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ABSTRACT Uncertainties in load and solar power forecasting, complex energy storage system (ESS)
constraints, and feedback correction pose challenges for very short-term and short-term hybrid power
plant scheduling. This paper proposes a two-stage mixed-integer linear programming (MILP)-based energy
dispatch engine (EDE). The proposed model ensures optimized scheduling through accurate load and power
forecasting, a feedback correction loop, and a set of constraints governing the state of charge (SOC) and
state of health (SOH) of the ESS. Such an EDE aims to reduce the plant’s operating costs and the usage of
diesel generators (DGs), andminimize the cost of carbon emissions. To test the performance of the developed
model, real-time load and photovoltaic (PV) data were used in conjunction with a PV-DG-ESS hybrid plant.
The system was evaluated against a heuristic control model and a multistage stochastic control model, with
the daily overall electricity and carbon emission costs as evaluation metrics. The test results revealed a 9.2%
and 3.5% decrease in daily costs compared to the heuristic and stochastic methods, respectively, and a 29.4%
decrease in carbon emission costs.

INDEX TERMS Hybrid power plants, energy management system (EMS), energy dispatch engine (EDE),
mixed integer linear programming (MILP), optimization, forecasting.

I. INTRODUCTION
The energy consumption rates have increased exponentially
over the last few decades. Until recently, this energy demand
was met by conventional energy resources (i.e., natural gas
and oil), which severely impact the environment by producing
greenhouse gases [1]. Renewable energy sources (RESs) and
energy storage systems (EESs) in hybrid power plants have
grown tremendously to produce a clean energy footprint.
An energy management system (EMS) can be used to ensure
full utilization of RESs while maximizing plant profits.

EMSs are defined as systems that can achieve effective and
optimal operation of distributed energy resources (DERs) at
a minimum cost, as per the International Electro-Technical
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Commission’s (IEC) standard IEC-61.970 [2]. They gener-
ally consist of three processes: analytics, forecasting, and
optimization. EMSs serve as a link between the DERs,
ESSs, and load, where the EMS controls the charging
and discharging process of the ESSs, manages the use of
fossil-based energy generators, and optimally schedules the
available resources.

An EMS can manage such operations using three main
control schemes: centralized, decentralized, and distributed.
A centralized EMS control consists of multiple local
controllers responsible for collecting data sent to the main
controlling unit through end-to-end communication proto-
cols [3]. Although this method is easier to control, it is
inefficient because the slow response time is proportional to
the deployment area, rendering it infeasible. Decentralized
EMS control involves multiple control units collaborating
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by exchanging data to finalize the global decisions for all
nodes [4]. Distributed EMS control is a mixture of centralized
and decentralized approaches, where local nodes use their
data and data from neighboring nodes to help the centralized
node reach an optimal global solution for the system [5].

Forecasting data is an integral block of EMSs because it
creates a larger set of analyzable data, including electricity
prices, weather data, RESs generation data, and load profiles.
Forecasting in an EMS can be categorized based on the
forecast period [6].

Very short-term forecasts usually range from a few seconds
to half an hour, and are used to performmicro-adjustments on
RESs in response to changes in demand. Short-term forecasts
typically range from half an hour to 24 hours, and are used
for scheduling purposes between RESs and ESSs. Long-term
forecasts range from a day to a week, and are used in price
forecasting and load scheduling [7].

Another method of classifying forecasting algorithms in
EMSs is the model used, where the forecast can either be
based on a linear model, such as time-series, State Space,
autoregressive moving average (ARMA), and others, or a
nonlinear model, including support vector machine (SVM),
Markov reward, stochastic programming, fuzzy logic, convo-
luted neural networks (CNN), and long short-term memory
(LSTM).

Although load forecasting can be performed using previous
data, it is essential to categorize loads to achieve an accurate
forecast. Controllable loads are loads controlled by the
plant operator in proportion to the pool prices. Meanwhile,
shiftable loads can be shifted over time to achieve a better
demand response, such as charging electric vehicles, kitchen
appliances, and heavy machinery [8].

After the data are processed, and necessary data are fore-
casted, the EMS optimizes the use of power by considering
certain constraints. These techniques can be classified into
three categories according to their complexity: intelligent,
metaheuristic, and classical.

