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Abstract: In a real-world situation produced under COVID-19 scenarios, predicting cryptocurrency
returns accurately can be challenging. Such a prediction may be helpful to the daily economic and
financial market. Unlike forecasting the cryptocurrency returns, we propose a new approach to
predict whether the return classification would be in the first, second, third quartile, or any quantile of
the gold price the next day. In this paper, we employ the support vector machine (SVM) algorithm for
exploring the predictability of financial returns for the six major digital currencies selected from the
list of top ten cryptocurrencies based on data collected through sensors. These currencies are Binance
Coin, Bitcoin, Cardano, Dogecoin, Ethereum, and Ripple. Our study considers the pre-COVID-19
and ongoing COVID-19 periods. An algorithm that allows updated data analysis, based on the use of
a sensor in the database, is also proposed. The results show strong evidence that the SVM is a robust
technique for devising profitable trading strategies and can provide accurate results before and during
the current pandemic. Our findings may be helpful for different stakeholders in understanding
the cryptocurrency dynamics and in making better investment decisions, especially under adverse
conditions and during times of uncertain environments such as in the COVID-19 pandemic.

Keywords: artificial intelligence; data science; digital currency; gold; SARS-CoV-2; machine learning;
sensing and data extraction

1. Introduction

In the last two years, the impact of the 2019 Coronavirus Disease (COVID-19) on
the trading strategies between different types of cryptocurrencies, gold, exchange market,
portfolio diversification, and macroeconomic policy has attracted a great deal of interest
in the financial market [1]. The unexpected recent exponential increase in cryptocurrency
prices has exceeded the investors’ imaginations. However, this does not indicate that
cryptocurrencies are a substitute for gold [2]. For more than 2000 years, gold has been
known as a high-quality liquid asset that has served as a hedge and safe haven for ex-
changing commodities. Several robust statistical models have been proposed to explore
the predictability of the gold price [2,3].

Cryptocurrencies are digital currencies that belong to a decentralized system still
classified in the nascent asset class [4]. Their prices are very sensitive to good and bad
news with significant instability leading to high volatility and making the predictions hard
and challenging, especially under adverse market conditions [2,4]. Thus, investments in
cryptocurrencies are, often, equated to investments in gold, where cryptocurrencies may
benefit from higher allocations to gold and vice-versa [2].
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The emergence of blockchain [5] and decentralized cryptocurrencies has been a cat-
alyzed innovation in the financial market. Before the global outbreak of COVID-19, research
focused on using the Granger-causality and quantile-on-quantile regression (QQR) [6,7] to
model the relationship between price change of crude oil, gold, denominated currencies,
and other financial markets, on the one hand, and price change of top-ranked cryptocur-
rencies, on the other hand [8–12].

In the wake of the COVID-19 pandemic, several studies were conducted to explore the
influence of the pandemic intensity on the gold and cryptocurrency market. For example,
the asymmetric impacts of COVID-19 on the multifractality of oil and gold prices (and
vice-versa) based on upward and downward trends were examined in [13]. They showed
that the gold and oil markets during the pre-COVID-19 period were more inefficient during
downward (upward) trends, but this has changed during the outbreak period [14].

A type of multivariate GARCH model, named VAR-AGARCH, was used in [15] to
examine the return and volatility spillover of Bitcoin (BTC), Ethereum (ETH), and Litecoin
(LTC) cryptocurrencies before and during the COVID-19 period. The authors [15] did not
compare the performance of the VAR-AGARCH model with modern techniques as machine
learning algorithms [16]. The QQR was employed in [17] to explore the asymmetric impact
between the changing intensity in the quantiles of COVID-19 and the quantiles of the
daily returns of the top-ranked cryptocurrencies. Their numerical results are based on
data collected over the first six months of the outbreak of the pandemic. By utilizing these
results, contrary to what was indicated in [18], the QQR suggested that BTC, Cardano
(ADA), and ETH performed better in comparison with other currencies.

The GARCH-MIDAS model adopted in [4] examined the impact of news, during
COVID-19, on the predictability of return volatility of cryptocurrencies. They showed that
the pandemic increases the volatility of digital currencies compared with the period before
the outbreak of COVID-19. A significant causal relationship was shown in [19], in quantiles,
between the US dollar and the top five cryptocurrencies during the pandemic, which had a
large effect on the digital currencies’ relationship.

The impact of the COVID-19 lockdowns on the BTC trading volume was analyzed
in [20] by using Apple mobility volume trends and autoregressive-moving-average mod-
els [21]. The authors [20] reported that the investors traded more BTCs during the days
with low mobility associated with lockdown mandates, even after controlling the stocks
and gold prices.

