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Abstract
Despite the availability of technological advances in traditional anti-cancer therapies, there is a need for more precise and 
targeted cancer treatment strategies. The wide-ranging shortfalls of conventional anticancer therapies such as systematic 
toxicity, compromised life quality, and limited to severe side effects are major areas of concern of conventional cancer treat-
ment approaches. Owing to the expansion of knowledge and technological advancements in the field of cancer biology, 
more innovative and safe anti-cancerous approaches such as immune therapy, gene therapy and targeted therapy are rapidly 
evolving with the aim to address the limitations of conventional therapies. The concept of immunotherapy began with the 
capability of coley toxins to stimulate toll-like receptors of immune cells to provoke an immune response against cancers. 
With an in-depth understating of the molecular mechanisms of carcinogenesis and their relationship to disease prognosis, 
molecular targeted therapy approaches, that inhibit or stimulate specific cancer-promoting or cancer-inhibitory molecules 
respectively, have offered promising outcomes. In this review, we evaluate the achievement and challenges of these techni-
cally advanced therapies with the aim of presenting the overall progress and perspective of each approach.
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Introduction

Cells acquire a cancerous phenotype due to a multitude 
of aberrant changes that manifest at the levels of proteins, 
RNA, or DNA. The year 2020 witnessed staggering statistics 
from the World Health Organization (WHO)—one-sixth of 
global deaths were attributed to cancer, underscoring the 
urgent necessity for safer, personalized, and more effective 

treatment modalities. While conventional anticancer meth-
ods such as surgery, radiotherapy, and hormonal therapy [1] 
have shown advancements, the realm of cancer therapeutics 
is abuzz with exploration aimed at enhancing survival rates. 
Within this landscape, emerging treatment avenues includ-
ing immunotherapy, gene therapy, and molecular targeted 
therapy are offering promising prospects. These innovative 
therapeutic paradigms have historical roots, but it’s the avail-
ability of comprehensive genomic and individualized data 
that has truly refined their applications. The core objective of 
these groundbreaking treatments is to overcome the limita-
tions inherent in traditional anticancer approaches—adverse 
treatment effects and long-term side effects.

In spite of these strides, cancer stands as the second 
leading cause of mortality, prompting an urgent quest 
for precise, targeted anticancer interventions to improve 
tolerance and mitigate both immediate and enduring side 
effects. The pursuit of better outcomes steers oncologists 
towards a strategy of integrated disease management, 
entailing dynamic treatment regimens that optimize cancer 
management. This article delves into anti-cancer therapeu-
tic methods—immunotherapy, gene therapy, and molecu-
lar targeted therapy—tracing their historical development, 
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assessing present progress, and outlining the potential they 
hold for the future (Fig. 1).

Immunotherapy

The immunotherapy concept is based on directing one’s 
own immune response specifically towards cancerous cells 
[2]. With fewer off-targets compared to chemotherapy, 
immunotherapy magnetized its consideration for treat-
ing cancers. Various strategies have been ascertained to 
achieve activation or boosting of the immune system for 
fighting cancers.

Immunostimulant

Immunostimulants work by exciting the immune sys-
tem through various dynamics, such as the production of 
cytokines and specific antibodies, the release of α and γ 
interferons, and the activation of B and T lymphocytes [3]. 
In the early twentieth century, Coley observed a reduction in 
sarcoma size after injecting it with gram-positive bacteria. 
This observation led to the discovery of Coley toxin, a bacte-
rial product that became the first known immunostimulant 
for cancers [4] (Fig. 2). However, its acceptance in the medi-
cal community and widespread use were encumbered by 
several reasons, such as inconsistent results and inadequately 
designed studies.

Later, in the 1960s, the recognition of the effectiveness of 
immunostimulants such as Bacillus Calmette–Guerin (BCG) 
in managing solid tumors, and its subsequent approval for 
some malignancies such as bladder cancer, sparked inter-
est in exploring the potential of immunotherapy in treating 
cancer [5]. Subsequent studies on interferon-α (IFN-α), a 
cytokine, further demonstrated antitumoral activity in mela-
noma, hairy cell leukemia, renal cell carcinoma (RCC), and 
other solid tumors [6]. In 1986, IFN-α2 was approved to cure 
hairy cell leukemia, and it was developed as the first immu-
notherapy for adjuvant treatment of stage IIB/III melanoma 
in the USA in 1995 [7]. Soon after, another cytokine, inter-
leukin-2 (IL-2), was approved by the FDA due to its anti-
cancer activity in RCC and melanoma (Table 1). However, a 
high dosage of IL-2 was found to be associated with severe 

Fig. 1   Abstract figure

Fig. 2   Histological milestones in immunotherapy: a chronological exploration of groundbreaking concepts
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adversities, such as hemodynamic complications requiring 
hospitalization in an intensive care facility [8].

