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Abstract

This paper focuses on how to provide mobility to people
with motor impairments with the integration of robotics
and wearable computing systems. The burden of learning
to control powered mobility devices should not fall entirely
on the people with disabilities. Instead, the system should
be able to learn the user’s movements. This requires
learning the degrees of freedom of user movement, and
mapping these degrees of freedom onto electric-powered
wheelchair (EPW) controls. Such mapping cannot be static
because in some cases users will eventually improve with
practice. Our goal in this paper is to present a hands-free
interface (HFI) that can be customized to the varying needs
of EPW users with appropriate mapping between the users’
degrees of freedom and EPW controls. EPW users with
different impairment types must learn how to operate a
wheelchair with their residual body motions. EPW interfa‐
ces are often customized to fit their needs. An HFI utilizes
the signals generated by the user’s voluntary shoulder and
elbow movements and translates them into an EPW control
scheme. We examine the correlation of kinematics that
occur during moderately paced repetitive elbow and
shoulder movements for a range of motion. The output of

upper-limb movements (shoulder and elbows) was tested
on six participants, and compared with an output of a
precision position tracking (PPT) optical system for
validation. We find strong correlations between the HFI
signal counts and PPT optical system during different
upper-limb movements (ranged from r = 0.86 to 0.94). We
also tested the HFI performance in driving the EPW in a
virtual reality environment on a spinal-cord-injured (SCI)
patient. The results showed that the HFI was able to adapt
and translate the residual mobility of the SCI patient into
efficient control commands within a week’s training. The
results are encouraging for the development of more
efficient HFIs, especially for wheelchair users.

Keywords Assistive Technologies, Hands-free Interface,
Electric-powered Wheelchair

1. Introduction

The advent of robotics technology in the last two decades
has been a revolutionary development. Nowadays, a large
volume of heavy-duty and precision work is performed by
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robots. For example, robotics technology has taken over
tasks of human workforces in manufacturing, medicine,
psychology, neuroscience, surgery, and communications,
and has become a backbone of the modern economic world.
However, robotics technology in its present form relies
upon human intervention too, engendering a new dimen‐
sion in robotics research called "robotic interface technolo‐
gy". Very recently, robotic interface technology has been
deployed in automobiles to detect drivers’ state of mind by
extracting facial, gesture and voice patterns [1]. Equipped
with this information the robotics interface interacts with
the driver using speech technology to maintain a positive
state to avoid accidents. Moreover, due to advancements in
biomedical engineering, robotic interfaces are also being
researched in robotic surgery and rehabilitation. The
greatest advantage of robotic interfaces is perhaps the
savings in terms of time and space. These interfaces are free
of geographical constraints and can be made available via
tele-robotic links anywhere in the world, and beyond.

Researchers over the past few decades have shown a great
interest in developing sophisticated robotic interfaces with
increased robotic degrees of freedom to support training or
the performance of complicated tasks, such as walking [2,
3, 4], minimum invasive surgery (MIS) [5, 6], or multi-joint
arm movements [7, 8, 9, 10, 11, 12, 13]. Portable robotic
interfaces are also being researched in the form of wearable
robotics to allow robotic devices to be used for outdoor
activities [14, 15, 16, 17]. Progress has also been made
towards control algorithmic development for robotic
interfaces, where the goal is to efficiently control robotic
devices designed for therapies, where a participant’s motor
plasticity is promoted through robot-assisted exercises,
improving their motor recovery [18, 19].

Robot-mediated therapies and their corresponding robotic
interfaces therefore incorporate control algorithms on an
ad-hoc basis, where the concept is driven by motor learn‐
ing, neuroscience and rehabilitation techniques. Robotic
interface controls are usually divided into four main
categories [20]: assistive, challenging, haptic and non-
contact-motivating. These robotic interface paradigms are
static, such that they do not adapt to the parameters of
controllers based upon the performance measures of the
users. Adaptation of control parameters for the robotic
interface has the advantage of autonomous tuning of
assistance to the changing needs of the users. These robotic
interfaces have been termed as "performance-based
adaptive interfaces", and have been used in Lokomat [21]
for flexible control strategies [22, 23] and also in collabora‐
tive control of electric wheelchairs for safer navigation [24].

To design performance-based adaptive robotic interfaces,
one needs to analyse the signals generated as a result of user
activity while performing a control task. Analysis of robotic
interface signals usually describes the way the user handles
complicated tasks whilst controlling the robot-assisted
medical/rehabilitation device. In a recent study [25] the
signals generated by a joystick user interface were assessed

whilst the user was driving an electric wheelchair. Analysis
of the robotic interface control, where the users were asked
to navigate through different virtual reality environments,
led the authors to discriminate between expert and novice
electric wheelchair users. In the development of robot-
assisted minimum invasive surgical tools [26, 27], a user
interface plays a similarly pivotal role in performing
reliable surgery. Interpretation of robotic interface signals
can lead researchers to design more dexterous robotic end
effectors. Robotic-interface signal analysis therefore not
only provides a means to assess robot-assisted system
performance and skills, it also enables researchers to devise
sophisticated robotic-assisted systems.

2. Design and Evaluation of the Hands-Free Interface

2.1 Participants

Six healthy participants (four males, two females, all 20-35
years old) took part in the HFI evaluation experiments.
Their participation was voluntary. The experiments were
approved by Macquarie University’s human research
ethics committee.