In many applications, the support vector machine (SVM) technique [22], a machine
learning tool, has shown a superior forecasting performance in linear and non-linear
models, especially when the data have outliers, compared with most evolutionary al-
gorithms [23]. SVM can be classified into two algorithms: support vector classification
(SVC) and support vector regression (SVR) [24]. Both algorithms are computationally
intensive and require a large amount of memory, but with the age of big data [25] and
quantum computing, this can be affordable. Interest in these algorithms has increased in
the cryptocurrency market and it deserves to continue. The discriminant analysis (DA) and
SVM algorithms were utilized in [26] to model the subsurface gold mineralization in the
northwestern part of Iran. They compared the performance of four classification functions
of DA and SVM methods and showed that the SVM algorithm worked better than the DA
method.

SVM algorithms were applied in [27] to investigate the profitability of the cryptocur-
rency market and explore how high they would be. The authors showed that the SVM
technique could outperform the benchmark strategies in terms of return-risk relation. They
showed that the SVR algorithm provides better results in comparison to ARIMA models.
An SVM algorithm based on particle swarm optimization (SVM-PSO) algorithm [28] was
proposed in [29] to forecast the future price of cryptocurrency. They reported that the
performance of the SVM-PSO technique is better than the SVM algorithm. The ARIMA
and SVR models were employed in [3] to predict the daily price of gold, whereas in [30],
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the SVC model was utilized to predict whether the price of three cryptocurrencies (BTC,
ETH, and LTC) would increase or decrease in the next day.

Note that traditional econometric and time-series models, such as the ARMA and
GARCH models, might not provide helpful results in predicting cryptocurrency returns
due to the impact of risk and uncertainty on return volatility. Although several SVM
techniques have already been used in numerous applications, very few have been done
in the cryptocurrency market. To the best of our knowledge, the SVM has never been
employed to predict the daily classification of cryptocurrency returns according to the
quantiles of the gold price the next day.

Our objective is to propose a new approach for predicting cryptocurrency returns
by using the SVC technique. Specifically, instead of forecasting the movement of the
cryptocurrency return indicating whether it would go up or down, we forecast the type of
this return reporting whether it would be in the first, second, third quartile, or any quantile
of the gold price the next day. Therefore, our investigation fills this gap by proposing a new
methodology for predicting the daily classification of cryptocurrency returns according
to the quantiles of the gold price the next day. We classify the returns of the six major
digital currencies (ADA, Binance Coin –BNB–, BTC, Dogecoin –DOGE–, ETH, and Ripple
–XRP–) selected from the list of top ten cryptocurrencies into four categories according to
the quartiles of the gold price values. In the current COVID-19 contingency scenario, data
of cryptocurrency returns and COVID-19 are often collected through sensors [31–33].

The rest of this article is organized as follows. In Section 2, we propose an algorithm
that uses a sensor in the database to predict the return of cryptocurrencies considering
COVID-19 data and the price of gold. Section 3 defines the methodology based on the
SVM models employed in this study. In Section 4, we present the data and results of our
investigation, whereas in Section 5 our conclusions are reported.

2. Sensing Data of Cryptocurrencies, Gold, and COVID-19

To perform the empirical analysis proposed in this work (see Section 4), a software
has been implemented with a local database that uses the SVM algorithm considering two
aspects. In addition, we design an algorithm that allows us to sense changes in the data
and show updated results. The database management system permits the configuration of
a digital sensor. This sensor can detect if new data are entered into the database, if the data
are modified, or if data are deleted.

In this work, a sensor that detects the presence of new data is utilized. As a response
to new data, a trigger is implemented, which enables instructions to be registered and
executed when the new data arrive. This sensor permits the software that performs the
calculations to be notified that new records were entered in the database and therefore that
the computations must be updated.

In summary, the local database is updated daily with external data (websites). A sensor
in the local database sends a signal to the developed software to perform the calculations
considering the new data. The software receives the signal and executes the corresponding
processing. Lastly, the software delivers the results.

Next, we describe Algorithm 1 that senses changes in the data and shows updated
results. For the sake of better understanding, we relate some steps of this algorithm to our
case study in Section 4.
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Algorithm 1 Approach to predict the daily classification of cryptocurrencies returns relating
them to gold price and COVID-19 data using sensors.

1: Update table of deaths and infected cased due to COVID-19 with the data extracted
from the website https://github.com/CSSEGISandData/COVID-19 (accessed on
29 August 2021) and use this table for constructing the data warehouse.

