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Abstract: In this study, Al-BiSn composites were synthesized by a combination of microwave sintering
and hot extrusion processes. The structural, morphological, mechanical, and thermal properties were
investigated to elucidate the role of Bi60Sn40 (BiSn) alloy content (5, 10, and 15 wt.%) in modifying the
properties of Al-BiSn composites. The X-ray diffraction (XRD) patterns confirmed the presence of
aluminum and BiSn particles. Distribution of BiSn particles in Al-BiSn composites was confirmed
by field emission scanning electron microscopy associated with energy dispersive X-ray analysis
(FE-SEM-EDX). Results indicated that hot extruded Al-(15 wt.% BiSn) composite exhibits maximum
hardness (78 ± 4 Hv) and tensile strength (185 ± 3 MPa), which were 117% and 58% improvements,
respectively, compared to pure Al. This improvement in mechanical properties can be attributed
to the strengthening effect of BiSn particles. A decline in the values of the coefficient of thermal
expansion (CTE) with an increasing amount of BiSn particles reflects the enhanced thermal stability of
developed Al-BiSn composites. The promising properties of Al-BiSn composites make them suitable
for many industrial applications.
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1. Introduction

Over the past decades, the demand for lightweight materials with superior mechanical properties
has gained significant attention from researchers around the world [1–3]. A wide range of research is
focused on developing lightweight materials because of their superior properties when compared to
conventional materials [4–7]. Among various composite materials, metal matrix composite (MMC)
has gained a lot of attention in automobile [8,9], defense, marine, and aerospace sectors [10,11].
Aluminum metal matrix composites (AMMCs) are known for their high performance and have
attracted the attention of most industries due to their provocative properties such as higher
strength-to-weight ratio, high hardness, good wear resistance, low density, and decent resistance to
corrosion [12–14]. These inviting properties make them attractive for a wide variety of applications.
Recently, the application of AMMCs has surged in the above-mentioned sectors, which require high
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strength-to-weight ratio, low density, high elastic modulus, excellent thermal stability, and wear
resistance. For this purpose, many AMMCs have been developed using various reinforcements, such as
alumina (Al2O3) [15], silicon carbide (SiC) [16], boron nitride (BN) [17], titanium carbide (TiC) [18],
silicon nitride (Si3N4) [19], boron carbide (B4C) [20], Al-Cu-Li [21], nitinol (NiTi) [22], aluminum nitride
(AlN) [23], zirconium dioxide (ZrO2) [24], cerium dioxide (CeO2) [25], and titanium dioxide (TiO2) [26],
that have shown distinctive contributions in enhancing the structural, thermal, damping, mechanical,
and corrosion properties of AMMCs [27,28]. However, there are some limitations in choosing the
type of preparation method. Powder metallurgy, forging and stir casting methods are the popular
manufacturing techniques to synthesize AMMCs [29–33]. Among these, powder metallurgy (PM) is
a simple and cost-effective synthesis technique and provides better results when compared to other
processes [34]. Furthermore, PM along with hybrid microwave sintering (HMWS) is suitable for
the development of Al-based composites, because it can control the growth in particle size and the
changes in microstructure and the volume fraction between the reinforcement and matrix [15–22].
Our research group has reinforced Al2O3, TiC, Si3N4, B4C, BN, and SiC successfully to develop
Al-based nanocomposites through the PM technique along with HMWS process.

Tin-bismuth (BiSn) alloy exhibits high strength and hardness, low melting point, superior creep
resistance, low thermal expansion coefficient, and low cost, which enables it to be a preferable
reinforcement to enhance the mechanical properties of monolithic materials [35]. BiSn composites have
been developed by various techniques demonstrating improved properties, such as electrochemical
deposition process [36], ball milling with low-temperature melting [37], directional solidification [38],
and hydrolysis process [39]; however, there is no reported attempt to use BiSn reinforcement to
synthesize aluminum/tin-bismuth (Al-BiSn) composites using microwave-assisted PM technique
followed by hot extrusion process. Therefore, the present work focuses on the development of Al-BiSn
composites using HMWS technique followed by the hot extrusion process. The structural, mechanical,
and thermal properties of the developed Al-BiSn composites with various weight percentages of BiSn
particles were investigated.