2.2 Sensor-embedded HFI

A novel sensorized garment was used as an HFI between
the human and the EPW. It is capable of producing signals
upon unconstrained upper-limb movement as shown in
Fig. 1(a). These signals were then mapped onto the two
control signals of the EPW to control the navigation
commands and speed levels as discussed in Section 3.2 and
shown in Fig. 1(b). A critical design feature of the HFI is the
presence of a redundant number of available sensors.
Consequently each possible body configuration has a
distinct representation in terms of signal value [15]. The
sensors embedded in the HFI in Fig. 1(a) and were made of
a conductive elastomer (CE) material printed on a Lycra-
cotton fabric covered by an adhesive mask. CE composites
show piezoresistive properties when a deformation is
applied [28]. CE materials can be applied to fabric or to
other flexible substrates; they can be employed as strain
sensors and they represent an excellent trade-off between
transduction properties and the possibility of integration in
textiles. Quasi-static and dynamical sensor characteriza‐
tion has been done in [15]. Dynamically, CE sensors present
peculiar characteristics such us non-linearity in resistance
to length transduction and large relaxation times [28],
which should be taken into account in the control formu‐
lation. During the user movements, HFI sensors detect local
deformations on the fabric. As will be explained in the next
sections, the signals coming from the HFI will be processed
and used for the wheelchair control.

The HFI was divided into six sections as shown in Table 1,
covering the whole upper human body from back to front
as shown in Fig. 1(a). The sensors were smeared on Lycra
and created as thick lines connected in series. Every
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connection between the sensors and the acquisition system
was created as a thin line [15]. These connection wires were
also characterized by piezoelectric properties. By provid‐
ing a large set of sensors, a unique representation of the
underlying body configuration can be obtained.

Body Part Body Side Sensors

Front shoulder Right 6

Back shoulder Right 8

Front shoulder Left 6

Back shoulder Left 8

Elbow and Wrist Right 12

Elbow and Wrist Left 12

Table 1. The HFI Layout

2.3 Posture Detection and the HFI Calibration

The HFI can detect two similar postures and is able to
record a set of distinct postures, coded by the distinct sensor
values. This feature can record human body movements as
a transition between one posture and another, and are
coded as the evolution of the sensor values. We tested the

(a)

(b)

Figure 1. HFI prototype and BoMI framework. (a) HFI covering
various body parts. (b) A general framework for BoMI.

good repeatability and capability, even when the HFI was
removed and re-worn by the user. Let S ⊂ <k define the
sensor space, k is the number of sensors in the HFI, p the
number of calibration postures the user holds, e.g., θi (i =
[1 : p] is the i-th calibration posture (θ is a vector whose
dimension is number of degrees of freedom (DoFs) of the
kinematic chain we are considering), for each calibration
posture θi the relative sensor reading sc

i is stored in the
calibration matrix Ĉ. The final dimension of the calibration
matrix is k× p (the number of rows is equal to the number
of sensors; the number of columns is equal to the number
of calibration postures).

Ĉ =
{

sc
1, . . . sc

i , . . . sc
p

}
(1)

The recognition process during the upper-limb
movements requires the kinematic configurations to
be detected by the comparison of sensor outputs s with the
p columns of the calibration matrix, such that the distance
obtained is as shown in the equation below:

ζi =

√
∑k

j=1(s(j)− Si(j))2 (2)

where ζi is the distance between the actual sensor readings
s and the i-th column of the calibration matrix Si. If ζi
is smaller than a certain threshold, the HFI returns the
position related to the selected column. In our application,
we ruled out the possibility of mapping the entire sensor
space values onto the configuration space. This enables the

utilization of other norm methodologies, instead of the one
defined in Eq. 2.

2.4. Experiments

For performance evaluation of the HFI, the shoulder
and elbow joint angles were compared with those from
a baseline WorldViz PPT optical system [29]. The
participants wore the HFI and three infra-red markers (i.e.,
one in each hand and one on the back). These were firmly
attached as shown in Fig. 3(a). The participants were
asked to perform tasks involving upper-limb movements
as described in Table 2 and the two simultaneous data
sets were collected. The participants performed shoulder
extension movements wherein they were instructed to
stretch their arms to the chest level as shown in Fig. 2(b)
and then to slowly rotate their arms in a curved motion.
The participants also performed elbow flexion-extension
task movements as shown in Fig. 2(b). The participants
were instructed not to move their wrists and elbows
during the shoulder abduction movements and similarly
not to move their shoulders and wrists whilst performing
the elbow flexion-extension movements.

2.5. Data Recording

In these experiments, upper-limb abductions and
flexion-extensions were measured with the HFI and the
PPT optical system. Synchronization of the different
systems was controlled by a digital clock signal generated
by the computer which recorded the sensor data. The
data were captured and stored for both of the systems for
off-line analysis.

2.6. Kinematics of Human Arm

The articulated body model of the human upper limb is
represented as a geometric hierarchical structure where the
articulated body is considered as a series of rigid bodies
connected together via joints. This articulated body is
shown in Fig. 2(a). In our human articulation model, we
use ideal joints to define movement parametrization of
human upper-limb movement. The complete upper-limb
model will have at least six DoFs defining rotational
movements (as reported in [30]). Hence, the shoulder joint
is parametrized as a ball and socket joint, whereas the
elbow consists of one rotational joint as shown in Fig. 2(a).
This choice will enable the reconstruction of kinematics
through mathematical characterization.

2.7. Results

The participants performed a set of movements involving
their shoulder and elbow joints. Fig. 4(a) and 4(b)
represent the flexion and abduction angles (which
compound the movement) versus time and the root mean
squared errors (RMSE) are shown in Fig. 4(c) and 4(d).
Flexion-extension of elbow movement is reported in
Fig. 4(a) while Fig. 4(b) represents the evolution of the
shoulder flexion-abduction. The continuous curve is
the PPT optical system output, while the dashed one
represents the HFI response in Fig. 4(a) and 4(b). The
plots in Fig. 5 depict the raw signals acquired by the
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Figure 1. HFI prototype and BoMI framework. (a) HFI covering various
body parts. (b) A general framework for BoMI.