Intelligent methods utilize fuzzy logic or neural networks
to optimize the power transfer through a set of weights
attached to variables in a computing network [9]. Although
this method yielded the most optimized results, it was
computationally intensive.

Metaheuristic methods use random search and simulation
algorithms such as Monte Carlo simulations to maximize
or minimize an objective function with or without set
constraints [10]. This method includes, but not limited
to, particle swarm optimization (PSO), genetic algorithm
(GA), and grey-wolf optimization (GWO). Although this
method is not as computationally extensive as the intelligent
one, it requires a considerably longer time to solve the
optimization problem.

Classical methods are characterized by their classi-
cal/mathematical nature, where the objective is to maximize
or minimize an objective function for a set of constraints.
It can be based on initial values and set parameters,
as is the case for linear and nonlinear programming

(LP/NLP) and mixed-integer linear and nonlinear program-
ming (MILP/MINLP), or it is based on an element of ran-
domness added to the model, such as dynamic programming
(DP) and stochastic programming (SP) [11].

To solve the energy dispatch problem, a model predictive
control (MPC)-based rolling optimization with feedback
correction was proposed in [12] and [13]. While the ESS
in [12] and [13] had constraints related to its state of charge
(SOC), it lacked state of health (SOH) constraints, which
would result in substantial overhead losses when using the
model in a realistic system owing to battery degradation.
It is also worth noting that the method proposed in [12]
and [13] does not specify a local forecasting algorithm,
making the forecasted signals unrealistic and impractical
compared with the locally forecasted power and load profiles.
Similarly, the authors in [14] presented a stochastic MPC
model for ESS dispatch. However, they suffer from the same
issues as those in [12] and [13] in terms of forecasting
and constraints. Another approach combines multistage
stochastic optimization and rule-based control [15], where
uncertainties are accounted for. However, the forecasting
method used in [15] is computationally extensive and time-
consuming, making it infeasible for real-time applications.
Themanagement of hybrid renewable energy sources, includ-
ing ESS, was addressed in [16], with improved forecasting
of wind and solar outputs through weather forecasting based
on deep neural networks. However, previous weather data
were not utilized in the training process, and the effect
of forecasting uncertainties, modeled through a Gaussian
distribution curve, on the optimized output, remains untested.
In [17], a discrete-time Markov process model was proposed
to optimally operate a photovoltaic (PV)-ESS plant. The
authors of [18] presented a similar approach for smoothing
RESs power generation. Owing to the use of a statistical
tool, such as the Markov reward process, as well as
ramp rate control algorithms, the predictions made in [17]
and [18] are viable only for short-term forecasting (minutes
at most). A multilayer MPC-based approach, which modeled
the battery and supercapacitor degradation, was considered
in [19]. However, the uncertainties of the forecasted power
and load profiles were not considered and instead modeled
linearly. The time interval was also set too low for real-life
forecasting scenarios, and, as such, the time required to solve
such an optimization problem for the ESSwas higher than the
set time. A smart residential energy management system was
proposed in [20], where an artificial neural network (ANN)
was utilized as a forecaster, and reinforcement learning
(RL) was used to optimize ESS usage and overall ESS
health by adjusting the loads between the grid or ESSs,
as well as to determine the optimal battery action, namely,
charge, discharge, and hold. Although this method reduces
the dependency of the residential load on the grid, the
methods used for such a model are time-consuming for
practical deployment.Moreover, the paper did not consider an
algorithm for diesel generators (DG). The work done in [21]
showed that an LSTM neural network model outperformed
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the supervised feed-forward multilayer perceptron (MLP)
model. In [22], machine learning-based PV power generation
forecasting was explored based on a dataset from Alice
Springs, Australia. The study showed that Random Forest
regression performed better than Linear Regression, Polyno-
mial Regression, Decision Tree Regression, SVM, LSTM,
and MLP.

The results of [21] and [22] could not be compared
because two different LSTM structures were used. In [23],
the authors implemented an EMS with marginal degradation
cost for the ESS. It was shown that implementing SOH
constraints on EMSs increases the system’s, thereby reducing
the overall operational costs of the plant. Table 1 compares
the methodologies of the referenced studies with those of the
proposed designs.