2. Materials and Methods

2.1. Synthesis of Al-BiSn Composites

In this study, commercial aluminum (Al) powders (size ~45µm and purity > 99.7%) were employed
as the matrix material. Bi60Sn40 (BiSn) alloy particles (average particle size ranging from ~10–20 µm
and purity > 99%, supplied by Phoenix Scientific Industries, UK) was added as a reinforcement particle
to develop Al-BiSn composites. The scanning electron microscopy (SEM) images and energy dispersive
spectroscopy (EDS) spectra of as-received Al and BiSn powder are presented in Figure 1.
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A schematic of the experimental process to synthesize Al-BiSn composites is depicted in Figure 2.
Pure Al and (5, 10, and 15 wt.%) BiSn-reinforced aluminum composites were synthesized using the
PM technique assisted by HMWS. Required amounts of pure Al powder and BiSn particles were
carefully weighed and blended for 1 h at 200 rpm in a RETSCH PM-400 mechanical alloying machine
(Haan, Germany). No balls or process control agent were used during the blending step, and the
blending process was carried out without any protective atmosphere. The blended powder mixtures
were then uniaxially cold-compacted at a pressure of 1000 psi to obtain billets of 40 mm in length and
36 mm in diameter. The same parameters were used to compact the pure aluminium without blending.
Hybrid microwave-assisted two-directional sintering technology was used to sinter the cold-compacted
billets. The billets were heated to 550 ◦C in a 900 W, 2.45 GHz Sharp microwave oven with SiC as the
microwave susceptor material in the absence of an inert atmosphere. The sintering temperature was
determined using dummy aluminium blocks and a K-type thermometer in the microwave sintering
furnace. A calibration chart (time versus temperature) was made. The compacted billet was sintered in
the microwave oven for a precalibrated duration corresponding to a temperature of 550 ◦C. Following
the predetermined time in the microwave, the billet was allowed to cool to room temperature without
any holding time under ambient atmospheric conditions. The microwaves were absorbed internally by
the billet, and the SiC susceptor heated up to provide radiant heat to the billet externally. This helped
in delivering bidirectional heating to the billet as compared to conventional sintering or sintering with
microwaves only [40–43]. The as-sintered billet was then further processed using hot extrusion.
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2.2. Secondary Processing

Before proceeding towards the hot extrusion process, the microwave sintered billets of pure Al
and Al-BiSn composites were soaked at 400 ◦C for 1 h. Hot extrusion then took place at 350 ◦C at the
extrusion ratio of 20.25:1 using a 150 t hydraulic press to produce 8 mm diameter rods.

2.3. Characterization of the Extruded Al-BiSn Composites

Density measurements of the extruded Al and Al-BiSn composites were made following
Archimedes’ principle on five samples using an electronic balance (A&D ER-182A) with an accuracy of
±0.0001 g.

Phase analysis of the pure Al and composites was carried out by X-ray diffraction (XRD)
analysis using a PANalytical X'pert Pro diffractometer. The samples were exposed to CuKα radiation
(λ = 1.54056 Å) at a scanning rate of 1.5◦/min, in the range of 20–90◦ and step size of 0.02◦.

The microstructural analyses were carried out on small sections of the extruded rod, which were
cut with a diamond blade and smoothed using SiC papers to remove all the visible scratches.
The microstructures were studied using a field emission scanning electron microscope (FE-SEM,
S-4300, Hitachi, Japan), equipped with an energy dispersive spectroscopy (EDS) detector. The surface
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morphology of the Al-BiSn composites was studied using an atomic force microscope (AFM, MFP-3D
Nanoindenter).

The microhardness tests were performed using a Vickers indenter tester (FM-ARS9000, USA)
following the ASTM standards E384–99 (load of 50 gf and a dwell time of 15 s). In order to
ensure the accuracy and repeatability of the results, fifteen readings were taken per individual
sample. Nanoindentation analysis was performed using an MFP-3D Nano Indenter (head connected
to AFM equipment) equipped with standard Berkovich diamond indenter tip. The testing was
performed at room temperature. The indentation was conducted at a maximum load of 100 mN under
loading/unloading rate of 200 µN/s, providing dwell time of 5 s at the maximum load.

Tensile tests of pure Al and Al-BiSn composite samples were carried out according to ASTM
E8/E8M-15a on the universal testing machine (Lloyd-Ametek LR50K Plus) at room temperature at a
strain rate of 8.3 × 10−4 s−1. For each composition, five tests were performed to obtain the average and
repeatable values. From the load–displacement curves, 0.2% offset yield strength (YS), ultimate tensile
strength (UTS), and elongation (ductility) were determined.