Bacterial products such as BCG, recombinant cytokines 
like interleukin and interferons, animal and plant-originated 
products, and synthetic drugs including levamisole, immu-
nocynin, bestatin, and CpG oligonucleotides, as well as 
imiquimod, are being utilized for their immunostimulating 
function in cancer treatment [3] (Fig. 3).

Cancer vaccination

The use of anti-tumor peptides as cancer vaccination 
emerged from the identification of various tumor antigens 
(TAs) that have the ability to stimulate T-cells against can-
cer [9]. Somatic mutations generate tumor-specific antigens, 
also known as neoantigens, while non-mutated but abnor-
mal proteins due to misfolding, truncation, or abnormal 
post-translational modification are distinguished as tumor-
associated protein [10]. These TAs stimulate cellular and/
or humoral responses, giving rise to antigenic determinants 
presented as major histocompatibility complex (MHC) class 
I molecules at the surface of tumor cells to incite CD8+ 
T cells [11]. In addition, MHC class II fragments, either 
presented by antigen-presenting cells (APC) or tumor cells, 
are recognized and responded to by CD4+ T cells. However, 
being a fragment of MHC class I or class II, TAs can bind to 
specific MHC molecules and hold great clinical significance 
only for those who express that particular MHC molecule 
[9]. Some peptides from TAs can engage MHC class I and 
MHC class II molecules, building the foundation for the 
development of peptide- and protein-based vaccines for mul-
tiple cancer types [11] (Fig. 3).

A number of vaccines have been synthesized and tested 
for their effectiveness in different cancers. The limited clini-
cal significance of first-generation vaccines was observed 
in a small group of patients in advanced stages of cancer 
[12]. However, it provided useful insight into the reactivity 
of tumor cells to counterbalance the immunization effects 
induced by protein and peptide vaccines.

To maximize specificity and effectiveness, many modi-
fications have been proposed for peptide and protein-based 
vaccines, such as the utilization of immunological adjuvants 
that help the gradual discharge and consequent amplifica-
tion of antigens to induce an immune response. Commonly 
used adjuvants include aluminum salts, oil-in-water emul-
sion (MF59), nontoxic derivatives from Salmonella (MPL), 
water-in-oil emulsions (Montanide ISA 51 and ISA 720), 
and the saponins (ISCOM, QS-21, AS01, and AS02) [13].

Another modification proposed in protein- and peptide-
based vaccines is the insertion of toll-like receptor ligands 
(TLRL) such as TLR3L, TLR4L, TLR7/8L (imiquimod, 
resiquimod) and TLR9L (CpG), activating APCs [14]. Some 
TLRL, such as TLR3L, exhibited stimulatory potentials Ta
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for APC and natural killer (NK) cells initiating tumor cell 
death [14]. TLR9L has been found to effectively stimulate 
the induction of TA-specified CD8+ T cells in advanced 
cancer patients [15]. Alternatively, granulocyte–macrophage 
colony-stimulating factor (GM-CSF) has been ascertained 
to weaken the vaccine-induced immune response for multi-
peptide vaccines [16].

In 1986, gp96, an endoplasmic reticulum-residing mem-
ber of HSP90 (heat shock proteins), was isolated from fibro-
sarcomas of mice after stimulation with methylcholanthrene 
A and was found to function as a tumor rejection antigen 
[17]. Extracellular HSP has been observed to play a stimu-
latory role for the immune system against tumorous tissue 
either by displaying immunogenic peptides originating 

from tumors or integrating innate and adaptive immunity 
through the secretion of chemokines, cytokines, and nitric 
oxide [18]. The gp96 and HSP70 peptide-based vaccines 
extracted from autologous tumor lysate were introduced in 
late-stage melanoma, metastatic colorectal cancer, glioma, 
and renal cell carcinoma patients [19].

Although HSP–peptide complex treatment incited the 
immune response in a majority of the patients, however, the 
response remained limited to certain patient subgroups. A 
clinical trial study with twelve brain tumor patients treated 
with recombinant HSP70 in an intra-tumoral manner after 
surgery exhibited complete clinical response (CR) along 
with the buildup of Th1 cell-mediated immune response 
and decline in immunosuppressive Treg cell population 

Fig. 3   Different immunotherapeutic strategies. This figure illustrates 
diverse immunotherapeutic approaches for combating cancer: immu-
nostimulants, certain bacterial, plant, or animal products enhance the 
immune response against cancer; cancer vaccination, stimulates the 
immune response by presenting tumor antigens through either MHC-I 
or MHC-II molecules; monoclonal antibodies, synthesized to tar-
get angiogenesis, checkpoint and growth factors, or deliver radioac-
tive isotopes to cancerous cells; ex-vivo induction of dendritic cells, 
amplifies the immune response by mobilizing CD8+ T cells and 
macrophages to eliminate cancer cells and engineered dendritic cells 
also activate B cells for antibody production; reprogramming of mac-

rophages, through pan programming and function-based program-
ming, shifts macrophages from a pro-cancerous to an anti-cancerous 
role, genetic immunization strategy, introduces exogenous plasmids 
for cytokine production and antigen delivery to cancerous cells; 
chimeric antigen receptor (CAR) therapy, utilizes genetically modi-
fied immune cells expressing synthetic receptors that bind to tumor 
cells. MHC-I major histocompatibility molecule 1, MHC-II major 
histocompatibility molecule 2, Th helper T cells, PD-1 programmed 
death-1, PD-L programmed death ligand, CTLA-4 cytotoxic T-lym-
phocyte antigen-4
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[20]. Another clinical setting with twelve patients with non-
resectable or reiterated HCV-related hepatocellular carci-
noma advocates the effectiveness of the treatment [21].