HFI’s posture detection capability on a set of distinct
postures and the output showed good repeatability and
capability, even when the HFI was removed and re-worn
by the user. Let S⊂ℜk  define the sensor space, k  is the
number of sensors in the HFI, p the number of calibration
postures the user holds, e.g., θi (i1p  is the i-th calibration
posture (θ is a vector whose dimension is number of
degrees of freedom (DoFs) of the kinematic chain we are
considering), for each calibration posture θi the relative
sensor reading si

c is stored in the calibration matrix Ĉ . The
final dimension of the calibration matrix is k × p (the
number of rows is equal to the number of sensors; the
number of columns is equal to the number of calibration
postures).

{ }1
ˆ = , ,c c c

i pC s s sK K (1)

The recognition process during the upper-limb movements
requires the kinematic configurations to be detected by the
comparison of sensor outputs s with the p columns of the
calibration matrix, such that the distance obtained is as
shown in the equation below:

( )2

=1
= ( ) ( )k

i ij
s j S jz -å (2)

where ζi is the distance between the actual sensor readings
s and the i-th column of the calibration matrix Si. If ζi is
smaller than a certain threshold, the HFI returns the
position related to the selected column. In our application,
we ruled out the possibility of mapping the entire sensor
space values onto the configuration space. This enables the
utilization of other norm methodologies, instead of the one
defined in Eq. 2.

2.4 Experiments

For performance evaluation of the HFI, the shoulder and
elbow joint angles were compared with those from a
baseline WorldViz PPT optical system [29]. The partici‐
pants wore the HFI and three infra-red markers (i.e., one in
each hand and one on the back). These were firmly attached
as shown in Fig. 3(a). The participants were asked to
perform tasks involving upper-limb movements as descri‐
bed in Table 2 and the two simultaneous data sets were
collected. The participants performed shoulder extension
movements wherein they were instructed to stretch their
arms to the chest level as shown in Fig. 2(b) and then to
slowly rotate their arms in a curved motion. The partici‐
pants also performed elbow flexion-extension task move‐
ments as shown in Fig. 2(b). The participants were
instructed not to move their wrists and elbows during the
shoulder abduction movements and similarly not to move
their shoulders and wrists whilst performing the elbow
flexion-extension movements.
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2.5 Data Recording

In these experiments, upper-limb abductions and flexion-
extensions were measured with the HFI and the PPT optical
system. Synchronization of the different systems was
controlled by a digital clock signal generated by the
computer which recorded the sensor data. The data were
captured and stored for both of the systems for off-line
analysis.

2.6 Kinematics of Human Arm

The articulated body model of the human upper limb is
represented as a geometric hierarchical structure where the
articulated body is considered as a series of rigid bodies
connected together via joints. This articulated body is
shown in Fig. 2(a). In our human articulation model, we use
ideal joints to define movement parametrization of human
upper-limb movement. The complete upper-limb model
will have at least six DoFs defining rotational movements
(as reported in [30]). Hence, the shoulder joint is parame‐
trized as a ball and socket joint, whereas the elbow consists
of one rotational joint as shown in Fig. 2(a). This choice will
enable the reconstruction of kinematics through mathe‐
matical characterization.
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Figure 2. Human upper-limb kinematic model. (a) The arm is
modelled as a kinematic chain of six DoFs, which are illustrated
by rotation angles. (b) Shoulder and elbow (extension-flexion)
movement postures. The blue lines are the trajectories obtained
through respective limb movements.

two different sensors and their detected peaks. These
signals are sufficient to actuate the EPW relying entirely
on the signal principal component (angle) and rising part
(peak) value to modulate the control action, as described
in sub-section 3.4.

2.8. Correlation of the HFI and PPT optical system

The results in Fig. 4(a) and 4(b) show elbow
flexion-extension and shoulder flexion-abduction sensor
output from one of the experiments using the HFI and the
PPT optical system, respectively. A correlation coefficient
r and RMSE was calculated between the angles obtained
from the HFI and the PPT optical system as tabulated in
Table 2. On average, the RMSE was less than 2.1o for all
arm angles and the correlation coefficient varied between
0.82 ≤ r ≥ 0.94. Table 2 shows the RMSE, correlation
coefficient average and the difference in the number
of peaks detected between the HFI and the PPT optical
angles across all the participants for all tasks. Correlations
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Figure 3. (a) The participant is wearing the HFI, with the markers
attached to the body for PPT optical system tracking. (b) The
raw sensor data of the HFI from all body parts, the first principal
component explaining the body movement and the raw data
obtained from the PPT optical system for the same upper-limb
movement.

Table 2. Mean RMSE (deg.), Correlation (r) and Difference in
Numbers of Peaks for elbow (Elb.) and shoulder (Shldr.) angles
between the HFI and the PPT optical system

Tasks RMSE(deg.) r Peaks Diff.
Elbow Flexion/Extension 1.0 0.94 ±1
Shoulder Flexion/Extension 1.0 0.90 ±1.3
Shoulder Abduction/Adduction 2.5 0.84 ±1.5
Boxing a Punch (Shldr/Elb) 2.1 0.82 N/A
Making a Circle (Shldr/Elb) 3.4 0.88 N/A
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Figure 2. Human upper-limb kinematic model. (a) The arm is modelled as
a kinematic chain of six DoFs, which are illustrated by rotation angles. (b)
Shoulder and elbow (extension-flexion) movement postures. The blue lines
are the trajectories obtained through respective limb movements.

2.7 Results

The participants performed a set of movements involving
their shoulder and elbow joints. Fig. 4(a) and 4(b) represent
the flexion and abduction angles (which compound the
movement) versus time and the root mean squared errors
(RMSE) are shown in Fig. 4(c) and 4(d). Flexion-extension
of elbow movement is reported in Fig. 4(a) while Fig. 4(b)
represents the evolution of the shoulder flexion-abduction.
The continuous curve is the PPT optical system output,
while the dashed one represents the HFI response in Fig.
4(a) and 4(b). The plots in Fig. 5 depict the raw signals
acquired by the two different sensors and their detected
peaks. These signals are sufficient to actuate the EPW
relying entirely on the signal principal component (angle)
and rising part (peak) value to modulate the control action,
as described in sub-section 3.4.