The coefficients of thermal expansion (CTE) of extruded Al and its composites were measured
through the thermo-mechanical analyzer (INSEIS TMA PT 1000LT). A heating rate of 5 ◦C/min for
a temperature range of 50–350 ◦C with an argon flow rate of 0.1 liters per minute was used during
the experiment.

3. Results and Discussion

3.1. Density and Porosity of Al-BiSn Composites

Figure 3 depicts the measured density and porosity of extruded pure Al and Al-BiSn composites
with different BiSn contents. The average measured density values of the extruded Al-BiSn composites
increase with the incremental BiSn content due to the high density of BiSn alloy (8.12–8.56 g/cm3)
which is almost 3 times that of pure Al (2.70 g/cm3). Further, with an increasing amount of BiSn in
Al-BiSn composites, the percentage of porosity also increased. This increment in the porosity can be
regarded as the pronounced effect of particle agglomeration due to the high amount of reinforcement
and pore nucleation between the Al matrix and BiSn interfaces. These findings are consistent with
previous studies [15,21].
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3.2. XRD Analysis of Al-BiSn Composites

XRD patterns of all extruded and polished samples were analyzed. Figure 4 shows the XRD
results of extruded Al and Al-BiSn composites containing various concentrations (5, 10, and 15 wt.%)
of BiSn. In pure Al, characteristic peaks of (111), (200), (220), (311), and (222) are noticed, representing a
typical face-centered cubic structure (FCC) of Al. Moreover, it is also noticed that in Al-BiSn composites
containing 5 wt.% of BiSn, the peaks of the reinforcements are not visible. This may be due to either the
low concentration of BiSn in the composite, which is below the detectable limit of the XRD machine,
or to the high relative intensity of peaks of crystalline Al.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 14 

XRD patterns of all extruded and polished samples were analyzed. Figure 4 shows the XRD 
results of extruded Al and Al-BiSn composites containing various concentrations (5, 10, and 15 wt.%) 
of BiSn. In pure Al, characteristic peaks of (111), (200), (220), (311), and (222) are noticed, representing 
a typical face-centered cubic structure (FCC) of Al. Moreover, it is also noticed that in Al-BiSn 
composites containing 5 wt.% of BiSn, the peaks of the reinforcements are not visible. This may be 
due to either the low concentration of BiSn in the composite, which is below the detectable limit of 
the XRD machine, or to the high relative intensity of peaks of crystalline Al.  

 
Figure 4. X-ray diffraction patterns of extruded Al-BiSn composites. 

3.3. Field Emission Scanning Electron Microscopy Analysis of Al-BiSn Composites 

Figure 5a–d represents the field emission scanning electron microscopy (FE-SEM) micrographs 
which reveal the morphology of the extruded Al-BiSn (0–15 wt.%) composites. In pure Al, a clear 
dark matrix with no reinforcement is observed (Figure 5a). A homogeneous distribution of the BiSn 
particles (indicated by arrow marks) in Al matrix is noticed for all Al-BiSn composites (Figure 5b–d). 
Moreover, good interfacial integrity of the bright BiSn particles in the dark Al matrix also confirms 
the incorporation of BiSn in Al matrix. It is pertinent to mention here that a partial agglomeration of 
the BiSn particles is also observed in the developed Al-(15 wt.% BiSn) composites. The energy 
dispersive X-ray (EDX) analysis of Al-BiSn composites containing 10 and 15 wt.% BiSn is presented 
in Figure 5 e,f, which confirms the existence of BiSn particles in Al matrix. 

Figure 4. X-ray diffraction patterns of extruded Al-BiSn composites.

3.3. Field Emission Scanning Electron Microscopy Analysis of Al-BiSn Composites

Figure 5a–d represents the field emission scanning electron microscopy (FE-SEM) micrographs
which reveal the morphology of the extruded Al-BiSn (0–15 wt.%) composites. In pure Al, a clear
dark matrix with no reinforcement is observed (Figure 5a). A homogeneous distribution of the BiSn
particles (indicated by arrow marks) in Al matrix is noticed for all Al-BiSn composites (Figure 5b–d).
Moreover, good interfacial integrity of the bright BiSn particles in the dark Al matrix also confirms the
incorporation of BiSn in Al matrix. It is pertinent to mention here that a partial agglomeration of the
BiSn particles is also observed in the developed Al-(15 wt.% BiSn) composites. The energy dispersive
X-ray (EDX) analysis of Al-BiSn composites containing 10 and 15 wt.% BiSn is presented in Figure 5e,f,
which confirms the existence of BiSn particles in Al matrix.
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3.4. Atomic Force Microscopy Analysis of Al-BiSn Composites