Monoclonal antibodies (mAbs)

Monoclonal antibody (mAbs) development represents a piv-
otal aspect of immunotherapeutic strategies aimed at sup-
pressing the immunosuppressive influence of cancer cells 
[22] (Fig. 3). Köhler and Milstein [23] demonstrated the pro-
duction of high-quantity mAbs displaying identical antigens 
in 1975. Since then various mAbs with diverse mechanisms 
of action have been developed, including those opposing 
neoplastic activity, neutralizing trophic signaling, or stimu-
lating the immune system against tumor cells [24]. The ini-
tial investigation for the therapeutic role of mAbs failed most 
possibly due to the incompatibility of mice mAbs to recruit 
human immune effector molecules [22]. Initial investiga-
tions into the therapeutic role of mAbs faced challenges, 
possibly due to the incompatibility of mouse-derived mAbs 
with human immune effector molecules [22].

However, the development of chimeric or fully human-
ized mAbs has strengthened their efficacy, with studies 
validating their effectiveness in hematological and solid 
tumors [25]. The response rate to tumor-associated specific 
mAbs (e.g., trastuzumab) was observed at 35% in patients 
with advanced metastatic breast cancer when administered 
alone [25]. However, a marked increase in the survival rate, 
along with an improvement in the duration of response, was 
observed by combining trastuzumab with chemotherapy and/
or radiotherapy [25].

Bevacizumab, a recombinant humanized mAb, binds vas-
cular epithelial growth factor (VEGF) and inhibits angio-
genesis [26]. It is approved for the treatment of colorectal 
cancer, glioblastoma (GB), non-squamous non-small cell 
lung cancer (NSCLC), and breast cancer [26]. Cetuximab, 
a recombinant chimeric mAb, targets EGFR, HER-1, and 
c-ErbB-1, preventing the binding of EGF with its ligand and 
promoting tumorigenesis [27]. Panitumumab, a recombinant 
human anti-EGFR mAb, competitively binds with EGFR, 
inhibiting the attachment of EGF and TGFα to the recep-
tor [28]. Trastuzumab binds to the extracellular domain of 
EGFR-2 protein (HER-2) and is recommended for breast 
cancer patients [25]. Rituximab targets CD20 antigen of B 
lymphocytes, showing significance for non-Hodgkin lym-
phoma (NHL), Hodgkin lymphoma, and chronic lympho-
cytic leukemia (CLL) [22] (Table 1).

Immune checkpoint proteins, such as cytotoxic T-lym-
phocyte antigen-4 (CTLA-4) and programmed death (PD-1), 
play a crucial role in regulating T cell activation by bal-
ancing pro-inflammatory and anti-inflammatory signalling 
[29]. PD-1 has two ligands, PD-L1 and PD-L2, with PD-L1 
expressed on both tumor and immune cells. When coupled 

with PD-1, it inhibits T cell multiplication and cytotoxicity 
[29]. Blocking these inhibitors with their antibodies resulted 
in satisfactory outcomes in in-vivo studies.

Since 2010, FDA-approved mAb drugs include Ipili-
mumab (anti-CTLA-4), Nivolumab, Pembrolizumab, and 
Cemiplimab (anti-PD-1), as well as Atezolimumab, Dur-
valumab, and Avelumab (anti PD-L). Ipilimumab and treme-
limumab are mAb formulated to counteract the activity of 
CTLA-4 (molecule downregulating the activation of T cells 
through a homeostatic feedback loop) thus allowing the 
prolonged activation of T cells, restoration of proliferative 
potentials of T cells to enhance T-cell mediated immunity 
along with patient’s anti-tumor immune response [30]. How-
ever, clinical trial data indicate low efficacy and high toxic-
ity in patients treated with anti-CTLA-4 [31] and resistance 
development in those treated with anti-PD-1 therapy [32] 
(Table 1). Mechanisms of non-responsiveness to immune 
checkpoint inhibitors include tumor mutational burden, 
PD-L expression, interferon signaling, and MHC-1 loss [29].