2: Update table of gold prices with the data extracted from the website https://www.
gold.org/goldhub/data/gold-prices (accessed on 29 August 2021) and employ this
table for building the data warehouse.

3: Update table of cryptocurrency returns taking the daily closing price and the market
capitalization of the six studied digital currencies with the data extracted from the
website https://coinmarketcap.com (accessed on 29 August 2021) and utilize this table
for creating the data warehouse.

4: Send a warning to the software that performs a data analysis when new records are
detected by means of the trigger. Note that the database has a digital sensor with the
ability to detect when new data are entered.

5: Communicate the trigger (in the database) with the software through a middleware so
that the data analysis may be performed by executing the following steps:

5.1 Plot Figures 2–4, and construct Table 1.

5.2 Use the probability density function to state the type of skewness and kurtosis
of the data empirical distribution and describe the shape of their distribution.

5.3 Employ the Jarque-Bera (JB) test and elaborate Table 2.

5.4 Execute the SVM algorithm considering the one-to-one method (see Section 3),
that is, separate the observations into training and testing data sets, and select the best
model based on the indicators defined in (11).

5.5 Apply the SVM algorithm considering the one-to-rest method (see Section 3)
and build a dynamic model based on the available data.

5.6 Construct Figures 5–7.

6: End the algorithm reporting the results of the updated data analysis in the graphical
user interface of the software.

3. Methodology

SVM with binary classification is a powerful learning algorithm that aims to differen-
tiate between two classes by finding an optimal hyperplane that maximizes the separation
between the two-dimensional space points [23].

An algorithm that maximizes the margin between the training patterns and the deci-
sion boundary is a helpful tool that can be applied to a wide variety of classifiers. In this
tool, the number of parameters must be fit automatically to match the complexity of the
problem, with the solution being formulated as a linear combination of support patterns,
which are a subset of training patterns that are closest to the decision boundary.

Next, we provide a background of the method used in the present investigation. For
detailed mathematical derivations of the results presented in this section, we refer the
readers to [34].

For m-dimensional space points, with 2 < m ∈ Z, we cannot utilize the binary SVM
to obtain the separation hyperplane (decision surface) directly. To overcome this issue,
the multi-classification problem breaks down into multiple binary classification problems.
Then, the binary SVM algorithm is applied to these binary classes. This may be done in a
one-to-one or one-to-rest manner explained as follows:

• One-to-one method: Here, we break down the m classes into m(m − 1)/2 mutual
binary classes, where a binary SVM is employed to differentiate between every two

https://github.com/CSSEGISandData/COVID-19
https://www.gold.org/goldhub/data/gold-prices
https://www.gold.org/goldhub/data/gold-prices
https://coinmarketcap.com
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binary classes. Each binary SVM finds a hyperplane that separates between every two
classes, neglecting the data points of the other classes. For example, consider m = 4,
say, with classes 1, 2, 3, and 4. In this case, we have six different SVMs applied to the
binary classes {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, and {3, 4}.

• One-to-rest method: Here, the classifier can use m binary SVMs by obtaining an
optimal hyperplane that separates between a class and all others at once. For example,
consider m = 3, say, with classes 1, 2, and 3. In this case, we have three different SVMs
applied to the binary classes {1, not 1}, {2, not 2}, and {3, not 3}.
The data points classification depends on the type of the kernel function to be em-

ployed, which aims to reduce the computational time and effort by transforming a non-
linear decision surface to a linear equation in a higher number of dimension spaces. For
any two vectors u and v, the most popular kernels, utilized with SVM algorithms, are
linear, polynomial, radial basis, and sigmoid functions defined as:

• Linear function:
K(u, v) = u>v, (1)

where K is the kernel function and > denotes the transpose of a vector.
• Polynomial function:

K(u, v) = (γu>v + 1)d, (2)

where γ > 0 and d > 0 are the parameters of scale and degree, respectively.
• Radial basis function:

K(u, v) = exp(−γ||u− v||2), (3)

where γ > 0 is the inverse influence radius of points selected as support vectors.
• Sigmoid function:

K(u, v) = tanh(γu>v + 1), (4)

where γ > 0 is a tuning meta-parameter that defines how far the influence of a training
point can reach.

Let (x1, y1), . . . , (xn, yn) be the training data set, where each pair belongs to one of two
classes that we name A or B, according to

yk =

{
1, if xk ∈ class A;
−1, if xk ∈ class B.