Atomic force microscopy (AFM) was carried out to examine the surface morphology of the
extruded Al-BiSn composites. The AFM images of the extruded Al-BiSn composites containing
different BiSn contents are represented in Figure 6a–d. The root-mean-square (RMS) roughness has
been used to describe the surface roughness of the developed composites. The extruded pure Al sample,
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having a single homogeneous grain of Al, has resulted in a very smooth surface (RMS = 16.68 nm).
However, the surface roughness of Al-BiSn composites increases with the increasing amount of BiSn
content, reaching 20.26 nm at the optimum concentration (15 wt.% of BiSn). This increase in surface
roughness can be attributed to (i) the incremental increase in the micron-sized BiSn particles in the Al
matrix, (ii) the new interface of the reinforcement, and (iii) the high clustering/agglomeration of the
BiSn particles, which was also noted in the FE-SEM images (Figure 5b–d).
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3.5. Microhardness and Nanoindentation Analysis of Al-BiSn Composites

The microhardness variation of the Al-BiSn composites with BiSn amount is shown in Figure 7a.
The microhardness of the extruded Al-BiSn composites increases with the increasing BiSn content.
The hardness increases from 36 ± 2 (pure Al) to 78 ± 4 HV (15 wt.% of BiSn), indicating an increment of
117%. The increasing trend of the hardness in Al-BiSn composites with an increasing amount of BiSn
reflects the efficient and uniform dispersion of BiSn particles in the Al matrix. This improvement in
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hardness with increasing concentration of BiSn particles can also be ascribed to the strengthening effects
of BiSn reinforcement. Furthermore, near-dense materials synthesized with the powder metallurgy
method, microwave sintering, and hot extrusion may have also contributed to enhancing the hardness
of the developed Al-BiSn composites.
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Figure 7. The variation of Vickers hardness with BiSn content (a) and nanoindentation results (b,c) of
pure Al and Al-BiSn composites.

Nanoindentation analysis of extruded Al-BiSn composites was further conducted to have more
insight into the mechanical behavior of the developed composites. The load–displacement curves are
presented in Figure 7b. A lower depth of penetration is noted for the developed Al-BiSn composites
when compared to pure Al. Moreover, the depth of penetration decreases with the increasing amount
of BiSn particles, suggesting an increase in hardness with an increasing amount of reinforcement
(Figure 7c). The increase in the hardness and decrease in the indentation depth with the increasing
BiSn volume fraction show that hard BiSn particles are homogeneously dispersed in the Al matrix and
offer a hindering effect to the indenter. The highest resistance offered to penetration is 83 ± 2 GPa for
Al-BiSn composites containing 15 wt.% BiSn. The nanoindentation results of Al-BiSn composites are in
line with their Vickers hardness results.

3.6. Tensile Properties of Al-BiSn Composites

Figure 8a presents the stress–strain curves of the extruded Al-BiSn composites carried out at room
temperature under tensile loading. The corresponding variation of yield strength and ultimate tensile
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strength with different volume fractions of BiSn is presented in Figure 8b. Table 1 lists the detailed
data of the tensile properties. A significant improvement in the yield strength (YS) and the ultimate
tensile strength (UTS) is noted with an increasing amount (5, 10, and 15 wt.%) of BiSn particles in the
Al matrix. The Al-(15 wt.% BiSn) composite exhibited significantly higher ultimate tensile strength
(185 ± 3 MPa) and yield strength (164 ± 5 MPa), which are enhanced by 58% and 78%, respectively,
when compared to pure Al. This improvement in mechanical properties of the developed composites
can be ascribed to (i) the homogeneous mixing of the BiSn particles in Al matrix, (ii) the hindering of
the dislocation motion by BiSn particles, and (iii) the efficient load transfer because of the strong bond
of the BiSn particle to the Al matrix. These findings are consistent with the previous studies [15,21].
The uniform dispersion and strong bonding of the reinforcement (BiSn) to the Al matrix are evident
from FE-SEM images (Figure 5b–d). It can be observed that, with the addition of BiSn reinforcement,
the strength is noticeably increased without compromising ductility. These results are consistent with
similar studies using BN and B4C particles as reinforcement [17,20]. In Table 1, the developed Al-BiSn
composites are also compared with the already published Al-based composites [15,21,44–47].
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Table 1. Comparison of the hardness and tensile properties of Al-BiSn composites with other studies.