Ibritumomab and tositumomab radioconjugates deliver 
radioactive isotopes to intended cells [33]. Tositumomab 
radio-conjugate, a murine IgG2a-λ mAb, binds CD20 anti-
gen expressed on B lymphocytes [33]. Iodine-131 tositu-
momab is a radio-iodized product of tositumomab covalently 
attached to iodine-131 [33]. Ibritumomab, an anti-CD20 
mAb, is linked with the chelator tiuxetan, acting as a specific 
chelation site for yttrium-90 [33]. Alemtuzumab, that binds 
to CD52 and leads to cellular lysis [34]. It is recommended 
by the FDA for fludarabine-refractory CLL, with reported 
clinical significance for cutaneous T-cell lymphoma, periph-
eral T-cell lymphoma, and T-cell prolymphocytic leukemia.

Ipilimumab and tremelimumab are mAbs formulated to 
counteract CTLA-4 activity, allow prolonged activation of 
T cells, restore proliferative potentials and enhance T-cell 
mediated immunity [30].

With increased response rate and disease-free survival 
compared to chemotherapy, milder side effects generally 
caused by an allergic reaction due to the introduction of 
foreign proteins are observed [35]. However, the infre-
quent acute adverse effects such as arterial thromboembolic 
in patients treated with Bevacizumab- a mAb targeting 
VEGF [36] and autoimmune colitis caused by CTLA4 spe-
cific mAbs ipilimumab and tremelimumab [37] have been 
observed.

Dendritic cell induction

Dendritic cells play a key role in mediating innate immu-
nity and stimulating adaptive immunity (Fig.  3). The 
dysfunction of endogenous DCs in cancer patients has 
prompted the development of ex-vivo DCs with controlled 
loading of antigens, enhancing the specificity and magni-
tude of the T-cell response [38]. The ex-vivo generation 



Molecular Biology Reports          (2024) 51:219 	 Page 7 of 14    219 

of DCs allows the incorporation of supplementary fea-
tures, such as tumor-relevant homing signals that direct 
the trafficking of immune cells toward potential metastatic 
sites. In-vivo DCs have the potential to acquire resistance 
to inhibitory factors like IL-10, TGF-β, VEGF, and IL-6 
[38]. However, a notable increase in Tregs is observed in 
response to cancer vaccines, compromising the effective-
ness of the vaccine [38].

Following its success in melanoma and follicular lym-
phoma, the clinical use of partially mature “first-generation” 
DCs has been explored in various tumor types [38]. How-
ever, the expression of costimulatory molecules and immu-
nogens remained below the optimal level as compared to 
those arising from mature “second-generation” DCs. To 
address this, an improvement in the macrophage-conditioned 
medium and in the cytokine cocktail, including IL-1α, tumor 
necrosis factor-α (TNF-α), IL-6, and PGE2, was introduced 
to stimulate DCs and promote high expression of costimula-
tory molecules [38]. Compared to immature DCs, this cock-
tail exhibited enhanced immunogenic function along with an 
upgraded migratory response to lymph nodes [38].

Genetic immunization of cancers

Various strategies have been proposed for genetically immu-
nizing solid tumors, including cytokine gene therapy and 
plasmid-based immunization (Fig. 3). Previous attempts, 
such as injecting plasmid DNA encoding cytokines to stim-
ulate an immune response against tumor cells, faced chal-
lenges due to a limited immunogenic response [39]. How-
ever, the plasmid-based immunization process, delivering 
antigens through viral and microbial vectors, has shown 
promising outcomes by eliciting both antibodies and cel-
lular responses in mice [40].

Clinical trials evaluating the effectiveness of self-TAs, 
such as carcinoembryonic antigen (CEA) against colorectal 
cancer, confirmed the safety of DNA immunization [41]. 
Yet, the responsiveness to CEA varied among patients, with 
only four out of seventeen showing an immune response, 
highlighting the inadequacy of plasmid DNA immuniza-
tion in stimulating a T-cell response [41]. Similarly, a study 
involving MART-1 plasmid injection intramuscularly in 
melanoma patients reported no increase in immunity [42]. 
The challenge lies in achieving a balanced response between 
neutralizing antibodies and the expanding population of 
Treg cells to self-antigens, hindering the improvement of 
immunity against cancer [43]. A study utilizing an alpha-
virus plasmid carrying the CEA antigen gene enveloped in 
virus-like replicon particles (VRP) claimed a reduction in 
the neutralization effect caused by antibodies and Treg cells, 
leading to an improvement in immunotherapeutic treatment 
and overall survival rate [43].

Tumor‑associated macrophages

Tumor-associated macrophages (TAMs) are immune cells 
abundantly present in the tumor microenvironment (TME) 
[44]. They play a dual role, acting as tumor inhibitors during 
initiation stages and as tumor promoters in advanced stages 
[44]. The presence of macrophages contributes synergisti-
cally to therapeutic responses, such as increased sensitiza-
tion to 5-FU adjuvant therapy [44]. Although strategies to 
inactivate or deplete macrophages have been employed, 
these attempts were unsuccessful due to an attenuated 
immune response and significant repression of intra-tumor 
neutrophils [44]. Consequently, the idea of readjusting mac-
rophages from a pro-tumor to an anti-tumor state gained 
momentum.