While some of the aforementioned studies considered
hybrid plants, power and load profile forecasting, and
complex yet effective optimization methods, none considered
a PV-DG-ESS hybrid plant with SOH constraints, accurate
and time-feasible forecasting, or feedback correction. This
study presents an Energy Dispatch Engine (EDE) that can
overcome the previously stated research gap.

The proposed EDE model is a two-step controller, where
short-term scheduling occurs during the first step, and
corrections to the proposed schedule in the very short term
occur during the second step. As shown in Table 1, this
paper’s contributions can be summarized as follows:

• A real-time two-stage MILP-based EDE governs a
PV-DG-ESS hybrid plant utilizing accurate load, RES
power, and cost forecasts using an LSTM neural
network.

• Incorporating SOH and SOC constraints to reduce
battery degradation and carbon emission cost constraints
to reduce the carbon footprint.

• Employ active scheduling corrections during very
short-term predictions using a feedback correction loop.

• The system was evaluated by benchmarking it against
multiple systems [15].

The remainder of this paper is organized as follows: Section II
details the methodology and modeling of the proposed EDE;
Section III presents the system analysis and simulation
results, and Section IV concludes the paper.

II. ENERGY DISPATCH ENGINE
A. DESIGN METHODOLOGY
An energy-dispatch-engine in operation is shown in Fig. 1.
Typically, the ESS, RES, and grid are connected through
a DC bus using DC–DC and AC–DC converters. In this
configuration, the ESS can be charged through the RES or
the grid. The ESS can also discharge power to loads or the
grid.

The proposed EDE aims to maximize the profits of hybrid
plants and the use of RESs and ESSs. The data analysis
stage acquires data from the ESS (SoC, SoH, etc.) and diesel
generators (generated power, aux. power), grid (past load data
and profile), and RES (PV power) stations.

FIGURE 1. EDE-controlled hybrid plant.

The data are then bundled into data packets and prepared
for forecasting and optimization. The optimal operation
of the EDE follows three main processes found in any
EMS, as illustrated in Fig. 1. As the accuracy of the
EMS depends on the accuracy of the load and RES profile
forecasting, the proposed design focuses heavily on the
accuracy of the forecasted data. The forecasting errors are
inversely proportional to the data intervals [24], [25]. As such,
the forecasted data consists of 24-hour long data with
15 mins intervals. Forecasting updates, accurate load data,
and accurate clean energy data ensure the optimality of the
proposed system. Accordingly, multiple forecasting methods
were considered. The EDE utilizes the entire length of the
forecasted data (96 data points) for the long-term planning of
RES and ESS use while performing real-time optimizations
depending on the current load and RES power profiles.

To account for uncertainties and errors due to forecasting,
optimized scheduling is constantly updated at each sampling
time using more accurate forecasts. MILP was utilized to
determine the optimal values for a given set of forecasts.
As shown in Fig. 1, the system uses forecast and real loads,
PV, and cost data.

B. FORECASTING
The data used to train and forecast the load and RES power
profiles were gathered from Pecan Street data, used in [15],
consisting of 1-minute PV power data and load data for
75 homes across the United States of America in 2018. The
data were sampled down from its time-series form (size 2×n,
where n is the time series length) to 15-minute intervals
and transformed into supervised-learning-appropriate data.
The new dataset consists of 18 data points/features for the
input, which break down into a day stamp (1-31), a month
stamp (1-12), and 16 consecutive points in the PV/load time
series, and 96 data points (representing 24 h sampled at
15 min) for the output, which is consecutive to the input.
This arrangement, along with the large size of the data
samples, ensures accurate day-to-day predictions considering
the uncertainties and variations in load and PV generation.
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TABLE 1. EMS Methodology Comparison.

FIGURE 2. Forecasting testing algorithm.

All chosen algorithms were evaluated and compared based
on their root mean square error (RMSE) values. A flowchart
of the test is shown in Fig. 2. The test included training,
testing, and validating each forecasting method multiple
times using different hyperparameters over a 10-fold cross-
validation to cover all seasons. The data were split using
an 80:20 ratio for training and testing. The 10-fold cross-
validation ensures that the trained model can accurately
forecast data regardless of the time of year. The total
number of combinations j was 116675000, and the tests were
performed separately for both the PV and load data.