Each xk, with k = 1, . . . , n, is a p-dimensional vector of real numbers. From the
training data set, the maximum margin hyperplane algorithm is used to estimate the
parameters of the decision function D(x). Hence, the classification of unknown patterns
is predicted based on the following criteria: (i) x ∈ class A if D(x) > 0; or (ii) x ∈ class B,
otherwise. In the direct space, D(x) has the form D(x) = w>ϕ(x) + b, where ϕ(x) is a
predefined function, which separates the hyperplane in n-dimensional spaces, whereas
w = (w1, . . . , wn)> and b are vectors of weights and noise coefficients, respectively, with
both w and b being adjustable parameters computed along with minimizing the empirical
risk. The distance between the pattern x and the separated hyperplane is D(x)/||w|| (see
Figure 1). Note that the axes in this figure (left) are labeled as x1 and x2. Nonetheless,
the figure on the right-hand side is the same as that on the left-hand side but as an image
(photography).

The maximum margin hyperplane algorithm aims to find the vector w that maximizes
the margin M between the training set and class boundary, which is formulated as

M? = max
w,||w||=1

M (5)

subject to ykD(x) ≥ M, k = 1, . . . , p,
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where the bound M? for supporting patterns attains to satisfy the condition M? =
mink ykD(xk). The decision function, D(x) namely, with maximum margin M?, is shown
in Figure 1. Therefore, the hyperplane with maximum margin can be obtained by solving
the minimax problem established as max

w,||w||=1
min

k,b
ykD(xk). Usually, the product of the norm

of w and the margin M is scaled to be fixed, that is, M||w|| = 1, to avoid the problem
of getting an infinite number of possible solutions. Therefore, maximizing M as in (5)
is equivalent to minimizing ||w||. Thus, finding the hyperplane with maximum margin
(M? = 1/||w?||) reduces to solve the quadratic form given by

min
w,b
||w||2, (6)

subject to ykD(xk) ≥ 1, k = 1, . . . , p.

Figure 1. Plot of the maximum margin linear decision function D(x) = w>x + b (ϕ(x) = x) (left) and an image of it
(right). The gray levels encode |D(x)|, solid black corresponds to D(x) = 0, and the numbers indicate the supporting
vectors (Source: [34]).

Often, we may tolerate some cost errors ξ ≥ 0 by allowing for some observations to
violate the margin. The cost C is defined by the number of observations beyond the margin.
In this case, instead of minimizing the form stated in (6), we need to minimize

min
w,b

1
2
||w||2 + C

p

∑
k=1

ξk, (7)

subject to ykD(xk) ≥ 1− ξk, k = 1, . . . , p,

where ξk ≥ 0 and ∑
p
k=1 ξk ≤ C. However, although the problem stated in (7) can be

solved by numerical methods in direct space, these methods are impractical for high
dimensionality of the dual space ϕ. In this dual space, the decision function is defined as

D(x) =
p

∑
k=1

αkK(xk, x) + b, (8)

where 0 ≤ αk ≤ c are adjustable parameters computed along with minimizing the empirical
risk, C is the cost given by the number of observations outside the margin, and K is a
predefined kernel function. The values of the kernel function stated in (8) may be calculated
by the inner product of ϕ(xi) and ϕ(xj), that is, K(xi, xj) = ϕ(xi) ◦ϕ(xj), where the operator
◦ denotes the inner product of two vectors. We aforementioned the most popular kernels
in the expressions defined in (1) to (4). The problem stated in (7) can be transformed into a
dual space using a Lagrangian algorithm [31] by means of the representation formulated as

L(w, b, α) =
1
2
||w||2 −

p

∑
k=1

αk(ykD(xk)− 1), (9)
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under the condition that the Lagrangian multipliers αk ≥ 1, for k = 1, . . . , p [35].
Note that the tolerance errors are again introduced, defining ξ as the value outside the

error margins and ξ? to limit the value to the dependent variable. Thus, the Lagrangian
dual of the problem stated in (9) may be solved by minimizing the expression given by

1
2
||w||2 + c

p

∑
k=1

(ξk − ξ?k ), (10)

under the conditions (w>xk + b)− yk ≤ 1 + ξk and yk − (w>xk + b) ≤ 1 + ξ?k .

4. Empirical Analysis with Real-World Data

To conduct our study with real-world data, we employ the SVC algorithm proposed
in [23]. We use the R software with the e1071 [36] and ggplot2 [37] packages to carry out
the data analysis [38]. As mentioned, we perform our analysis using three type of data: (i)
daily confirmed COVID-19 infections and deaths; (ii) daily gold price –in US dollars–; and
(iii) daily closing price of major cryptocurrencies—in US dollar—.

