million carry an active infection according to the HEV RNA positivity.6 The prevalence of HEV varies between different

geographical regions. Developed counties tend to have a lower HEV seroprevalence (5–20%) compared to developing countries, reaching

almost 70% in HEV endemic regions.7–9 Similarly, variable rates of HEV were recorded in the Middle East and North Africa (MENA) region,

ranging from 10% in Saudi Arabia and Tunisia to 90% in Sudan.10,11 In Qatar, a seroprevalence rate of approximately 21% was reported in

blood donors, indicating a high HEV infection rate in the general population.12 The diversity of the people residing in Qatar and the high

influx of foreign expatriates contribute to this high prevalence. In Qatari nationals, a prevalence of 11.5% was reported.12 Further, HEV

IgM antibodies and viral RNA were detected in about 0.6%, supporting reported data from other countries about the risk of blood transfu-

sion-associated HEV, particularly to pregnant women or immunocompromised patients.

Besides the environmental, behavioral, and socioeconomic factors, the variability in the prevalence of serological markers of HEV infection

between different ethnic groups proposes a genetic basis for HEV susceptibility. A study in the US indicated that Hispanic ethnicity is asso-

ciated with a higher seroprevalence of HEV compared to non-Hispanic blacks and non-Hispanic whites.13 Interestingly, it was also reported

that non-Hispanic blacks carry ε3 and ε4 alleles in the Apolipoprotein (APOE) gene, which is associated with lower seroprevalence of HEV in

this racial group, compared to non-Hispanic whites or Mexican Americans.14 In a replication study conducted on the Chinese Han population,

Gu et al. reported that APOE variant was significantly associated with lower odds of anti-HEV seropositivity.15 Nonetheless, these findings

require additional large-scale replication with particular attention to various confounders, especially since the role of APOE in HEV infection

was not validated by in vitro experiments.16,17 A polymorphism in Toll-like receptor 4 (TLR-4) Thr399Ile (rs4986791) was also associated with

HEV infection in an Indian cohort.18 Although these reports, to a limited extent, provided the first evidence that HEV infection could be
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Table 1. HEV seroprevalence in the studied cohort

Category No. (%) Positive anti-HEV IgG p value

Gender

Male 2593 (43.2) 284 (10.9) 0.018

Female 3407 (56.8) 442 (13)

Age groups

15-30 1694 (28.2) 49 (2.9) <0.0001

31-40 1624 (27.1) 62 (3.8)

41-50 1378 (22.9) 144 (10.4)

>50 1304 (21.7) 478 (36.7)

Total 6000 (100) 733 (12.2)
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modulated by host genetics, they were limited by the modest sample sizes and experimental design. A very small number of SNPs (around

1–500) were genotyped and correlated to HEV. Until now, no genome-wide studies have analyzed variants related to HEV infection at a whole

genome level. The impact of host genetics in HEV infection remains largely understudied compared to other hepatic viruses, including Hep-

atitis C and B, which were extensively studied in previous GWASs. Most importantly, genomic studies are ancestry specific and need to be

conducted on different populations to identify ancestry-relevant risk variants. In this study, we conducted aGWAS to identify genomic variants

in the genomes of 6000 Qatari individuals that associate with antibody response to HEV infection.
RESULTS

Seropositivity of anti-HEV IgG

Serological screening indicated a 12.2% (733/5998) positivity rate of anti-HEV IgG. HEV positivity was significantly higher among females (13%)

compared to males (10.9%) (p = 0.018). In addition, a statistically significant positive correlation was found between anti-HEV IgG levels and

age (p < 0.0001) (Table 1). Further classification of positive samples (n = 733) according to the ELISA reading indicated that most samples (n =

497) had an intermediate antibody level (groups 2 and 3), while 142 and 94 samples were considered strong and weak positives, respectively

(Figure S1).
SNP-level association analysis of HEV seropositivity

The binary trait association, which correlates anti-HEV IgG positivity with genomic variants, revealed 18 suggestive loci (p < 10�5). The stron-

gest association was detected at 4q35.1 locus, where two SNPs (rs10002421 and rs4861528) showed suggestive evidence of association with

HEV status (p = 2.23 10�7 and p = 8.23 10�6, respectively). The lead-independent SNP at this locus is rs10002421 (effect allele: G). Another

association signal was also detected at chromosome 2, precisely at 2q32.2 (top lead SNP: rs7608839, p = 2.67 3 10�7), in addition to

rs60915953, which was an independently associated variant with a p value of 1.053 10�6. The genomic locus 3q26.32 included two indepen-

dent SNPs, rs143844407 (top lead SNP, p = 4.733 10�6) and rs190707108 (p = 9.13 10�6). Remarkably, the highest number of GWAS-tagged

candidate SNPs was found in the genomic locus 6p12.1 (top lead SNP: rs12176566, p = 4.343 10�6, with 101 tagged SNPs). Moreover, one of

the top SNPs of this association was derived by a single variant on chromosome 8 (rs766747207 at q24.21, p = 3.33 3 10�7). Similarly, we

observed a relatively high association signal on chromosome 12 at p11.1 from two independent lead SNPs: rs559856097 and rs77221465

(p = 7.163 10�7 and p = 8.923 10�6, respectively). The q24.31 locus on chromosome 12 had also shown other suggestive association signals,

with rs112973617 being the top variant (p = 1.1 3 10�6). Other variants at 15q25.1 (rs150987782), 7q34 (rs116867893), 7q33 (rs4728340),

20p12.3 (rs59491562), and 11q23.3 (rs756724039) showed suggestive evidence of association with HEV seropositivity (p value <5 3 10�6).