Two categories of macrophage reprogramming include 
pan-reprogramming and function-based reprogramming 
(Fig. 3) [44]. Pan-reprogramming targets signaling path-
ways aiding polarization to a pro-tumor state or those 
preferentially expressed in TAMs. Histone deacetylases 
(HDACs), phosphoinositide 3-kinase gamma (PI3Kγ), 
leukocyte immunoglobulin-like receptors B-2 (LILRB-2), 
and macrophage receptors with a collagenous structure 
(MARCO) are utilized in this approach [44]. On the other 
hand, function-based reprogramming targets specific roles of 
macrophages such as immunosuppression and phagocytosis 
[44]. The function-based reprogramming strategy targets the 
tumor-macrophage axis, such as the antiphagocytic signal 
CD47-SIRP1α, β2-M-LILRB1, and CD24-SIGLEC-10, 
proving effective in various cancers [44].

Chimeric antigen receptor therapy (CAR therapy)

Chimeric antigen receptor T (CAR-T) cell therapy is gaining 
widespread acceptance due to its durable and effective CRs. 
Engineered synthetic receptors direct lymphocytes, typically 
T cells, to recognize and eradicate cells expressing specific 
antigens (Fig. 3). Since 2017, various CAR-T products have 
received approval from the FDA. Axicabtagene ciloleucel 
(axi-cel) and tisagenlecleucel (tisa-cel) target the CD19 anti-
gen in patients with large B-cell Lymphoma (Table 1). How-
ever, antigen escape, a phenomenon observed in patients 
treated with single antigen-targeting CAR-T, results in 
complete or partial loss of that antigen in 30% of relapsed/
recurrence cases [45]. B cell maturation antigen (BCMA) 
and CD38 are identified as target antigens for multiple mye-
lomas. Treating relapsed and refractory multiple myeloma 
patients with BCMA-CD38-CAR-T therapy yielded a high 
response rate and low recurrence rate [46]. Clinical trials for 
various solid malignancies, including GB, renal cell carci-
noma, lung cancer, and hepatocarcinoma, are ongoing.

Second, third, and fourth-generation CAR-T cells are not 
only generated but are undergoing continuous refinement 
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and enhancement. These iterations of CAR-T cell therapies 
represent progressive advancements in the design and func-
tionality of CAR-T cells. Second-generation CAR-T cells 
were characterized by the addition of one co-stimulatory 
domain to the original CAR structure, improving their effi-
cacy. Third-generation CAR-T cells incorporated multiple 
co-stimulatory domains, further enhancing their activation 
and persistence within the TME. The fourth generation 
introduces additional features, such as cytokine secretion 
or genetic modifications, aiming to address challenges like 
antigen escape and the hostile conditions of the TME. These 
advancements signify a dynamic field of research and devel-
opment, continually pushing the boundaries of CAR-T cell 
therapy for improved outcomes in cancer treatment.

Despite attempts to stimulate the immune system through 
various approaches, challenges in the form of generating 
autoimmune disorders exist. While CAR-T displays promis-
ing outcomes for hematological malignancies, its effective-
ness in solid tumors remains compromised. Cytokine-release 
syndrome and on-target off-tumor toxicities are major chal-
lenges that need to be resolved for effective CAR-T therapy. 
Current research is focused on improving immunotherapy 
and addressing the issues of autoimmune disorders. Moreo-
ver, with successful immunotherapy, the chances of cancer 
recurrence will diminish, making the dream of cancer-free 
survival a reality. Furthermore, the high cost and labor-
intensive process involved in generating CAR-T cells render 
it inaccessible to many patients.

Gene therapy

Gene therapy holds great promise for treating cancer, 
employing various approaches that stimulate immune 
responses against cancer cells, utilize oncolytic viruses to 
kill cancerous cells, and suppress cancer survival and sup-
portive activities. This article will discuss these strategies 
in detail.

Genetic modulation of the immune system

A phase I study investigating the safety and efficacy of pox-
viral vaccine-based treatment containing genes for CEA and 
MUC-1 together with TRICOM (a triad of co-stimulatory 
molecules) comprising B7-1, ICAM-u1, and LFA-3 engi-
neered in vaccinia and fowl pox determined the increased 
endured response by the immune system in patients with 
ovarian cancer and breast cancer [47].

Numerous attempts to manipulate the immune response 
have been reported in the literature [48]. Strengthening 
the immune response involves directing immune cells 
against cancer cells through the enhanced production of 
proinflammatory, immune-stimulating molecules initiated 

by incorporating one or more genes into cancer cells 
[48]. Transfusion of mononuclear circulating blood cells 
modified with an immunostimulatory gene or TA into the 
patient’s body triggers an immune system response target-
ing cancer cells [49]. For instance, a study involving TG01 
(the first immunotherapy drug targeting KRAS mutations) 
along with GM-CSF and gemcitabine in an adjuvant set-
ting for patients with resected pancreatic adenocarcinoma 
demonstrated increased activation of the immune response, 
extension in overall survival, and disease-free survival rate 
with improved tolerance [50]. A Phase I study assessed the 
safety and efficacy of a poxviral vaccine-based treatment. 
This treatment included genes for CEA and MUC-1, along 
with TRICOM (a triad of co-stimulatory molecules: B7-1, 
ICAM-u1, and LFA-3) engineered in vaccinia and fowlpox. 
The study determined an enhanced and sustained immune 
response in patients with ovarian cancer and breast cancer 
[47].