2.8 Correlation of the HFI and PPT optical system

The results in Fig. 4(a) and 4(b) show elbow flexion-
extension and shoulder flexion-abduction sensor output
from one of the experiments using the HFI and the PPT
optical system, respectively. A correlation coefficient r  and
RMSE was calculated between the angles obtained from the
HFI and the PPT optical system as tabulated in Table 2. On
average, the RMSE was less than 2.1° for all arm angles and
the correlation coefficient varied between 0.82≤ r ≥0.94.
Table 2 shows the RMSE, correlation coefficient average
and the difference in the number of peaks detected between
the HFI and the PPT optical angles across all the partici‐
pants for all tasks.

Tasks RMSE(deg.) r Peaks Diff.

Elbow Flexion/
Extension

1.0 0.94 ±1

Shoulder Flexion/
Extension

1.0 0.90 ±1.3

Shoulder
Abduction/
Adduction

2.5 0.84 ±1.5

Boxing a Punch
(Shldr/Elb)

2.1 0.82 N/A

Making a Circle
(Shldr/Elb)

3.4 0.88 N/A

Table 2. Mean RMSE (deg.), Correlation (r) and Difference in Numbers of
Peaks for elbow (Elb.) and shoulder (Shldr.) angles between the HFI and the
PPT optical system

Correlations between time series of shoulder movements
for the HFI and PPT were strong (mean = 0.85, SD = ±0.083).
The correlations were considerably high between the HFI
and PPT for the time series of elbow extension-flexion
movements, and there was also a significant relation
between the number of peaks, as tabulated in Table 2. The
results obtained correspond to what we expected. Elbow
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and shoulder readings are determined by lower- and
upper-arm-joint activity, respectively, which do not
necessarily occur simultaneously. The peaks detected as
shown in Table 2 were the function of space dimensionality
reduction of HFI signals and the normalized data of the PPT
optical system, involving the shoulder and elbow joint
movements. It was revealed that most of the variation in
HFI signals could be explained by the first principal
component. Peak detection was performed on the first
principal component of the candidate movement signal
obtained from the raw HFI data. The principal component
is a linear combination of an unknown number of original
features [31, 32]. Resolving one principal component
therefore indicates that one feature from the original
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Figure 2. Human upper-limb kinematic model. (a) The arm is
modelled as a kinematic chain of six DoFs, which are illustrated
by rotation angles. (b) Shoulder and elbow (extension-flexion)
movement postures. The blue lines are the trajectories obtained
through respective limb movements.

two different sensors and their detected peaks. These
signals are sufficient to actuate the EPW relying entirely
on the signal principal component (angle) and rising part
(peak) value to modulate the control action, as described
in sub-section 3.4.

2.8. Correlation of the HFI and PPT optical system

The results in Fig. 4(a) and 4(b) show elbow
flexion-extension and shoulder flexion-abduction sensor
output from one of the experiments using the HFI and the
PPT optical system, respectively. A correlation coefficient
r and RMSE was calculated between the angles obtained
from the HFI and the PPT optical system as tabulated in
Table 2. On average, the RMSE was less than 2.1o for all
arm angles and the correlation coefficient varied between
0.82 ≤ r ≥ 0.94. Table 2 shows the RMSE, correlation
coefficient average and the difference in the number
of peaks detected between the HFI and the PPT optical
angles across all the participants for all tasks. Correlations
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Figure 3. (a) The participant is wearing the HFI, with the markers
attached to the body for PPT optical system tracking. (b) The
raw sensor data of the HFI from all body parts, the first principal
component explaining the body movement and the raw data
obtained from the PPT optical system for the same upper-limb
movement.

Table 2. Mean RMSE (deg.), Correlation (r) and Difference in
Numbers of Peaks for elbow (Elb.) and shoulder (Shldr.) angles
between the HFI and the PPT optical system

Tasks RMSE(deg.) r Peaks Diff.
Elbow Flexion/Extension 1.0 0.94 ±1
Shoulder Flexion/Extension 1.0 0.90 ±1.3
Shoulder Abduction/Adduction 2.5 0.84 ±1.5
Boxing a Punch (Shldr/Elb) 2.1 0.82 N/A
Making a Circle (Shldr/Elb) 3.4 0.88 N/A
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Figure 3. (a) The participant is wearing the HFI, with the markers attached
to the body for PPT optical system tracking. (b) The raw sensor data of the
HFI from all body parts, the first principal component explaining the body
movement and the raw data obtained from the PPT optical system for the
same upper-limb movement.

feature space is required to replicate the information
contained in the full set of signals. The presence of the mean

Figure 4. Upper-limb movement signal comparison of both systems. (a) HFI
elbow flexion-extension angle estimates compared to PPT estimates. (b) HFI
shoulder flexion-extension angle estimates compared to PPT estimates. (c)
Comparison of RMSE values for elbow flexion-extension between the HFI
and the PPT optical system. (d) Comparison of shoulder flexion-extension
RMSE values between the HFI and the PPT optical system.
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number of peaks in the HFI feature space was not signifi‐
cantly different to the PPT optical sensing space across all
subjects, as shown in Table 2.
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Figure 5. Peak detection of two time series of data of upper-limb elbow
flexion-extension movement, obtained from the HFI and the PPT optical
system

3. Wheelchair Navigation with Residual Body Motions

3.1 Participant

A 25-year-old SCI male adult participated in this prelimi‐
nary (pre-clinical testing) study. The participant was right-
handed, had normal or corrected-to-normal vision, and
volunteered for the experiments. The experimental proto‐
col for testing and selection of EPW controls with persons
with disabilities was approved by the university’s ethical
committee for human research.