Moreover, several loci with a marginal significant associations (p < 1 3 10�5) were detected at different chromosomes (Table 2; Figure 1).
SNP-level association analysis of quantitative HEV seropositivity

Genomic association with anti-HEV antibody level identified a single locus at chromosome 12 (p11.1) with genome-wide significance (p < 53

10�8). Three SNPs were detected at this locus, rs559856097 (the top lead independent SNP, p = 2.33 10�10), in addition to rs374241700 and

rs377585811 (p = 2.33 10�10 and p = 1.093 10�9, respectively). Allele A of this lead variant (rs559856097) showed a negative correlation with

anti-HEV antibody levels (Beta = �0.28). Importantly, SNPs at this locus were suggestively significant in the binary trait analysis, where

rs559856097 was also detected as a lead SNP. Moreover, 16 unique candidate SNPs in LD with the independent significant SNP

(rs559856097) were identified in this region. Of those, two SNPs were detected from this GWAS study (rs371520150 and rs372352546), while

the remaining ones are known SNPs in the 1000G data (1KG/Phase3 reference panel) (Table S1; Figure 2).

Multiple other loci harbored variants close to the GWAS significance (p < 53 10�7), of which the majority have also been detected in the

binary analysis. This includes the high signals observed at chromosome 4q35.1 locus (lead SNP: rs10002421, p = 6.08 3 10�8), and chromo-

some 6p12.1 (rs12176566, p = 1.44 3 10�7). The latter demonstrated the highest number of tagged SNPs (n = 101) compared to all other
2 iScience 26, 107586, September 15, 2023



Table 2. Top and independent SNPs at all genomic loci associated with HEV seropositivity binary trait

No rsID Chr Pos A1 A2 (effect) AF_Allele2 AF (Cases) AF (Controls) Beta Odds ratio p-value Nearest gene Type of gene

1 rs7608839 2 190633678 T C 0.82 0.77 0.83 �0.40 0.67 2.67E-07 NAB1 protein coding

2 rs60915953 2 190466578 C G 0.85 0.80 0.85 �0.40 0.67 1.05E-06 MFSD6 protein coding

3 rs13413799 2 137888729 T C 0.99 1.00 0.98 1.16 3.20 9.12E-06 AC020601.1 lincRNA

4 rs143844407 3 176225247 T A 0.97 0.95 0.98 �0.82 0.44 4.73E-06 RP11-78E6.1 pseudogene

5 rs190707108 3 176213819 G C 0.97 0.94 0.97 �0.74 0.48 9.18E-06 RP11-78E6.1 pseudogene

6 rs10002421 4 182853949 A G 0.81 0.75 0.81 �0.39 0.68 2.22E-07 AC114798.1 miRNA

7 rs4075197 4 64697960 A G 0.51 0.55 0.50 0.27 1.31 8.21E-06 RP11-158O16.1 pseudogene

8 rs793985 4 13926469 A G 0.99 0.97 0.99 �1.06 0.35 8.24E-06 LINC01182 lincRNA

9 rs12176566 6 55741580 C T 0.94 0.91 0.94 �0.56 0.57 4.34E-06 BMP5 protein coding

10 rs116867893 7 138958412 A T 0.99 0.97 0.99 �1.29 0.28 2.35E-06 KIAA1549 protein coding

11 rs4728340 7 134850946 A T 0.75 0.70 0.76 �0.32 0.72 3.76E-06 CALD1 protein coding

12 rs766747207 8 128517347 T A 0.99 0.97 0.99 �1.36 0.26 3.33E-07 LINC00824 lincRNA

13 rs756724039 11 116068428 A G 0.98 0.96 0.98 �0.93 0.39 4.24E-06 RPL5 pseudogene

14 rs238929 11 114101717 G A 0.53 0.49 0.54 �0.27 0.76 5.91E-06 ZBTB16 protein coding

15 rs74355568 11 114453338 T A 0.93 0.90 0.94 �0.52 0.59 9.33E-06 RP11-212D19.5 pseudogene

16 rs559856097 12 33204614 G A 0.99 0.97 0.99 �1.37 0.25 7.16E-07 SNORD112 snoRNA

17 rs112973617 12 124927340 G T 0.98 0.96 0.98 �0.97 0.38 1.11E-06 RPL22P19 pseudogene

18 rs77221465 12 33946298 T C 0.99 0.98 0.99 �1.31 0.27 8.92E-06 RNU6-472P snRNA

19 rs67692894 14 49337833 G A 0.81 0.76 0.81 �0.34 0.71 6.71E-06 RP11-326E7.1 pseudogene

20 rs150987782 15 79305805 T A 0.99 0.98 0.99 �1.50 0.22 1.49E-06 TMED3 protein coding

21 rs1609687 16 81402544 T C 0.83 0.80 0.84 �0.37 0.69 7.01E-06 GAN protein coding

22 rs190110595 19 44362376 C T 0.98 0.99 0.98 0.92 2.51 7.08E-06 ZNF112:CTC-512J12.6 protein coding

23 rs59491562 20 5893391 A AC 0.99 0.97 0.99 �1.25 0.29 3.18E-06 RNU1-55P snRNA

24 rs73593909 20 7714039 T A 0.82 0.78 0.83 �0.35 0.70 9.80E-06 AL031653.1 miRNA

25 rs28502553 21 41822335 C G 0.77 0.72 0.78 �0.31 0.73 8.50E-06 PRDM15 protein coding

Chr: Chromosome number; Pos: Genomic position in GRCh38 hg38; A1: Allele1; A2, Allele2 that is the effect allele.AF: Allelic frequency.
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Figure 1. Quantile-Quantile (QQ) and Manhattan plots of the GWAS on HEV seropositivity binary trait

(A) QQ plot of the association test statistics. The regression line (in red) represents the expected distribution of p values under the null hypothesis. Lambda value

is the genomic inflation factor calculated as the ratio of the median of the observed distribution of the test statistic to the expected values.