Oncolytic gene therapy

Oncolytic gene therapy entails the introduction of geneti-
cally modified viruses into the body to eliminate cancerous 
cells, either through the expression of cytotoxic proteins or 
cytolysis induced by the virus’s propagation (Fig. 3). Viruses 
such as vaccinia, adenovirus, herpes simplex virus type I 
(HSV-1), reovirus, and Newcastle disease virus are chosen 
for their inherent ability to infect cancer cells or due to their 
easy genetic manipulation [51]. In various animal models, 
including murine and canine studies, a noteworthy increase 
in the survival rate coupled with a reduction in metastasis 
has been reported, demonstrating the potential of oncolytic 
gene therapy [52]. An overview of oncolytic gene therapy 
agents, either FDA-approved or under current investigation, 
is provided in Table 1.

The oncolytic adenovirus (OAd) Delta-24-RGDOX, 
expressing OX40L (an immune co-stimulator) alongside an 
anti-PD-L1 antibody in glioma-bearing mice, significantly 
prolonged the survival rate to 85%, compared to the con-
trol survival rate of 28% [53]. Utilizing a humanized mono-
clonal CTLA-4 antibody expressing oncolytic adenovirus 
Ad5/3-Δ24aCTLA4 in peripheral blood mononuclear cells 
(PBMC) of four cancer patients in advanced stages achieved 
increased activation of T cells, evidenced by a rise in IL-2 
[54]. A recent study featuring rAd.sT (telomerase reverse 
transcriptase promoter-regulated oncolytic adenovirus) com-
bined with a soluble transforming growth factor receptor 
II and human IgG Fc fragment (sTGFβRIIFc) gene dem-
onstrated dose-dependent cytotoxicity in breast and kidney 
cancer patients [55]. Furthermore, the intratumoral introduc-
tion of rAd.sT in the immunocompetent breast cancer mice 
model impeded tumor progression and metastasis in lungs 
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and liver synergistically with anti-CTLA-4 and anti-PD-1 
antibodies [55].

The modeling of HSV-1 positions it as an effective and 
selective eradicator of cancerous cells. A recent study focus-
ing on metastatically advanced pediatric glioma revealed the 
efficacy of G207 (genetically modified HSV-1), either alone 
or accompanied by radiation with manageable consequences 
[56]. In a phase I/II investigation with NV1020 (recombinant 
HSV-1) on colorectal cancer patients experiencing high-
grade metastasized disease, it exhibited potential for sta-
bilizing hepatic metastasis and intensifying responsiveness 
to cancers by enhancing the sensitivity of tumorous cells to 
chemotherapy and inciting a tumor-lytic immune response 
[57]. Enhanced controlled cytotoxicity is achieved by equip-
ping oncolytic (HSV-1) with a bi-specific T cell engager 
(BiTE) connecting PD-L1 (expressed on tumor cells) and 
CD3ε (expressed on T cells) in malignant hydroperitoneum 
derived from patients with different cancers [58].

Gene transfer strategic approach

Gene transfer offers another avenue for cancer treatment 
by facilitating the introduction of foreign genes into either 
cancerous cells or surrounding tissues. Suicide genes, anti-
angiogenesis genes, and genes promoting cellular stasis have 
been proposed as favorable choices for impeding cancer 
progression [59]. Various methods including viral transfer, 
naked DNA transfer, oligodendromer DNA coating and elec-
troporation are recognized as practical [59]. However, the 
chosen delivery method influences expression duration and 
specifications for gene transfer therapy. For example, adeno-
viral vectors are commonly selected to deliver HSVtk gene 
for transient expression required to induce cellular mortality. 
In contrast, to counteract angiogenesis, prolonged expression 
of sFLT-1 and statin-AE genes is essential. Therefore, their 
delivery is carried out through plasmids containing trans-
posons for gene insertion into cellular DNA [60]. A clinical 
study involving TNFerade biologic (adenovector deliver-
ing tumor necrosis factor-alpha (TNF-α) to tumor cells) in 
locally advanced pancreatic cancer patients confirmed its 
safety but failed to demonstrate an extension in survival [61].

Rexin-G is a gene therapy with a broad spectrum of 
tumoricidal activity designed to target lesions by binding to 
unusual signature (SIG) proteins in the tumorous microen-
vironment. It encodes a cytocidal dominant-negative mutant 
construct of cyclin G1 (dnG1) in tumorous cells, disrupting 
the activity of wild-type cyclin G1, eventually causing cell 
growth arrest [62].