3.2 Experimental Set-up

The participant was asked to sit comfortably in front of a
virtual reality (VR) system as shown in Fig. 6(a) and 6(b),
while wearing actively-switched goggles synchronized
with the VR projection system to provide a 3D stereo view
of the artificially generated images. The participant was
provided with the perspective view of the EPW. The static
targets and path lines were defined in the scene to help him
navigate the EPW around the obstacles. Obstacles were
geometrical shapes, depicted as walls and corridors placed
along the straight path connecting the initial position of the
subject to the target. The simulated EPW could collide with
and go through obstacles. A brief flash of light indicated
that a collision had occurred.

(a) (b)

Figure 6. Virtual EPW navigation experiments. (a) Virtual
EPW line-following navigation trials. (b) Participant’s upper-limb
movements for controlling EPW.

the subject to the target. The simulated EPW could collide
with and go through obstacles. A brief flash of light
indicated that a collision had occurred. The virtual EPW is
controlled firstly by the linear speed, which can be positive
(forward) or negative (backward), and secondly by the
rotational speed, where positive means anti-clockwise
(leftward) turn and negative speed means for rightward
turn. We formulated the control as a "command vector",
u = [v, ω]T , with two real numbers specifying the linear
(v) and the rotational (ω) speed. As a first step towards
our hands-free body-machine interface (BoMI) navigation
concept, we adopted a user-defined control strategy for
the translation and rotational motion of the EPW. In
the experiments, we used right-elbow movement for
positive translational velocity and left-elbow movement
for negative translational velocity (i.e., reverse movement).
Shoulder movements were used to control rotational
velocity (ω). Right-shoulder movement was used for
anti-clockwise rotation and left-shoulder movement for
clockwise rotation (or vice versa according to what felt
intuitive to the participant). At the rest position, the
system followed the last command, i.e., it maintained
constant velocity (v=const) and constant direction (ω =
0). Our control strategy is summarized in Table 3.
Different human body shapes can affect the signal output
and potentially the performance of the system. In our
experiments, we did not rule out the possibility of different
body shapes or two similar body sizes with different
anatomical structures. To overcome this difficulty, the HFI
was introduced with different sizes (i.e., small, medium
and large). The calibration phase played a vital role to
overcome the problem of different anatomical structures.
The participant had to undergo the calibration process
(as described in Section 2.3) at the beginning of the
experiments to adjust the signal output according to the
body size/structure, in order for the system to perform
efficiently.

Table 3. Virtual EPW Control Strategy

Body Movement Side Abbrev. v ω

Elbow right re -ve -
Elbow left le +ve -
Shoulder right rs - +ve
Shoulder left ls - -ve

Figure 7. Block diagram and signal flow graph of the HFI to EPW
control.

3.3. Data Recording

The HFI signals were recorded for the shoulder and
elbow movements with a 64-channel amplifier (National
Instruments DAQ) in differential configuration. The
52-channel high-density HFI covered the whole upper
body. The signals produced upon the movement/s were
amplified, bandpass filtered and then sampled at 20-48 Hz
by a 12-bit A/D converter.

3.4. EPW Control Scheme

The HFI signals were collected during the movements
and were rectified and filtered using principal component
analysis (PCA) [31, 32], which was normalized to the
average sensor signal recorded for the participating joint
during maximum arm abduction or flexion. To remove
possible drift and noise artefacts from the HFI signals,
we used the control scheme shown in the signal flow
diagram in Fig. 7. The time derivative of each of the
four principal components (PC) was calculated and a dead
zone was applied to each of them. The signals were then
positive-rectified, as we are only interested in the rising
part of each PC (see Fig. 7). The processed signals from
the two elbows were then subtracted from each other to
generate the translational velocity, while the processed
signals from the two shoulders were subtracted from each
other to generate the rotational velocity (see Fig. 7). The
output of the processed signals (i.e., the EPW controls)
were sent to the virtual EPW by using a user datagram
protocol (UDP) connection. The signal outputs (v and
ω) obtained during one of the navigation experiments are
shown in Fig. 8(a) and 8(b) while the participant attempted
to follow the prescribed trajectory as shown in Fig. 8(c).

3.5. Results

The participant wore the HFI and was seated in front of
a VR system as shown in Fig. 6(a) and Fig. 8(c). A thick
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Figure 6. Virtual EPW navigation experiments. (a) Virtual EPW line-
following navigation trials. (b) Participant’s upper-limb movements for
controlling EPW.

The virtual EPW is controlled firstly by the linear speed,
which can be positive (forward) or negative (backward),
and secondly by the rotational speed, where positive means
anti-clockwise (leftward) turn and negative speed means
for rightward turn. We formulated the control as a "com‐
mand vector", u = v,ω T , with two real numbers specifying
the linear (v) and the rotational (ω) speed. As a first step
towards our hands-free body-machine interface (BoMI)
navigation concept, we adopted a user-defined control
strategy for the translation and rotational motion of the
EPW. In the experiments, we used right-elbow movement
for positive translational velocity and left-elbow movement
for negative translational velocity (i.e., reverse movement).
Shoulder movements were used to control rotational
velocity (ω). Right-shoulder movement was used for anti-
clockwise rotation and left-shoulder movement for clock‐
wise rotation (or vice versa according to what felt intuitive
to the participant). At the rest position, the system followed
the last command, i.e., it maintained constant velocity
(v=const) and constant direction (ω =0). Our control
strategy is summarized in Table 3. Different human body
shapes can affect the signal output and potentially the
performance of the system. In our experiments, we did not
rule out the possibility of different body shapes or two
similar body sizes with different anatomical structures. To
overcome this difficulty, the HFI was introduced with
different sizes (i.e., small, medium and large). The calibra‐
tion phase played a vital role to overcome the problem of
different anatomical structures. The participant had to
undergo the calibration process (as described in Section 2.3)
at the beginning of the experiments to adjust the signal
output according to the body size/structure, in order for the
system to perform efficiently.