(B) Observed �log10 p values (y axis) are shown for all SNPs on each autosomal chromosome (x axis). The blue dotted line indicates suggestive significant of p

value <13 10�5. The top SNPs at each suggestive genomic loci are labeled with rs identifiers.
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associated loci, in a similar pattern to that observed in the binary GWAS. Additionally, 61 suggestively significant SNPs (p < 1 3 10�5) were

found at 56 genomic loci (Table S2).
Gene mapping of the top GWAS SNPs

SNP annotation according to the physical position on the genome (positionalmapping) at a 100 kb genomicwindow indicated that ourGWAS

SNPs are located within or near protein-coding genes, long intergenic non-coding RNAs (lincRNAs), microRNAs (miRNAs), pseudogenes,

small nucleolar RNAs (snoRNAs), or small nuclear RNAs (snRNAs). The top hit of the binary trait association, rs10002421, is an intergenic

variant located around 27.5 kb from AC114798.1 miRNA, and 64 kb from DCTD protein-coding gene. Additionally, the two SNPs at

2q32.2 were both linked to protein-coding genes. The variant rs7608839 is 13 kb close to NAB1, while rs60915953 is located within

MFSD6 genes. Other intronic SNPs positioned at protein-coding genes are rs116867893 and rs4728340 on chromosome 7, which were at

KIAA1549 and CALD1, respectively. Also, rs238929 is located within ZBTB16, rs190110595 in two overlapping genes, ZNF112 and CTC-

512J12.6, and rs28502553 is located in the PRDM15 gene. Within a distance of 13 kb or less from a protein-coding gene, rs150987782,

rs1609687, and rs12176566 intergenic variants were identified near TMED3,GAN, and BMP5 genes, respectively (Table 2). The regional plots

for all suggestive loci are presented in Figure S2.

On the other hand, rs559856097, the top SNP associated with quantitative HEV antibody response, is an intergenic variant located in

SNORD112, a snoRNA on 12p11.1. The nearest protein-coding gene to this variant is SYT10, located after approximately 170 kb. The two

independent SNPs at this locus, rs371520150 and rs372352546, were mapped to two RP11-313F23.4 (lincRNA) and RP13-359K18.1 (pseudo-

gene), respectively (Figure 3).

Inaddition topositionalmapping,eQTLandchromatin interactionmappingwereperformed.Thecomplete list ofmappedgenes toallGWAS

SNPsandSNPs inLD ispresented inTablesS3andS4.A list of 552 and68genesweremapped in thebinary andquantitativeGWASs, respectively.

While no eQTLs were identified from the quantitative HEV GWAS, 26 out of 552 genes were mapped by eQTLs as shown in Table S5.
Gene-set based analysis

To further investigate the mechanisms underlying genetic signals, we performed gene-set-based analysis. We utilized the FUMA tool based

on theMulti-marker Analysis of GenoMic Annotation (MAGMA). Initially, analysis of the binary trait GWAS genes revealed that among the top

gene sets identified by MAGMA are inflammatory response, regulation SMAD2/3 signaling, antigen response, and PI3K/ErbB pathway gene

sets (Table S6). Additionally, the top genes identified by MAGMA analysis included several genes involved in the immune system pathways,

specifically, the innate immune response. This includes IL2RA, KPNA7, CFHR4, KLHL3, and CFHR2 (Table S7). Moreover, these genes had a

distinct expression in the liver compared to other tissues (Figure 4A). However, none of the identified pathways or genes had a false discovery

rate (FDR) below 0.05. On the other hand, analysis of the quantitative GWAS mapped genes by MAGMA showed that the top gene sets are

those related to PI3K/ErbB pathway, followed by nuclear import signal receptor activity pathway, and IRF3-mediated induction of type I IFN

pathway (Table S8). While the first two pathways are generally related to cell signaling and general cell metabolism functions, the latter (IRF3

pathway) is one of the central pathways in regulating type 1-interferon during bacterial and viral infections. Additionally, among the top genes

identified by MAGMA are genes closely related to interferon, class I MHC-mediated antigen processing and presentation, and complement

pathways. This includesMAP3K3, KLHL3,CFHR4, andCFHR2 genes. The list of the top tenMAGMAgenes is presented in Table S9, while the

tissue expression pattern is demonstrated in Figure 4B.
4 iScience 26, 107586, September 15, 2023



Figure 2. Quantile-Quantile (QQ) and Manhattan plots of the GWAS on anti-HEV antibodies level quantitative trait

(A) QQ plot of the association test statistics. The regression line (in red) represents the expected distribution of p values under the null hypothesis. Lambda value

is the genomic inflation factor calculated as the ratio of the median of the observed distribution of the test statistic to the expected values.

(B) Observed �log10 p values (y axis) are shown for all SNPs on each autosomal chromosome (x axis). The red dotted line indicates GWAS significant of p

value < 13 10�8, while the black line indicates suggestive significant at p value < 13 10�5. The GWAS significant genomic locus (12p11.1) is bordered with

red, and the top SNPs are labeled with the rs identifiers. The top lead SNP is in black, while the two SNPs in the locus (dependent) are in light gray.
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Genes enrichment analysis

To further analyze the biological roles of themapped genes in our GWAS, we utilizedWebGestalt, a functional enrichment analysis tool.19We

performed one of the main well-established methods for enrichment analysis, the over-representation analysis (ORA), in addition to gene

ontology (GO) analysis. GO annotates genes based on cellular components (CC), biological processes (BP), and molecular functions (MF).

GO enrichment analysis of the candidate protein-coding genes mapped from the binary GWAS (n = 189 genes mapped from 18 genomic

loci), revealed several significantly enriched pathways, mostly related to metabolism and cell adhesion (p < 13 10�6, FDR <0.05) (Figure 5A).