• Daily confirmed COVID-19 infections and deaths:
First, we collect the daily confirmed COVID-19 infections and deaths from the online
repository https://github.com/CSSEGISandData/COVID-19 (accessed on 29 August
2021). This web-hosting has been operated by the Johns Hopkins University Center
for Systems Science and Engineering from 23 January 2020 until the present, and it
is updated twice daily. We consider the period from 23 January 2020 to 14 July 2021.
This period essentially accounts for all available data officially published [39] up to
the date where we started this research.

• Daily gold price in US dollars:
Second, to compare the impact of the pre-COVID-19 period with the COVID-19 period
on the classification of cryptocurrency returns according to the quantile values of
the gold price (in US dollars), we collected the gold price data from the website
https://www.gold.org/goldhub/data/gold-prices (accessed on 29 August 2021) over
the period 04 December 2018 to 14 July 2021. In this article, the word return is used
synonymously with log returns.
The four graphs in the upper and middle of Figure 2 present the distribution and trend
of the daily infections and deaths due to COVID-19. The graphs show that, for more
than 100 days, the number of daily deaths ranged from 5000 to 7500 cases. The plots
in Figure 2 show that the daily confirmed COVID-19 infections and deaths and the
daily gold prices followed a similar trend during the period of the ongoing COVID-19
pandemic. The gold prices report high volatility clustering in the pandemic compared
with the pre-COVID-19 period. For the entire period of study, the probability density
function of the gold prices is slightly skewed to the left with a high excess kurtosis.
Remark. Note that the shaded region in Figures 2–4 describes the period after the
beginning of the pandemic for better visualization of the impact of COVID-19 on
the gold price/cryptocurrency return. Also, in these figures and in Figures 5–7, the
vertical dotted line represents the threshold between the pre-COVID-19 period and
ongoing COVID-19 period.

• Daily closing price of major cryptocurrencies in US dollars:
Third, we collect the daily closing price and market capitalization for some major cryp-
tocurrencies available from the online source https://coinmarketcap.com (accessed on
29 August 2021). For the current research, as mentioned, we study the six cryptocur-
rency assets, that is, ADA, BNB, BTC, DOGE, ETH, and XRP, selected from the top
10 ranked currencies.
Table 1 provides the main characteristics of the top-ranked cryptocurrencies and
Figure 3 presents the market capitalization of used currencies over the study period.
Again, the vertical dotted lines represent the threshold between the two periods of
time (before and during the pandemic). The trends show an exponential increase in

https://github.com/CSSEGISandData/COVID-19
https://www.gold.org/goldhub/data/gold-prices
https://www.gold.org/goldhub/data/gold-prices
https://coinmarketcap.com
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the market capitalization of BTC and ETH and less increase in the other currencies
during the period of the outbreak of the pandemic.
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Figure 2. Probability density function and trend of daily (from 23 January 2020 to 01 July 2021) confirmed COVID-19
infections and deaths (upper and middle) and daily (from 04 December 2018 to 14 July 2021) returns (lower left), probability
density function (lower middle), and prices (lower right) of the gold. The vertical dotted line represents the threshold
between the pre-COVID-19 period (left) and during the COVID-19 period (right) so that the shaded zone represents the
period after the pandemic begins to visualize its impact on the gold price.

Almost all currencies followed a similar trend during the period of study. The graphi-
cal plots also indicate that the market capitalization substantially plummeted, from mid-
May 2021 until the end of the study period, when Tesla (https://www.bbc.com/news/
business-57096305, accessed on 29 August 2021) announced that it would not accept or
sell the cryptocurrencies due to pollution concerns. Such bad news often impacts the
cryptocurrency prices leading to a substantial increase in the volatility of the returns. Thus,
the traditional time-series models might not provide accurate cryptocurrency returns fore-
casting results, especially during adverse market conditions. Then, the SVM model might
be a good option to achieve forecasting accuracy as we will show next.

We split the gold price into four classes according to their quartiles and labeled the
values as Q1, Q2, Q3, and Q4. Note that, although our approach can work for all quantiles
(from 0 to 100), we consider only four quartiles for simplicity’s sake. Readers may use the
supplementary source code for any subset of gold-price quantiles. We combine the quartiles
of the gold prices one day in advance with the daily log-returns of the employed currencies
and the COVID-19 cases and deaths. The resulting date corresponds to a time series
comprised of 682 observations from 04 December 2018 to 22 January 2020 (before COVID-
19 with 297 observations) and from 23 January 2020 to 14 July 2021 (during COVID-19 with
385 observations).