Another gene transfer approach involves the introduction 
of HSV-tk followed by the administration of ganciclovir 
(GCV), an anti-herpetic prodrug that exhibits no toxicity for 
human cells unless phosphorylated by HSVtk [63]. A Phase 
1 study with locally relapsed prostate cancer established 

its safety profile along with anti-tumorigenic activity [64]. 
Furthermore, an unsystematic study on high-grade glioma 
revealed an 81% improvement in survival rates with no seri-
ous health hazards [65].

Approximately 50% of cancers carry mutated p53 genes 
to evade apoptosis apoptosis [66]. INGN-201, an adenovec-
tor, was developed to deliver p53 to cancerous cells. Clini-
cal testing of INGN-201 in prostate cancer exhibited a high 
safety profile with increased expression of p53 in cancerous 
tissue, compelling them to undergo apoptosis [64]. Addition-
ally, the efficacy of Ad-p53 has been noted NSCLC with a 
significant regression of the disease either given singly or 
in combination with radiation and chemotherapy [67]. Gen-
dicine, a recombinant adenovirus transferring p53, accom-
panied by chemotherapy, enhanced therapeutic significance 
while reducing the harmful consequences of chemotherapeu-
tic agents in head and neck cancer patients [68].

Molecular targeted therapy

Targeting molecules crucial for cancer progression and 
survival allows for specific cancer treatment. Numerous 
molecular targets have undergone clinical assessment for 
their anti-cancer potential, leading to the approval of vari-
ous molecular therapies by FDA. These therapies have dem-
onstrated remarkable success in treating diverse cancers, 
including breast, lung, ovarian, leukemia, and colorectal 
cancers [69].

Inducing apoptosis through molecular targeting

To induce apoptosis in cancerous tissues, several molecules 
have been identified as potential targets. HER2 is critical in 
15–20% of breast cancers, regulating key cell proliferation 
pathways such as mitogen-activated protein kinase (MAPK) 
and phosphatidylinositol 3-kinase (PI3K)–AKT [70]. Molec-
ular therapies targeting HER2 include mAbs (Trastuzumab 
and Pertuzumab), an antibody–drug conjugate (T-DM1), 
and small molecule tyrosine kinase inhibitors (Lapatinib, 
Neratinib, and Afatinib) are approved by FDA (Table 1). 
Co-administration of trastuzumab with chemotherapeutic 
drugs in an adjuvant setting improves the survival rates [71].

Phosphoinositide 3-kinases alpha and delta (PI3Kα, PI3δ) 
play a crucial role in regulating cell death and growth. Ide-
lalisib, a PI3Kδ inhibitor, was approved by the FDA in 2004 
to treat CLL patients. Copanlisib, a co-inhibitor for PI3Kα 
and PI3δ, received FDA approval in 2017 for patients with 
follicular lymphoma [72]. Inhibiting AKT is achieved with 
MK-2206 (an AKT inhibitor). Everolimus and Temsiroli-
mus, mTOR inhibitors, have shown efficacy in treating spe-
cific cancers [73, 74].
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Crizotinib, a kinase inhibitor, is approved for NSCLC 
patients with ALK and ROS1 positive tumors. It has dem-
onstrated increased survival rates in ALK-positive progres-
sive NSCLC [75]. Inhibiting Poly (ADP-ribose) polymerases 
(PARP) is significant in treating cancers carrying BRCA 
mutations. Olaparib, Niraparib, Talazoparib, and Rucaparib 
are developed for inhibiting PARP in cancers with mutated 
BRCA gene [76] (Table 1).

Our recent findings highlight the atypical involvement of 
PI3K-Akt kinases and p53 in triggering both cell death and 
resistance, facilitated by the FDA-approved thymosin beta 
4 (Tβ4) drug in medulloblastoma (MB) cells [77, 78]. The 
success of these groundbreaking studies, unraveling Tβ4’s 
influence on MB and GB cells, sets the stage for future 
investigations into the intricate roles of p53 and PI3K/AKT 
in cancer cells characterized by elevated p53 levels [79]. 
This research is poised to guide the development of meth-
odologies assessing p53 levels in patient specimens and 
potentially pave the way for the clinical application of Tβ4.

B cell lymphoma 2 (BCL2) is a critical regulator of cell 
death. The inhibitors for BCL2 have been tested for their 
clinical significance in NHL, chronic lymphoid leukemia 
(CLL) and acute myeloid lymphoma (AML). In 2016, FDA 
approved Venetoclax for CLL patients having a deletion of 
the shorter arm of chromosome 17. Co-inhibitors for BCL2 
and BCLX including ABT-737 and ABT-263 have been 
developed [80]. ABT-737 monotherapy is effective in sup-
pressing tumor progression in NSCLC and lymphomas [81]. 
Clinical trials with ABT-263 yielded a response in 34.6% of 
patients while its combination with Rituximab significantly 
improved the response rate [82].