TheORA pathway analysis on the Reactome database showed that themost enriched pathways were those related to cell surface interactions

at the vascular wall and Ca2+ activated K+ channels (p < 63 10�5, FDR = 0.054). The interleukin-21 signaling pathway was also one of the top

enriched gene sets, with a suggestive significance (p value = 0.004, FDR = 0.8). The top enriched pathways of ORA Reactome analysis are

presented in Figure 5B.

In the quantitative GWAS genes enrichment analysis, 441 candidate genes covering the significant and suggestive GWAS loci were

included. Of these, 379 genes were unambiguously mapped to the database. GO pathway analysis revealed multiple significantly enriched

pathways (Figure 6A). While various gene sets were related to metabolic pathways, type I interferon signaling and cellular response signaling

pathways were again significantly enriched (Both p value and FDR <0.05). Similarly, Reactome pathway analysis showed that the Interferon

alpha/beta signaling pathway is enriched substantially (p = 1.43 10�5, FDR = 0.025), compared to interleukin-36, compliment, andmetabolic

pathways, which were among the top pathways but with a suggestive enrichment (p < 0.05, FDR >0.05) (Figure 6B).

Considering that our GWAS is based on the phenotypic characterization (antibody response) of cases based on their immune status with

regard to HEV, we further analyzed the results focusing exclusively on immune genes and pathways. Initially, candidate protein-coding gene

sets identified from both binary and quantitative GWASs were combined. This resulted in a list of 537 unique genes included in the InnateDB

database search. Of these, 43 genes were directly related to the immune response and were therefore subjected to further gene enrichment

analysis. Starting with the GOgene sets, we found a highly significant enrichment in genes related to the innate immune response particularly

(p = 1.310�16, FDR = 1.36 3 10�12). Other immune-related pathways were also markedly enriched, including those pertaining to viral pro-

cesses (Figure 7A). Reactome pathway analysis indicated that our candidate genes are enriched for several interferon and cytokine signaling,

as well as anti-viral mechanisms pathways (p < 1 3 10�4, FDR <0.01) (Figure 7B). Besides, we utilized the GLAD4U database to explore the

pattern of gene enrichment in disease-related pathways. The most significant enrichment was found in pathways predominantly related to

viral infections (FDR = 2.9 3 10�9). Moreover, significant enrichment of pathways involving different infections was observed, including

dengue, influenza, and sexually transmitted diseases. Notably, hepatitis-associated pathways were also enriched with high statistical signif-

icance (FDR <0.00005) (Figure 7C).
DISCUSSION

The role of host genetic factors in the susceptibility or response to infections is increasingly recognized. Nevertheless, genome-wide assess-

ment of human genetic determinants of antibody responses to many viral infections is still scarce, including the response to HEV. In this pre-

sent study, we mapped genetic loci associated with HEV infection in a 6,000 well-characterized cohort. This was accompanied by gene

network analysis and gene overrepresentation to explore possible underlying molecular mechanisms.
iScience 26, 107586, September 15, 2023 5



Figure 3. Regional association plot for the top signal at rs559856097

Genes were mapped to this locus by positional, eQTLs, and chromatin interaction mapping using FUMA platform (https://fuma.ctglab.nl/). The top lead and the

independent significant SNPs are labeled with rs identifier.
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We initially determined the HEV serostatus at a 12.2% positivity rate among the adult Qatari population. This prevalence is in line with

previous reports, where an 11.5% seropositivity rate was reported in Qatari blood donors,12 and neighboring counties such as Saudi Arabia

(11% in apparently healthy population). However, higher seroprevalence of anti-HEV antibodies was reported in other Middle East and North

Africa (MENA) region, such as Egypt (47% in pregnant women) and Sudan 90%.10,11 We based our phenotypic classification on ELISA assay

because of its sensitivity in determining the immune status. Importantly, the commercial kit (MPDiagnostics HEV ELISA) that was utilized in the

study had a recorded sensitivity of 99.2%. Following the serostatus determination, we used twoGWAS approaches, a binary and a quantitative

phenotype, to pinpoint genomic regions associated with HEV seropositivity or antibodies level, respectively.

Prior exposure to HEV evidenced by a positive anti-HEV IgG test result was suggestively associated with 18 genomic loci. Most of the sig-

nals at these loci map to non-coding regions (15 out of 25 variants), which is expected for whole-genome association analyses.20 Additionally,

ten variants were intronic or intergenic and mapped to a protein-coding gene. The nearest protein-coding genes to intergenic variants were

NAB1, BMP5, TMED3, andGAN. On the other hand, intronic variants within protein-coding genes were found inMFSD6, KIAA1549, CALD1,

ZBTB16, ZNF112, and PRDM15 genes. Notably, most of these genes have a functionally validated or predicted role in regulating the immune

response. For instance,NAB1 is involved in the regulation of IFNGR1, the receptor for type II interferon (IFNg), and thus, associated with sus-

ceptibility to various infections. Interestingly, previous studies demonstrated that polymorphisms in ifngr1 promoter correlated with hepatitis