Figures 4a,b illustrate the daily returns, distribution, box-plot, and prices of the studied
currencies. The box-plots illustrate that the cryptocurrency returns have many outliers in
both periods and the volatility of the returns during the COVID-19 period is considerably
higher than in the pre-COVID-19 pandemic period.

https://www.bbc.com/news/business-57096305
https://www.bbc.com/news/business-57096305


Sensors 2021, 21, 6319 9 of 16

Table 1. Characteristics of the top ten cryptocurrencies (14 July 2021). Source: https://coinmarketcap.
com (accessed on 29 August 2021).

Rank Name Symbol Price (in US $) Market Capitalization (in US $)

1 Bitcoin (BTC) 32,822.35 615,635,042,692

2 Ethereum (ETH) 1,994.33 232,727,182,406

3 Tether (USDT) 1.00 62,093,784,456

4 Binance Coin (BNB) 309.41 47,473,117,237

5 Cardano (ADA) 1.26 40,444,089,747

6 Ripple (XRP) 0.62 28,669,334,327

7 USD Coin (USDC) 1.00 26,668,074,913

8 Dogecoin (DOGE) 0.20 25,738,852,158

9 Polkadot (DOT) 13.67 13,310,832,721

10 Binance USD (BUSD) 1.00 11,579,221,385

Table 2 summarizes the statistics of the daily gold prices and returns of the studied cur-
rencies. The averages of the gold price and all cryptocurrencies returns have substantially
increased over time, especially during the ongoing COVID-19 pandemic. The p-values
based on the JB test strongly reject the hypothesis that the returns are normally distributed,
which is coherent with the graphical analysis. During the entire period of the study, gold
and currencies have a significant excess kurtosis with negative skewness (except the proba-
bility density function of the DOGE returns which has a positive skewness), as noted in
Figures 2–4.

To examine for a bi-directional causal relationship between the daily number of newly
infected cases (deaths) of COVID-19 and the daily gold price (cryptocurrencies returns), we
apply the Granger causality test at a lag equal to three. The results are reported in Table 3,
which reports that no Granger causality exists. In contrast, we find a significant casualty
between the quartiles of the gold price and almost all of the cryptocurrencies returns the
next day. According to the findings, contrary to the BNB and DOGE, the returns of the
ADA, BTC, and ETH can affect the quartile value of the gold price, but the opposite is not
true. In addition, we do not find enough evidence for a causal relationship between the
XRP returns and the quartiles of the gold prices.
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Figure 3. The market capitalization of the indicated cryptocurrencies. The vertical dotted line represents the threshold
between the pre-COVID-19 period (left) and during the COVID-19 period (right) so that the shaded zone represents the
period after the pandemic’s beginning to visualize its impact on the cryptocurrency return.
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Figure 4. Cryptocurrency daily returns and box-plots of these returns based on the quartiles of the gold prices. The vertical
dotted line represents the threshold between the pre-COVID-19 period (left) and during the COVID-19 period (right) so
that the shaded zone represents the period after the pandemic’s beginning to visualize its impact on the cryptocurrency
return.
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Table 2. Descriptive statistics and preliminary tests for data of gold price, cryptocurrency return, and COVID-19.

Variable Period Min Q1 Mean Median Q3 Max SD * JB Test **

Gold
Pre-COVID-19 1235 1292 1391 1400 1490 1573 101.29 31
COVID-19 1474 1720 1792 1800 1880 2067 113 12
Both periods 1235 1429 1617 1617 1817 2067 226.07 51

BTC
Pre-COVID-19 −0.1518 −0.0156 0.0018 0.0009 0.0188 0.1600 0.0376 137
COVID-19 −0.4647 −0.0147 0.0036 0.0033 0.0232 0.1718 0.0477 9767.9
Both periods −0.4647 −0.0151 0.0028 0.0018 0.0210 0.1718 0.0436 12196

ETH
Pre-COVID-19 −0.1833 −0.0212 0.0003 −0.0012 0.0183 0.1661 0.0453 96
COVID-19 −0.5507 −0.0203 0.0043 0.0052 0.0354 0.2256 0.0618 5793
Both periods −0.5507 −0.0204 0.0026 0.0016 0.0293 0.2256 0.0552 8429

BNB
Pre-COVID-19 −0.1929 −0.0235 0.0027 0.0005 0.0310 0.1787 0.0489 43
COVID-19 −0.5428 −0.0216 0.0058 0.0038 0.0327 0.5292 0.0752 4002.3
Both periods −0.5428 −0.0232 0.0045 0.002 0.0323 0.5292 0.0650 7818

ADA
Pre-COVID-19 −0.2877 0.0000 −0.0018 0.0000 0.0000 0.2877 0.0777 317
COVID-19 −0.6931 −0.0082 0.0042 0.0000 0.0217 0.4055 0.0940 1817
Both periods −0.6931 0.0000 0.0016 0.0000 0.0000 0.4055 0.0873 2550