Body
Movement

Side Abbrev. v ω

Elbow right re -ve -

Elbow left le +ve -

Shoulder right rs - +ve

Shoulder left ls - -ve

Table 3. Virtual EPW Control Strategy

3.3 Data Recording

The HFI signals were recorded for the shoulder and elbow
movements with a 64-channel amplifier (National Instru‐
ments DAQ) in differential configuration. The 52-channel
high-density HFI covered the whole upper body. The
signals produced upon the movement/s were amplified,
bandpass filtered and then sampled at 20-48 Hz by a 12-bit
A/D converter.

3.4 EPW Control Scheme

The HFI signals were collected during the movements and
were rectified and filtered using principal component
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analysis (PCA) [31, 32], which was normalized to the
average sensor signal recorded for the participating joint
during maximum arm abduction or flexion. To remove
possible drift and noise artefacts from the HFI signals, we
used the control scheme shown in the signal flow diagram
in Fig. 7. The time derivative of each of the four principal
components (PC) was calculated and a dead zone was
applied to each of them. The signals were then positive-
rectified, as we are only interested in the rising part of each
PC (see Fig. 7). The processed signals from the two elbows
were then subtracted from each other to generate the
translational velocity, while the processed signals from the
two shoulders were subtracted from each other to generate
the rotational velocity (see Fig. 7). The output of the
processed signals (i.e., the EPW controls) were sent to the
virtual EPW by using a user datagram protocol (UDP)
connection. The signal outputs (v and ω) obtained during
one of the navigation experiments are shown in Fig. 8(a)
and 8(b) while the participant attempted to follow the
prescribed trajectory as shown in Fig. 8(c).

(a) (b)

Figure 6. Virtual EPW navigation experiments. (a) Virtual
EPW line-following navigation trials. (b) Participant’s upper-limb
movements for controlling EPW.

the subject to the target. The simulated EPW could collide
with and go through obstacles. A brief flash of light
indicated that a collision had occurred. The virtual EPW is
controlled firstly by the linear speed, which can be positive
(forward) or negative (backward), and secondly by the
rotational speed, where positive means anti-clockwise
(leftward) turn and negative speed means for rightward
turn. We formulated the control as a "command vector",
u = [v, ω]T , with two real numbers specifying the linear
(v) and the rotational (ω) speed. As a first step towards
our hands-free body-machine interface (BoMI) navigation
concept, we adopted a user-defined control strategy for
the translation and rotational motion of the EPW. In
the experiments, we used right-elbow movement for
positive translational velocity and left-elbow movement
for negative translational velocity (i.e., reverse movement).
Shoulder movements were used to control rotational
velocity (ω). Right-shoulder movement was used for
anti-clockwise rotation and left-shoulder movement for
clockwise rotation (or vice versa according to what felt
intuitive to the participant). At the rest position, the
system followed the last command, i.e., it maintained
constant velocity (v=const) and constant direction (ω =
0). Our control strategy is summarized in Table 3.
Different human body shapes can affect the signal output
and potentially the performance of the system. In our
experiments, we did not rule out the possibility of different
body shapes or two similar body sizes with different
anatomical structures. To overcome this difficulty, the HFI
was introduced with different sizes (i.e., small, medium
and large). The calibration phase played a vital role to
overcome the problem of different anatomical structures.
The participant had to undergo the calibration process
(as described in Section 2.3) at the beginning of the
experiments to adjust the signal output according to the
body size/structure, in order for the system to perform
efficiently.

Table 3. Virtual EPW Control Strategy

Body Movement Side Abbrev. v ω

Elbow right re -ve -
Elbow left le +ve -
Shoulder right rs - +ve
Shoulder left ls - -ve

Figure 7. Block diagram and signal flow graph of the HFI to EPW
control.

3.3. Data Recording

The HFI signals were recorded for the shoulder and
elbow movements with a 64-channel amplifier (National
Instruments DAQ) in differential configuration. The
52-channel high-density HFI covered the whole upper
body. The signals produced upon the movement/s were
amplified, bandpass filtered and then sampled at 20-48 Hz
by a 12-bit A/D converter.

3.4. EPW Control Scheme

The HFI signals were collected during the movements
and were rectified and filtered using principal component
analysis (PCA) [31, 32], which was normalized to the
average sensor signal recorded for the participating joint
during maximum arm abduction or flexion. To remove
possible drift and noise artefacts from the HFI signals,
we used the control scheme shown in the signal flow
diagram in Fig. 7. The time derivative of each of the
four principal components (PC) was calculated and a dead
zone was applied to each of them. The signals were then
positive-rectified, as we are only interested in the rising
part of each PC (see Fig. 7). The processed signals from
the two elbows were then subtracted from each other to
generate the translational velocity, while the processed
signals from the two shoulders were subtracted from each
other to generate the rotational velocity (see Fig. 7). The
output of the processed signals (i.e., the EPW controls)
were sent to the virtual EPW by using a user datagram
protocol (UDP) connection. The signal outputs (v and
ω) obtained during one of the navigation experiments are
shown in Fig. 8(a) and 8(b) while the participant attempted
to follow the prescribed trajectory as shown in Fig. 8(c).