B infection susceptibility.21 Hence, it is possible that variants of NAB1, a regulator or IFNGR1, could also play a role in susceptibility and/or

immune response to HEV.MFSD6,GAN, and ZBTB16 genes were also linked to class I MHC (MHC-1) antigen processing and presentation. In

fact, the role of CD8+ T cells in combating viral infections is well studied. These immune cells function by recognizing viral-derived peptides

presented by MHC-1 on the surface of infected cells.22 Manipulation of the MHC-1 presentation pathway has been found to limit the MHC-1

expression, reduce the ability of CD8+ T to recognize viral peptides, and thus, impair viral clearance.23 While the exact role ofMFSD6, GAN,

and ZBTB16 genes inMHC-1 pathway is still not clear, mutations in genes involved in any process of MHC-1 expression or antigen processing

and presentation pathways could alter the subsequent immune responses. Given the important role of MHC-1 molecules in detecting virally

infected cytotoxic T lymphocytes (CTLs), multiple viruses evolved proteins that inhibit the MHC-1 pathway through diverse mechanisms for

host immune impairment and viral evasion.24

Two ZNF protein-coding genes were also prioritized in our GWAS, PRDM15, and ZNF112. The ZNF protein family is known for its essential

function in regulating immune responses at transcriptional and post-transcriptional levels.25 PRDM15 gene, tagged by rs28502553 intronic

SNP, is part of the immune response cluster as classified by the Human Protein Atlas. It is expressed in immune cells, overexpressed in

B-cell lymphomas, and plays an essential role in B-cell lymphomagenesis.26 ZNF112 gene, on the other hand, has been linked to immuno-

globulin resistance in Kawasaki Disease (KD) possibly due to its regulatory contribution to inflammation.27 Importantly, KD could be triggered
6 iScience 26, 107586, September 15, 2023
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Figure 4. Heatmaps of the average gene expression per tissue (GTEx v8 30 general tissue types) for the top genes (highest p value) identified by

MAGMA analysis

(A) Top 10 MAGMA genes from the binary trait GWAS.

(B) Top 10MAGMA genes from the quantitative trait GWAS. The expression in blood and liver tissues are particularly bordered in black. FUMA platform (https://

fuma.ctglab.nl/) was used for gene annotation and representation.
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by various infectious agents in genetically susceptible individuals.28 Still, the role of PRDM15 and ZNF112 in the immune response to infec-

tions has never been studied. Therefore, further studies are needed before we understand themechanistic role of polymorphisms in PRDM15

and ZNF112 on HEV antibody response.

BMP5 and TMED3, the nearest protein-coding genes to rs12176566 and rs150987782, also have immune-related functions. While BMP5

acts primarily as a growth factor and is linked to cytokine activity, TMED3 belongs to the TMED family, an important player in innate immune

signaling.29 Besides the involvement in immunity, other genes with diverse functions were also tagged by several suggestive SNPs. This in-

cludes KIAA1549 and CALD1, which are associated with brain tumors and regulation of muscle contraction, respectively.

We noticed multiple signals from SNPs associated with HEV seropositivity at non-coding RNAs (ncRNAs), specifically the long intergenic

ncRNAs. Generally, this class of non-coding RNAs has been recently described as critical regulators in anti-viral responses and virus-host in-

teractions.30 Moreover, in a recent study on HBV integration sites, it was reported that the HBV genome was highly integrated into several

non-coding RNAs, including LINC00824.31 This particular lincRNAwas tagged by rs766747207, one of the top SNPs in our binary HEV GWAS.

Although HBV is a DNA virus with the potential basis for host genome integration that resembles retroviral integration, non-retroviral RNA

viruses can incidentally integrate.32 Nevertheless, the definitive role of LINC00824 and other ncRNAs identified in our study in HEV infection

necessitates additional research.

In addition to long non-coding RNAs, we identified four SNPs in short non-coding RNAs regions, of which two were located at miRNAs

(AC114798.1 and AL031653.1). Host-encoded miRNAs are known for their ability to modulate the host-virus interplay, given their pivotal role

in various cellular processes. These miRNAs could either promote or repress viral replication by suppressing or upregulating the IFN-a/b

signaling pathway.33 In fact, the link between cellularmiRNAs and viruses emerged after the observation that HCV infection affects the expres-

sion ofmiRNA-122, which enhancesHCV replication and the stability of its RNA.34,35 In HEV infection, severalmiRNAs (such as:miR-450b,miR-

125b-5p,miR-192-5p, andmiR-99a) have been identified and associatedwithHEVprogression to chronicity or acute liver failure.36,37 However,

until now, there have been no studies on the role of AC114798.1 and AL031653.1 miRNAs in HEV or any other viral infection.

Next, we investigated whether host genetic variants contribute to the level of antibodies in HEV infection. To count for the possible dif-

ferences related to the time of exposure due to demographic differences, we adjusted our model for age and gender before conducting the

quantitative GWAS. We identified a region in 12p11.1 (Lead SNP: rs559856097) significantly associated with anti-HEV levels. Carrying A allele

negatively correlated with the level of anti-HEV antibodies. This strong GWAS signal came from a variant near SNORD112, a snoRNA.

SNORDs are a highly expressed class of non-coding RNAs that play a prominent role in rRNA modification and act as a scaffold for protein

complexes.38 Solid evidence has accumulated regarding the clinical role of SNORDs in disease outcomes, including viral infections. These

nucleolar RNAs are found to interact with RNA viruses. In particular, a specific C/D box snoRNAs is needed for optimal viral replication, as

observed with dengue fever virus, influenza A virus, human rhinovirus 16, herpes simplex virus 2, and others.39 In a similar way, C/D box

126 (SNORD126) has been recently reported to enhance HCV replication by activating the PI3K-AKT signaling pathway.40 However,
iScience 26, 107586, September 15, 2023 7

https://fuma.ctglab.nl/
https://fuma.ctglab.nl/


Figure 5. Gene set enrichment analysis of the binary trait HEV GWAS using WebGestalt

(A) GO enrichment analysis on the candidate protein coding genes mapped by FUME on the binary GWAS gene set (n = 189 genes mapped from 18 genomic

loci).

(B) ORA pathway analysis using Reactome database on the same set of genes (n = 189). The top ten enriched pathways are presented in each bar graph.