Inhibiting murine double minute (MDM2), an inhibitor 
of TP53, is of particular interest in developing anti-cancer 
therapies. Molecules like Nutlin 3a, RG7112, RG7388, 
AMG-232, APG-115, BI-907828, CGM097, DS-3032, 
and HDM201 have been synthesized to disrupt the MDM2-
TP53 regulatory loop, inducing death in cancer cells [83] 
(Table 1). These targeted therapies showcase promising 
avenues for precise cancer treatment.

Targeting key molecules of angiogenesis

Targeting angiogenesis to deprive cancerous cells of 
essential nutritional resources has emerged as an effec-
tive strategy for eradicating cancer. Bevacizumab, the first 
humanized mAB, binds to the circulating VEGF-A iso-
form, preventing its interaction with VEGFR and inhibit-
ing the activation of VEGF signaling crucial for neovas-
cularization. Combining bevacizumab with chemotherapy 
has shown promising outcomes in treating various solid 
tumors, including colorectal cancer [84], NSCLC [84], 
breast cancer [84], renal cell adenocarcinoma [84], ovar-
ian tumor [85] and GB [86]. Another humanized mAB, 

Ramucirumab, engages VEGFR, leading to the inhibi-
tion of neovascularization. Clinical trials such as REACH 
for malignant hepatoma, RAINBOW, and REGARD for 
gastric cancer demonstrated encouraging outcomes when 
combining Ramucirumab with chemotherapeutic agents 
[87].

Inhibitors targeting biomarkers overexpressed in can-
cer cells have gained attention, particularly EGFR. EGFR 
inhibitors like Erlotinib, Afatinib, Gefitinib, and Cetuxi-
mab are commonly used (Table 1). A study administer-
ing Erlotinib to NSCLC patients previously treated with 
chemotherapy revealed a survival advantage with a sig-
nificant improvement in the quality of life [88]. Pancreatic 
carcinoma patients treated with Erlotinib plus gemcitabine 
showed clinically favorable outcomes compared to gem-
citabine alone [89]. The LUX-Lung 5 trial demonstrated 
improved outcomes when patients with resistance to Erlo-
tinib or Gefitinib were treated with Afatinib and Paclitaxel 
[90]. Cetuximab has been observed to enhance survival 
and quality of life in colorectal cancer patients unrespon-
sive to other therapeutic options [91] (Table 1). Targeting 
these key molecules involved in angiogenesis holds prom-
ise for effective cancer treatment.

Targeting proliferation

An exciting anticancer strategy involves impeding the pro-
gression of the cell cycle through the inhibition of cell 
cycle regulatory proteins. CDK inhibitors, including Pal-
bociclib, Ribociclib, and Abemaciclib, have been devel-
oped and are being evaluated for their clinical potentials 
[92]. For instance, Palbociclib, an anti-CDK4/6 inhibitor, 
when combined with letrozole (a hormone-based thera-
peutic agent), demonstrates a delay in disease progression 
beyond what is achieved with letrozole alone in ER+HER2 
metastatic breast cancer (Table 1). However, it’s essential 
to note that the combination treatment does come with 
pronounced myelosuppression [93]. Nevertheless, the 
FDA has approved Palbociclib for treating HER2 and HR-
positive metastasized breast cancer in combination with 
hormonal therapy, highlighting its clinical significance 
[92].

In a similar manner, inhibitors for WEE, such as 
AZD1775 and ZN-c3, have been developed and are currently 
under evaluation in clinical trials [94]. While molecular tar-
geted therapy has facilitated the personalization of medi-
cine, the persistent challenge of drug resistance remains. 
Additionally, it can lead to clonal selection, allowing other 
molecular subtypes to flourish, ultimately resulting in the 
rapid progression of cancer. Addressing these challenges is 
crucial for ensuring the long-term efficacy of targeted pro-
liferation therapies.
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Conclusion

Until now multiple therapeutic strategies have been devised 
to treat cancer. While conventional therapies have served as a 
cornerstone in cancer management, their limitations, such as 
the development of treatment resistance and tumor relapse, 
have paved the way for advanced therapeutic approaches. 
These innovative strategies aim to address the challenges 
posed by traditional treatments. Recognizing the pivotal 
role of the immune system in cancer progression, scientists 
have explored the modulation of immune cells to achieve 
targeted immune responses against circulating cancer cells. 
The inherent heterogeneity of cancer cells and the concept of 
personalized medicine have further propelled the exploration 
of gene and targeted molecular therapies in cancer treat-
ment. The integration of advanced therapies has not only 
enhanced the ability of clinicians to manage cancer effec-
tively but has also provided researchers with the opportunity 
to refine these approaches for optimal anti-cancer solutions. 
Despite inherent shortcomings in each proposed solution, 
the current management of cancer involves the judicious uti-
lization of both traditional and advanced approaches to treat 
various forms of cancer. The inclusion of advanced thera-
pies has shown significant improvements in cancer man-
agement, leading to enhanced survival rates. However, the 
ultimate goal of achieving disease-free survival for all cancer 
patients, irrespective of tumor grade and stage, remains a 
formidable challenge yet to be fully realized.
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