3.5. Results

The participant wore the HFI and was seated in front of
a VR system as shown in Fig. 6(a) and Fig. 8(c). A thick
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Figure 7. Block diagram and signal flow graph of the HFI to EPW control

3.5 Results

The participant wore the HFI and was seated in front of a
VR system as shown in Fig. 6(a) and Fig. 8(c). A thick white
line was marked on the floor and the participant was asked
to navigate through the corridors and doorways following
the line as shown in Fig. 6(a). The participant first familiar‐
ized himself with the EPW control scheme through arm and
shoulder movements. Upon completing this initial step, the
participant was instructed to start following the prescribed
path (also shown in Fig. 6(a) and 6(b)). The participant
moved in different directions in the virtual environment to
learn the control criteria. As the participant spent more time

moving in the virtual scene, his understanding of the
control map improved and he was able to navigate the
scene with greater accuracy. The data were recorded
simultaneously while the experiments were conducted. At
the end of every experiment, two trajectories were plotted
(as shown in Fig. 8(c)). In the resulting plots, the black line
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Figure 8. EPW control scheme output. (a) Signal output
for translational velocity v m/s for the line-following trial. (b)
Signal output for rotational velocity ω m/s2 for the line-following
trial. (c) Plan of the course used in the EPW navigation trials,
the dimensions of the prescribed trajectory, the participant’s
trajectory, and the intersection points.

white line was marked on the floor and the participant
was asked to navigate through the corridors and doorways
following the line as shown in Fig. 6(a). The participant
first familiarized himself with the EPW control scheme
through arm and shoulder movements. Upon completing
this initial step, the participant was instructed to start
following the prescribed path (also shown in Fig. 6(a)
and 6(b)). The participant moved in different directions in
the virtual environment to learn the control criteria. As the
participant spent more time moving in the virtual scene,
his understanding of the control map improved and he
was able to navigate the scene with greater accuracy. The
data were recorded simultaneously while the experiments
were conducted. At the end of every experiment, two
trajectories were plotted (as shown in Fig. 8(c)). In
the resulting plots, the black line is the participant’s
trajectory whereas the blue line is the prescribed trajectory.
We measured the subject performance based upon two
indicators: the mean "trajectory error" and the number
of "intersecting points", with the baseline as shown in
Fig. 9(a) and 9(b), respectively. The data in Fig. 9(a) shows
a monotonic reduction in the subject’s trajectory error
from trial to trial. This is consistent with the hypothesis
that, through practice, a subject is able to adapt to their
environment using the novel control strategy of moving an
EPW with shoulder and arm movements. The increasing
trend in the number of "intersecting points" is evident
for the overall number of trials as shown in Fig. 9(b).
The results in Fig. 9(a) show the mean trajectory error
of the participant for each week’s trial in reaching the
prescribed endpoint from the starting point. The drastic
reduction in trajectory error between the first and second
week’s trials shows that the participant’s initial mobility
adjustments were significant. In subsequent trials, the
participant’s movement adjustments are more finely tuned
because the participant’s familiarity with the HFI control
plan improves, resulting in smaller trajectory errors.

4. Conclusions

The possibility of controlling powered mobility devices
with elbow and shoulder movements has been presented.
Experiments were conducted to evaluate the hands-free
interfacing paradigm and the outcomes were consistent
with user reliability factors and short-time response
requirements of the body-machine interface technology.
The study examined the correlation of kinematics that
occur during moderately paced repetitive elbow and
shoulder movements for a range of motion. The
correlation between HFI signals and PPT measurements
was strong. The correlation counts across the activities
involving the elbow and shoulder movements were 0.94
and 0.85, respectively. It was found that in the phase
of movement as shown in Fig. 4 and Fig. 5, both
measurements follow a common sinusoidal wave pattern
with a small time lag. In Fig. 5 PPT and the HFI both give
increased and decreased counts of peaks upon increasing
and decreasing the movements, reflecting increased and
decreased joint angle activity.
The kinematic variation of human upper-limb movement
is consistent with two features of the HFI (i.e., angles
and peaks), which is additional evidence of accurate
identification of BoMI control within HFI signals. The
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Figure 8. EPW control scheme output. (a) Signal output for translational
velocity v m/s for the line-following trial. (b) Signal output for rotational
velocity ω m/s2 for the line-following trial. (c) Plan of the course used in the
EPW navigation trials, the dimensions of the prescribed trajectory, the
participant’s trajectory, and the intersection points.

7Tauseef Gulrez, Alessandro Tognetti, Woon Jong Yoon, Manolya Kavakli and John-John Cabibihan:
A Hands-free Interface for Controlling Virtual Electric-powered Wheelchairs



is the participant’s trajectory whereas the blue line is the
prescribed trajectory. We measured the subject perform‐
ance based upon two indicators: the mean "trajectory error"
and the number of "intersecting points", with the baseline
as shown in Fig. 9(a) and 9(b), respectively. The data in Fig.
9(a) shows a monotonic reduction in the subject’s trajectory
error from trial to trial. This is consistent with the hypoth‐
esis that, through practice, a subject is able to adapt to their
environment using the novel control strategy of moving an
EPW with shoulder and arm movements. The increasing
trend in the number of "intersecting points" is evident for
the overall number of trials as shown in Fig. 9(b). The
results in Fig. 9(a) show the mean trajectory error of the
participant for each week’s trial in reaching the prescribed
endpoint from the starting point. The drastic reduction in
trajectory error between the first and second week’s trials
shows that the participant’s initial mobility adjustments
were significant. In subsequent trials, the participant’s
movement adjustments are more finely tuned because the
participant’s familiarity with the HFI control plan im‐
proves, resulting in smaller trajectory errors.

4. Conclusions

The possibility of controlling powered mobility devices
with elbow and shoulder movements has been presented.
Experiments were conducted to evaluate the hands-free

interfacing paradigm and the outcomes were consistent
with user reliability factors and short-time response
requirements of the body-machine interface technology.