Categories with significant enrichment (FDR <0.05) are colored in dark blue.
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SNORD112, is one of the orphan snoRNAs that exist with unknown complementarity to any cellular RNA and, thus, unknown function.41 Over-

expression of SNORD112, in addition to SNORD113 and SNORD114, was documented in acute promyelocytic leukemia (APL).41 However, the

precise role of SNORD112 and its involvement in viral infections remains open for investigation. The nearest protein-coding gene to the lead

SNP (rs559856097) at 12p11.1 was SYT10 gene. This gene acts as a calcium sensor needed explicitly for the Ca(2+)- dependent exocytosis of

secretory vesicles containing insulin-like growth factor 1 (IGF1) in neurons of the olfactory bulb.42

Despite the diverse functions of the protein-coding genesmapped by the binary and quantitative GWASs,most of these genes carry poly-

morphisms associated with liver diseases and viral infections, as demonstrated in the GWASs PhenoScanner database. For instance, variants

in the BMP5 gene have been linked to acute respiratory infections, while TMED3 gene variants were strongly linked to HBV. On the other

hand, MFSD6, CALD1, GAN, and PRDM15 genes were associated with UTIs. Theoretically, genetic variants in common innate and adaptive

immune-related genes could interfere with the host response to different viruses regardless of their site of infection. On the other hand, liver

cirrhosis, fatty liver, and hepatic failure phenotypes were associated with variants in NAB1, CALD1, ZBTB16, GAN, TEMD3, and/or PRDM15

genes. Of note, the progression of HEV infection to chronicity, leading to liver damage and cirrhosis has been previously reported.43

In order to employ a more comprehensive analysis of genetic markers that simultaneously contribute to a complex phenotype, we applied

MAGMA gene and gene-set analyses. Several gene sets prioritized byMAGMAwere closely related to the immune response processes. This

included genes of IRF3-mediated induction of type I IFN and SMAD2/3 signaling, which are essential pathways in regulating type 1 interferons

during bacterial and viral infections.44,45 In fact, treatment by different types of interferons (type I, II, and III IFNs) demonstrated an anti-viral

response to HEV infection.46 Moreover, HEV and other hepatitis viruses express molecules that target signal transductions across IFN path-

ways as a defensive mechanism to block the production of IFNs and impair the host anti-viral response.47–49 Interestingly, specific polymor-

phisms in IFNl4 gene were found to correlate with anti-HEV IgG positivity among hemodialysis patients.50 It is, therefore, not surprising that

variants in genes involved in IFN signaling pathways could modulate the susceptibility, seropositivity, or response to HEV infection.

Further, we performed an overrepresentation enrichment analysis using several databases to identify pathways whose perturbation may

contribute to the HEV infection. Remarkably, in addition to involvement in metabolism, our candidate genes were significantly enriched for

interferons (alpha/beta) signaling and cellular response to IFN-1 pathways. This again highlights the possible key role of IFNs inHEV response.

Furthermore, IL-21 signaling pathway was suggestively enriched in the quantitative GWAS candidate gene set. IL-21 is a major cytokine pro-

ducedby T follicular helper (Tfh) cells. Alongwith other cytokines, IL-21modulates antibody production by T-cell-dependent activatedB-cells.

It also enhances somatic hypermutation and production of high-affinity antibodies from plasma cells.51 Most importantly, the observed

enrichment in IFNs and antibodies production pathways strengthens the validity of our GWAS findings since it was mainly designed to detect

variants associated with antibodies positivity or level.

As a complementary approach to explore enriched pathways exclusively related to immunity, we further performed enrichment analysis on

genes directly involved in the immune response. Across a list of 43 immune genes filtered from our candidate genes list, we identified highly
8 iScience 26, 107586, September 15, 2023



Figure 6. Gene set enrichment analysis of the quantitative trait HEV GWAS using WebGestalt

(A) GO enrichment analysis on the candidate protein coding genes mapped by FUME on quantitate GWAS gene set (n = 441 candidate genes covering the

significant and suggestive GWAS loci).

(B) ORA pathway analysis using Reactome database on the same set of genes (n = 441). The top ten enriched pathways are presented in each bar graph.

Categories with significant enrichment (FDR <0.05) are colored in dark blue.
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enriched gene sets contributing primarily to anti-viral responses. This included anti-viral responses to various hepatic (e.g., HCV and HBV) and

non-hepatic viruses (e.g., measles, influenza). Notably, this points out that polymorphisms in genes related to common anti-viral signaling path-

ways could modulate the response to distinct viruses from different groups. This also highlights the need for more genomic studies and, most

importantly, meta-analyses combining GWAS findings on different infectious diseases. Determining common variants that disturb overlapping

anti-viral response pathways could provide potential preventive, prognostic, and therapeutic targets for genetically predisposed individuals.

The strength of this study comes from the uniqueness of the Qatari population, which provided an opportunity to detect variants that

contribute to HEV infection in genomes representing the Qatari and Arab regions, an extremely underrepresented population in genomic

studies. A recent report on the genetic composition of the Qatari population included the same cohort as in the present study and identified

six major ancestries: General Arabs (38%), Peninsular Arabs (17%), Arabs of Western Eurasia and Persia (22%), South Asian Arabs (1%), African

Arabs (3%), andAdmixedArabs (19%).52 The richness in the genomic diversity of the populationmakes it a perfect representative of the whole

Middle Eastern region. In fact, the unique population structure could partially explain why our results did not replicate previous reports on the

role of TLR-4 and APOE polymorphisms in HEV infection in non-Hispanic whites, non-Hispanic blacks, Mexican Americans, Indians, and Chi-

nese populations.14,15,18 Zhang et al. study found that non-Hispanic blacks were the only population that showed an association between anti-