XRP
Pre-COVID-19 −0.1542 −0.0317 −0.0018 0.0000 0.0000 0.2171 0.0445 109
COVID-19 −0.5486 −0.0339 0.0011 0.0000 0.0392 0.3474 0.0814 1657
Both periods −0.5486 −0.0328 −0.0002 0.0000 0.0317 0.3474 0.0678 4590

DOGE
Pre-COVID-19 −0.1156 −0.0182 0.0003 −0.0024 0.0133 0.1803 0.0377 452
COVID-19 −0.4523 −0.0244 0.0091 −0.0006 0.0218 1.3235 0.1163 36,238
Both periods −0.4523 −0.0208 0.0053 −0.0017 0.0179 1.3235 0.0909 154,646

* SD stands for standard deviation and ** all JB p-values are significant at 1%.

Table 3. Granger causality test results for data of gold prices, cryptocurrency return, and COVID-19.

COVID-19 Infected Cases COVID-19 Death Cases

Null Hypothesis Wald p-Value Null Hypothesis Wald p-Value

COVID-19 6=⇒ Gold 0.4376 0.7262 COVID-19 6=⇒ Gold 0.1968 0.8985

COVID-19 6=⇒ BTC 0.9753 0.4044 COVID-19 6=⇒ BTC 0.6815 0.5638

COVID-19 6=⇒ ETH 1.9525 0.1207 COVID-19 6=⇒ ETH 0.8400 0.4726

COVID-19 6=⇒ BNB 0.7258 0.5371 COVID-19 6=⇒ BNB 0.2029 0.8944

COVID-19 6=⇒ ADA 1.0662 0.3634 COVID-19 6=⇒ ADA 2.0982 0.1000

COVID-19 6=⇒ XRP 2.4939 0.0597 COVID-19 6=⇒ XRP 2.2387 0.0834

COVID-19 6=⇒ DOGE 0.8942 0.4442 COVID-19 6=⇒ DOGE 2.2739 0.0796

The results in Table 2 and Figures 2–4 also show a significant increase in the volatility
of the returns of gold and currencies after the outbreak of the COVID-19, compared with
the pre-pandemic period. Note that, in these figures, as mentioned, the vertical dotted line
represents a threshold between the pre-COVID-19 period and during the pandemic. In
addition, the circled points are the support vectors, and misclassification appears when
the color of the support vectors does not match the color of the decision boundary. Thus,
the traditional econometric and time-series models might not provide helpful results in
such cases. Hence, due to its superior forecasting performance, we implement the SVM in
our analysis.

The SVM optimization strategy is usually done in two stages. First, we separate the
observations into training and testing data sets. A rule of thumb indicates to consider the
first 75% contiguous days as a training set to fit the model and the remaining 25% days as
a testing set, which is used to validate the prediction accuracy of this model [40]. The best
model is selected based on minimizing the mean absolute percentage error (MAPE), root
mean square error (RMSE), or normalized root mean square error (NRMSE) defined as



Sensors 2021, 21, 6319 12 of 16

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100%,

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2, (11)

NRMSE =

√
N ∑N

i=1(yi − ŷi)2

(∑N
i=1 yi)2

,

where N is the total number of observations, ŷi is the predictive value of yi, for i = 1, . . . , N,
and yi − ŷi denotes the prediction error in yi.

Second, we utilize the SVM optimization strategy as a dynamic model that involves
all available data. In [41], it is showed that the dynamic model can achieve more accurate
forecasting results compared with the one based on a fixed training set. Therefore, in this
article, we adopt the dynamic SVM algorithm.

The optimized estimation of the coefficient c stated in (10) and the parameters γ, d
defined in (2) and (3), respectively, may be obtained based on the k-fold cross validation
method, where the index expressed in (11) has the mimimum value. In this article, we con-
sider a 10-fold cross validation and a set of tuning parameters
c ∈ {0.001, 0.01, 1, 2, 2, 4, 8, 16, 32, 64, 128, 256}, d ∈ {1, 2, 3}, and γ ∈ {0.3, 0.4, 0.5}. The
estimated parameters of the linear, polynomial, and radial kernel models for the entire
sample are shown in Table 4. Applying the optimized parameters in Table 4, the SVM
models with each kernel are run on a daily series and the forecasting performance accuracy
(in %) for each currency is calculated. The results are indicative of the SVM’s superior pre-
dictive power when using a radial kernel (between 89.4% and 91.8% performance accuracy)
compared with linear (between 71.8% and 74.5% performance accuracy) and polynomial
(between 74.8% and 79.3% performance accuracy) kernels.