Material
Hardness Tensile Properties

Micro
(HV)

Nano
(GPa)

Yield
Strength/MPa

Ultimate Tensile
Strength/MPa

% of
Elongation

Pure Al 36 ± 2 38 ± 3 92 ± 3 117 ± 3 13.70
Al-(5 wt.% BiSn) 49 ± 6 53 ± 4 112 ± 3 135 ± 4 13.45
Al-(10 wt.% BiSn) 62 ± 4 67 ± 1 136 ± 4 154 ± 1 12.76
Al-(15 wt.% BiSn) 78 ± 4 83 ± 2 164 ± 5 185 ± 3 12.04

Al-(10 wt.% Al2O3) [15] 73 ± 6 - 118 ± 5 141 ± 5 9.4 ± 0.5
Al-(10 wt.% AlCuLi) [21] 72 ± 3 - 122 ± 3 152 ± 6 8.3 ± 0.5

Al-(3 wt.% SiC) [44] 56.1 - 142 162 4.7
Al-(3 wt.% SiO2) [45] 38.7 - 100 137 0.9
Al-(5 wt.% GNP) [46] - - 22 27 0.2
Al-(10 wt.% TiO2) [47] 37 - 64 76 5.33

3.7. Fracture Analysis of the Al-BiSn Composites

Fractography observations were conducted to understand the fracture mechanisms of the
tensile-tested samples. Figure 9a–d shows the fracture surfaces of the extruded pure Al and Al-BiSn
composites containing 5, 10, and 15 wt.% of BiSn particles. The presence of fine dimples in the fractured
surfaces represents the ductile mode of fracture. This feature represents the ductile and high plastic
deforming nature of the Al-BiSn composites. The similar nature of the fracture in all compositions
of the Al-BiSn composites suggests that the fracture behavior of the Al-BiSn composite is mainly
dependent on the deformation behavior of the Al matrix. As a comparison, a larger number of dimples
with smaller size are noted in Al-BiSn composites, explaining the high UTS of Al-BiSn composites.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 14 
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3.8. Coefficient of Thermal Expansion (CTE) of Al-BiSn Composites

The variation in the coefficient of thermal expansion (CTE) values of extruded Al-BiSn composites
with BiSn content is presented in Figure 10. A decline in the CTE values is observed with an
increasing amount of BiSn, reflecting improved thermal stability of the developed Al-BiSn composites.
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The measured CTE value of the pure Al observed is ~23.31 µ/k, which is very close to the theoretical
CTE value of Al. By adding 5 wt.% of BiSn in Al, the CTE value decreases to ~22.14 µ/k, which reflects
an enhanced constraint on the thermal expansion by the additional interface of BiSn. Further increase
in BiSn content leads to further decrease in the CTE values, reaching ~19.86 µ/k at 15 wt.% of BiSn.
In comparison with pure Al, the continuous decrease of the CTE values with the increasing amount of
BiSn particles confirms enhanced thermal stability of the Al-BiSn composites. The behavior of CTE
values is similar to the other Al-based composites present in the literature [18,20]. Owing to their low
CTE value, the Al-BiSn composites can be regarded as a potential material to be used in aerospace,
automobile, and electrical industries.
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4. Conclusions

Aluminum composites reinforced with BiSn alloy particles can be developed by
microwave-assisted PM followed by the hot extrusion process. The microstructural, mechanical,
and thermal performances of Al-BiSn composites were investigated. The FE-SEM microstructures
reveal a uniform distribution of BiSn particles in the aluminum matrix. Tensile results showed a 58%
increase in the strength, from 117 ± 3 MPa for pure Al to 185 ± 3 MPa for Al-(15 wt.% BiSn) composite.
The enhanced mechanical properties are ascribed to the homogeneously distributed BiSn particles and
their strengthening effects. The CTE values for the Al-BiSn composites decreased with increasing BiSn
content. Good mechanical and thermal properties of Al-BiSn composites make them attractive for
aerospace, automobile, defense, and electrical industries. From the synthesis perspective, HMWS has
a wide range of potential advantages for developing Al-based nanocomposites because of its rapid
heating capability.
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