HEV seropositivity and APOE variants, compared to other studied populations.14 Interestingly, APOE ε3 and ε4 variants were found to be

significantly associated with protection against HEV infection in non-Hispanic blacks, who had the lowest seroprevalence of anti-HEV

(15.3%) compared to other groups (>20%).14 This emphasizes the importance of ancestry-specific genomic studies to understand infections’

susceptibility and pathogenesis at a population level. Additionally, this study was based on whole genome sequencing data rather than SNP

array or targeted genotyping, and thus, was able to detect variants beyond the protein-coding regions. This allowed for a comprehensive

representation of regulatory variants that associate with RNA expression (eQTL variants), or chromatin interaction and, consequently,

improved our candidate gene mapping and pathway analysis. In addition, the consistency in the results between the GWAS of the binary

and quantitative traits further confirms our findings. Most of the suggestive loci identified in the binary GWASwere also detected in the quan-

titative GWAS. Although our binary GWAS did not succeed in catching significant hits, additional categorization of samples based on anti-

HEV antibody levels seemed to improve the phenotype precision, resulting in GWAS significant associations.

In conclusion, we reported several host genetic variants associated with anti-HEV antibody response. This study provides new evidence on

the role of human genetic variation in HEV infection and emphasizes the importance of further replication and functional validation.
Limitations of the study

There are several main limitations in this study. First, our classification of cases and controls was based on anti-HEV IgG positivity only. This

could have led to themisclassification of individuals previously exposed to HEV, whose antibody level has waned to undetectable levels. Until

now, the longevity of immunological response following HEV infection remains unclear. Multiple small-scale early and recent reports showed

that anti-HEV antibodies could persist from 5 to 30 years post-infection in an age-dependent manner.53 Importantly, 80% of individuals were
iScience 26, 107586, September 15, 2023 9



Figure 7. Gene set enrichment analysis of immune-related genes from the binary and quantitative trait HEV GWASs using WebGestalt

(A–C) A list of 43 immune genes filtered from our candidate genes list was used for: A.GO enrichment analysis. B.ORA pathway analysis. C. ORA in GLAD4U

disease database. The top ten enriched pathways are presented in each bar graph. Categories with significant enrichment (FDR <0.05) are colored in dark blue.
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still positive for anti-HEV antibodies at least 10 years post-infection.54 Nonetheless, this does not eliminate the possibility of having false nega-

tive cases in our control group.Our results, therefore, provide insights on variants related to the antibody response and perhaps correlate with

durability but cannot be translated into susceptibility due to the lack of solid evidence of exposure. Moreover, although we performed two

GWASs, our results require replication in an entirely different cohort. It was also unfeasible to perform ameta-analysis due to the unavailability

of other GWASs on HEV infection.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Serum samples Qatar Biobank (QBB) N/A

Critical commercial assays

HEV ELISA-IgG MP Biomedicals SKU: 0721150096T

Software and algorithms

PLINK-1.9. Purcell et al.55 http://pngu.mgh.harvard.edu/purcell/plink/

SAIGE (Scalable and Accurate Implementation

of GEneralized mixed model)

Zhou et al.56 https://github.com/weizhouUMICH/SAIGE/

Functional Mapping and Annotation of

genetic associations (FUMA)

Watanabe et al.57 https://fuma.ctglab.nl/

Web-based Gene SeT AnaLysis Toolkit Wang et al.19 http://www.webgestalt.org

R (version 4.2.1) The R Foundation www.R-project.org

Other

Whole genome sequences Qatar Biobank (QBB) N/A
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Maria K. Smatti

(msmatti@qu.edu.qa).

Materials availability

Thematerials used in this paper (biological samples and whole genome sequences) are owned byQatar Biobank (https://www.qatarbiobank.

org.qa).

Data and code availability

d Whole-genome sequence data are not publicly available in repositories. To obtain access, an application must be submitted to the Qatar

Biobank.

d This paper does not report original code.

d Results of the study (raw summary statistics) and any additional information required to reanalyze the data reported in this paper are avail-

able from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Sample selection criteria

The present study included a cohort from Qatar Biobank (QBB) participants. Whole-genome sequences of 6,218 Qatari nationals who had

previously participated in phase 1 of the Qatar Genome Project (QGP) were obtained. This cohort represented the first data release from

QBB. However, the corresponding sera samples were available for only 6000 individuals. A detailed demographic characterization of this

cohort has been previously documented.58 QBB recruits adults (ageR 18 years) following specific inclusion/exclusion criteria to comprehen-

sively include the permanent heterogeneous population in Qatar. Only Qatari nationals or long-term residents (R 15 years living in Qatar) are

eligible to participate. All study participants were of Qatari origin. Male participants represented 43.2% (n=2593) of the study population

compared to 56.8% (n=3407) females. The mean age of enrolled subjects was 40.5 years (SDG12). All QBB participants signed informed con-

sent before their participation.

Ethical approval

The study was approved by Qatar University Institutional Review Board (IRB, QU-IRB 1287-EA/20) and Qatar Biobank IRB (E-2020-QBB-RES-

ACC-0184-0110).
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METHOD DETAILS

Genomic data and quality control

Sequencing read data were generated by Illumina HiSeq X Ten sequencers and converted from the native BCL format to paired-end

FASTQ format using bcl2fastq. The quality of the raw data was assessed using fastqc.59 Data passing quality control was then aligned

to the reference genome sequence (build GRCh37 (hs37d53) using the bwa-kit6 aligner [v0.7.12].60 Variant calling was performed using