The study examined the correlation of kinematics that occur
during moderately paced repetitive elbow and shoulder
movements  for  a  range  of  motion.  The  correlation  be‐
tween HFI signals and PPT measurements was strong. The
correlation counts across the activities involving the elbow
and shoulder movements were 0.94 and 0.85, respectively.
It was found that in the phase of movement as shown in Fig.
4 and Fig. 5, both measurements follow a common sinusoi‐
dal wave pattern with a small time lag. In Fig. 5 PPT and the
HFI both give increased and decreased counts of peaks upon
increasing  and  decreasing  the  movements,  reflecting
increased and decreased joint angle activity.

The kinematic variation of human upper-limb movement
is consistent with two features of the HFI (i.e., angles and
peaks), which is additional evidence of accurate identifica‐
tion of BoMI control within HFI signals. The identification
of upper-limb flexion-extension in the experiments, as one
of the most relevant features of the HFI with respect to
kinematic motion, is consistent with previous studies that
aimed to reconstruct movement trajectories accurately with
rectangular waves [33, 34].

This study also examined the possibility of using a hands-
free interface for powered mobility devices such as electric-
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Figure 9. EPW navigation experimental results using the HFI
with control strategy defined in the above sections. (a) Average
navigation trajectory distance error shown for every week’s trial.
(b) Mean number of intersection points and the increasing trend
over the period of time.

identification of upper-limb flexion-extension in the
experiments, as one of the most relevant features of the
HFI with respect to kinematic motion, is consistent with
previous studies that aimed to reconstruct movement
trajectories accurately with rectangular waves [33, 34].
This study also examined the possibility of using a
hands-free interface for powered mobility devices such as
electric-powered wheelchairs. Our approach was based
on the key concept that the burden of learning to control
powered mobility devices should not fall entirely on the
people with disabilities. In this case, "learning the user"
means learning the degrees of freedom in which the user is
able to move most efficiently, and mapping these degrees
of freedom onto EPW controls. Here, we should stress
that such mapping cannot be static, because in some cases
users will eventually improve with practice. Disability
may also be progressive, meaning the mobility of the user
gradually deteriorates. In both situations the BoMI must
be able to adapt and to update the transformation from
body-generated signals to efficient patterns of control. The
final aim is to facilitate the formation of new and efficient
maps from body motions to control space.
In this work, we have successfully demonstrated that
information from the HFI signals during voluntary elbow
and shoulder movements can be utilized. As evidenced
from the evaluation experimental results, the parametric
space of the HFI signals correlated well with variations
in global kinematics of natural elbow and shoulder
movement morphologies.
The residual body signals can be utilized to produce a set
of commands to control powered mobility systems, e.g.,
EPW, which belong to a general class of robotic-interface
systems. These systems are critical to improve the
quality of life of people with limited degrees of freedom
in their movements in everyday life. The participants’
movements were tracked with an optical device in parallel

as a baseline comparison. Our findings show that the
correlation between the HFI signals and optical tracking
was strong, with minimal time lag between the time series.
We also found supporting evidence that, along with the
upper-limb movement angles, the peak signal is a highly
informative feature. In conclusion, HFI technology can
be utilized to access the natural pathways of uninjured
regions in the SCI or stroke population, and can be
consequently used to design reliable and quick-response
control interfaces for EPWs.

5. Future Work

Possible areas of future research which emerge from this
paper include:

1. Design more robust control strategies and construct
more efficient tuning techniques for adjusting the
parameters of the calibration matrix.

2. Further research on learning algorithms and their
application in unstructured residential environments.

3. Larger studies including recent and chronic SCI and
stroke patients and a control group.

4. Further multidisciplinary experiments in healthy
subjects and stroke (and SCI) patients to specify the
rehabilitation indications of this device and modes of
control for stable driving purposes.
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powered wheelchairs. Our approach was based on the key
concept that the burden of learning to control powered
mobility devices should not fall entirely on the people with
disabilities. In this case, "learning the user" means learning
the degrees of freedom in which the user is able to move
most efficiently, and mapping these degrees of freedom
onto EPW controls. Here, we should stress that such
mapping cannot be static, because in some cases users will
eventually improve with practice. Disability may also be
progressive, meaning the mobility of the user gradually
deteriorates. In both situations the BoMI must be able to
adapt and to update the transformation from body-
generated signals to efficient patterns of control. The final
aim is to facilitate the formation of new and efficient maps
from body motions to control space.

In this work, we have successfully demonstrated that
information from the HFI signals during voluntary elbow
and shoulder movements can be utilized. As evidenced
from the evaluation experimental results, the parametric
space of the HFI signals correlated well with variations in
global kinematics of natural elbow and shoulder move‐
ment morphologies.

The residual body signals can be utilized to produce a set
of commands to control powered mobility systems, e.g.,
EPW, which belong to a general class of robotic-interface
systems. These systems are critical to improve the quality
of life of people with limited degrees of freedom in their
movements in everyday life. The participants’ movements
were tracked with an optical device in parallel as a baseline
comparison. Our findings show that the correlation
between the HFI signals and optical tracking was strong,
with minimal time lag between the time series. We also
found supporting evidence that, along with the upper-limb
movement angles, the peak signal is a highly informative
feature. In conclusion, HFI technology can be utilized to
access the natural pathways of uninjured regions in the SCI
or stroke population, and can be consequently used to
design reliable and quick-response control interfaces for
EPWs.

5. Future Work

Possible areas of future research which emerge from this
paper include:

1. Design more robust control strategies and construct
more efficient tuning techniques for adjusting the
parameters of the calibration matrix.

2. Further research on learning algorithms and their
application in unstructured residential environments.

3. Larger studies including recent and chronic SCI and
stroke patients and a control group.

4. Further multidisciplinary experiments in healthy
subjects and stroke (and SCI) patients to specify the
rehabilitation indications of this device and modes of
control for stable driving purposes.
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