To illustrate the SVM classification prediction capabilities, using the radial classifier,
during both periods, pre- and during the COVID-19 outbreak, Figures 5–7 show the
decision rules for a different set of patterns in the hyperplane. The four classes of gold
price quartiles are represented by dotted points with four different colors. In the figures,
we indicate the support vectors (patterns) with dotted points and double circles, and the
errors (misclassifications) with dotted points and double circles but in different colors.
Figures 5–7 display that the majority of the errors occurred during the COVID-19 period
compared with the pre-period of COVID-19, where some of the cryptocurrencies returns
from Q3 class of the gold price are misclassified as Q4. This is justifiable as the uncertainty
about the COVID-19 has resulted in significant effects that continue to drive perceptions of
risk and volatility in cryptocurrencies and gold prices.

Table 4. Optimal parameters and performance accuracy (in %) for the indicated currency and kernel.

Currency
Linear Kernel Polynomial Kernel Radial Kernel

Accuracy c Accuracy c d Accuracy c γ

Binance Coin 73.2 64 76.8 512 3 91.5 512 0.4
Bitcoin 74.5 256 77.3 256 3 91.8 512 0.3
Cardano 72.6 256 74.8 512 3 91.1 128 0.4
Dogecoin 71.8 256 76.5 512 3 89.4 16 0.4
Ethereum 73.0 64 79.3 128 3 90.9 128 0.3
Ripple 72.3 128 75.8 512 3 90.8 256 0.3

Where the parameter c is used for all kernels, d is the degree parameter of the polynomial kernel, and γ is the radial kernel parameter.
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Figure 5. Classifications of BTC (top) and ETH (bottom) daily returns based on quartiles of daily gold prices predicted by
the SVM model. The vertical dotted line represents the threshold between the pre-COVID-19 period (left) and ongoing
COVID-19 period (right) to visualize its impact on the cryptocurrency return.
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Figure 6. Classifications of BNB (top) and ADA (bottom) daily returns based on quartiles of daily gold prices predicted
by SVM model. The vertical dotted line represents the threshold between the pre-COVID-19 period (left) and ongoing
COVID-19 period (right) to visualize its impact on the cryptocurrency return.
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Figure 7. Classifications of XRP (top) and DOGE (bottom) daily returns based on quartiles of daily gold prices predicted
by SVM model. The vertical dotted line represents the threshold between the pre-COVID-19 period (left) and ongoing
COVID-19 period (right) to visualize its impact on the cryptocurrency return.

5. Conclusions

In this study, we have applied the support vector machine model to daily returns of six
major cryptocurrencies: Binance Coin, Bitcoin, Cardano, Dogecoin, Ethereum, and Ripple,
before and during the COVID-19 pandemic. The daily returns and volatility spillover
substantially increased during the period of the pandemic, due to the high fluctuation
in prices in comparison with the pre-pandemic period, making accurate forecasting a
complex duty. Instead of using a traditional time series model to predict the return of
the cryptocurrencies, we have proposed a new easy approach based on an advanced
machine learning algorithm to achieve accurate forecasting results for the classification of
the returns.

We have designed an algorithm that allows us to use sensors when submitting requests
for data of cryptocurrency returns, gold prices, and COVID-19. After collecting the price
series of the gold and a cryptocurrency, one can classify the returns of the cryptocurrency
in the previous day based on the quartile of the gold price the next day. Also, we may
employ the proposed model to predict the classification of the return, whether it will be in
the first, second, third or fourth quartile of the gold price.

We have shown that the SVM model can provide significant accurate forecasting, espe-
cially during crises. Overall, our model is not only valuable for predicting the classification
of the returns of the aforementioned cryptocurrencies, but it is also helpful to be used for
other cryptocurrencies.

Our findings support the claim that the SVM technique provides a robust algorithm
for the predictability of cryptocurrencies under bad or good news. We believe that the
findings of this research are not only helpful for exploring the relationship between the
classification returns of the cryptocurrencies and the quantiles of the gold price, but they
are also of great interest to macroeconomic policymakers, portfolio managers, and investors
who are actively trading in the cryptocurrency market, especially under adverse market
conditions and during times of uncertainty. In summary, our new approach can help
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to devise trading strategies for cryptocurrencies and help investors and macroeconomic
policymakers making better investment decisions.

This article provides avenues for further research in digital currency portfolios by
comparing our model with other existing evolutionary machine learning algorithms to
achieve more accurate results.
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