GATK haplotype caller [v3.3].61,62 The genetic variant data was then converted to PLINK file format using PLINK-1.9.55 Standardized qual-

ity-assurance and quality control (QA/QC) methods were followed to generate high quality and confidence on both SNPs and sample

levels, as previously described.58 Briefly, SNPs with genotype call rate <90%, Hardy-Weinberg p-value <1x10-6 were removed. Additionally,

subjects with excess heterozygosity, duplicates, call rate <95%, and gender ambiguity were removed. We calculated the Pairwise identity

by-state (IBS) matrix based on a pruned set of independent autosomal SNPs (N = 62,475) using a window size of 200 SNPs and LD threshold

of r2 = 0.05 to identify and remove duplicated samples. Moreover, multidimensional scaling (MDS) was performed to identify and remove

population ancestry outliers. Samples with G4 SD from the mean of the two MDS components were considered population outliers and

removed from the analysis.52,58 The final set of sequences used for the GWAS comprised 8,408,727 SNPs. The pass QC number of samples

was 6045.
Binary and quantitative phenotypes classification

Sera samples (n=6000) were tested for HEV IgG antibodies using a commercial ELISA assay (HEV ELISA-IgG, MP Biomedicals) according to

the manufacturer’s protocol. For the binary trait GWAS, samples were grouped into cases or controls based on the anti-HEV IgG positivity.

For the quantitative GWAS, samples were semi-quantitatively categorized into five groups based on their ELISA absorbance value, which

correlates with the anti-HEV antibody level.63 We used the positive control value as a reference because it is plate/experiment-specific.

Samples were classified as follows: Group1= samples with absorbance higher than 1.5*(positive control); Group2= samples with absor-

bance higher than the positive control but less than 1.5*(positive control); Group3= samples with absorbance higher than the positive con-

trol and higher than 0.5*(positive control); Group5= positive samples with absorbance less than or equal to 0.5*(positive control); and

Group 6= negative samples. Two samples were excluded due to indeterminate ELISA results obtained from two separate experiments.

As per the phenotypic data availability and genomic QC filtration, the final total number of subjects included in the GWAS was 5829

individuals.
QUANTIFICATION AND STATISTICAL ANALYSIS

Genome-wide association analysis

Genome-wide association testing was performed using the SAIGE (Scalable and Accurate Implementation of GEneralized mixed model) im-

plemented in the R package.56 This tool is based on a generalized mixed model association test that uses the saddlepoint approximation to

calibrate the distribution of score test statistics for binary andquantitative traits. Importantly, thismethodprovides better association accuracy

because it accounts for case-control imbalance and sample relatedness.56 For all tested traits, we included age, sex, and the first four principal

components (PCs) as covariates in the model. Principal component analysis was performed using PLINK. The genome-wide significance

threshold was set as p<5310�8 28. Quantile-Quantile plots, Manhattan plots, and regional association plots were all generated using Func-

tional Mapping and Annotation of genetic associations (FUMA).57
Functional annotation

Functional annotation was performedusing the FUMAplatform (https://fuma.ctglab.nl/), an integrative web-based tool that processesGWAS

summary statistics for functional annotation and gene prioritization. First, a pre-calculated LD structure based on the 1000G reference pop-

ulation was used to define a genomic risk locus. Independent significant variants (p<5x10-8) which are independent of each other at r2 < 0.6

were also defined. Additionally, SNPs that are independent at r2 < 0.1 were considered independent lead SNPs.Moreover, all SNPs in LDwith

an independent SNP (even if not in theGWAS results) are added to the annotation.57 Variant annotation with biological functionality and gene

mapping was then carried out according to three main strategies: physical position, expression quantitative trait loci (eQTL), and chromatin

interaction. FUMA includes 18 biological data repositories for gene-set analysis by MAGMA (Multi-marker Analysis of GenoMic Annotation).

MAGMA applies multiple linear regression models to examine whether genes in different gene sets are strongly associated with a trait. This

was followed by gene-property analysis to investigate further the relationship between tissue-specific gene expression profiles and gene as-

sociations.64 Gene analysis was performed using MAGMA (v1.6) with default settings. Significant p-value threshold set at 0.05 / (number of

tested genes).
Gene enrichment analysis

Gene enrichment analysis was performed utilizing WebGestalt (Web-based Gene SeT AnaLysis Toolkit, http://www.webgestalt.org). This

toolkit integrates functional categories from different databases and computational analyses to provide a comprehensive yet easy way to

evaluate gene sets for biological context interpretation.19 We used the over-representation analysis (ORA) method for Gene ontology
14 iScience 26, 107586, September 15, 2023
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(GO), pathways (Reactome), and disease (GLAD4U) databases. For all analyses, the number of genes in each pathway was set from 5 to 2000,

and Benjamini-Hochberg FDR was used for multiple test adjustment. Furthermore, InnateDB database (https://www.innatedb.com) was used

to determine which genes are involved in immune-relevant pathways. Briefly, the combined set of mapped genes from the quantitative and

qualitative GWASs (n=1866) was filtered to select protein-coding genes only (n=537). This list was then annotated using InnateDB annotation

tool to explore which genes are associatedwith immune responses. Subsequently, the resulting list of genes that have an ‘‘immune response’’

function (n=44) was subjected to functional enrichment analysis.
iScience 26, 107586, September 15, 2023 15

https://www.innatedb.com

	ISCI107586_proof_v26i9.pdf
	Genome-wide association study identifies several loci for HEV seropositivity
	Introduction
	Results
	Seropositivity of anti-HEV IgG
	SNP-level association analysis of HEV seropositivity
	SNP-level association analysis of quantitative HEV seropositivity
	Gene mapping of the top GWAS SNPs
	Gene-set based analysis
	Genes enrichment analysis

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Sample selection criteria
	Ethical approval

	Method details
	Genomic data and quality control
	Binary and quantitative phenotypes classification

	Quantification and statistical analysis
	Genome-wide association analysis
	Functional annotation
	Gene enrichment analysis