The SKlearn, SKforecast, and Keras libraries were used to
construct the different algorithms. Table 2 summarizes the
chosen ML methods and the total number of optimization
iterations. Table 2 also shows the RMSE% results for all
methods, whereas Figs. 3 and 4 show the top three test results
for PV generation and load forecasting, respectively.

FIGURE 3. Forecasted and real PV results.

TABLE 2. Forecasting Methods and Results.

Table 2 lists the results for the chosen input size of 18 points
(4 h from the past data). This number was chosen because it
yielded the best (lowest RMSE%) among the values. The best
RMSE results were obtained using a stacked unidirectional
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FIGURE 4. Forecasted and real load results.

LSTM architecture. This is because LSTM networks are
structured using memory cells instead of neurons.

Single-layer LSTM models are simple and generally suit-
able for small time-series problems. A stacked bidirectional
LSTM model would have performed better, as it captures
dependencies in both the past and the future while still being
capable of recognizing complex representations of the input
data. As such, to achieve accurate results without being
computationally extensive, a stacked unidirectional LSTM
model was used, due to its ability to capture more complex
patterns, such as those found in load and PV datasets.
However, the proposed model lacks the ability to retain
dependencies in both the past and the future. Mathematically,
the proposed LSTM cells can be modeled as

ft = σ (Uf xt +WfHt−1 + bf ) (1)

ii = σ (Uixt +WiHt−1 + bi) (2)

ui = tanh(Uuxt +WuHt−1 + bu) (3)

ct = (ft × Ct−1) + (it × ut) (4)

σt = σ (Uoxt +WoHt−1 + bo) (5)

ht = ot × tanh (ct) (6)

where ct is the memory cell, ft is the forget gate, ot is the
output gate, xt represents the input data, ht is the hidden layer
state, U and W are the matrix weights, b is the bias, and σ

is the sigmoid function. Fig. 5 shows the developed LSTM
architecture consisting of three stacked LSTM Layers. The
significance of the bias b is to prevent overfitting, as well as
improve the proposed models’ ability to generalize new data.
Adjusting the bias controls the amount of preserved load and
PV data, which is useful for learning long-term dependencies
and making the model more robust toward noise and data
anomalies. This resulted in more accurate forecasts.

By contrast, the CNNmodel consists of three hidden layers
using dilated convolution techniques. This was performed to
accommodate the 1-D nature of the input data.

This result was also reflected in the CNN and LSTM
results, where the LSTM results were 82% lower than the

FIGURE 5. Forecasted and real load results.

CNN results (PV forecasting) and 55% lower than the CNN
results (load forecasting). It can also be observed that the load
forecasting results were less accurate than the PV forecasting
results. This is because of the shape of both the signals, where
the PV data are smooth and have a small rate of change (fewer
sharp changes), unlike the load data. These results match
those in [14] and [20]. The cost was forecasted using the same
LSTM algorithm.

C. PROBLEM FORMULATION
As stated, this energy dispatch engine aims to maximize
the plant’s profit and use RESs. Each element related to
the previous statement should be formalized to achieve
such results, and the objective stated above is equivalent to
minimizing the plant’s operating cost, using non-renewable
energy resources, and the cost of emissions. In other words,
the objective function JTotalcan be expressed as

JTotal =JESS + JGrid + JDG (7)

where JESS, JGrid, and JDG are the cost functions for the ESS,
grid, and DG. The weightage of different cost functions here
is equal, as the model’s main purpose is to minimize the
plants’ operating cost, and all the cost functions in (18) fall
into the same objective and are equally important.
JESS is modeled as the costs of the purchased power minus

the sold power concerning the charging and discharging
efficiencies for each time segment 1t as in

JESS =

t+N∑
t=1

1t

(
Cpur (t) ηchESSP

ch
ESS (t) −

Csold (t)PdisESS (t)

ηdisESS

)
(8)

where Cpur is the cost of buying power, Csold is the cost
of selling power, ηchESS and ηdisESS are the ESS’s charging
and discharging efficiencies, respectively, and PchESS (t) and
PdisESS (t) are the charged and discharged ESS powers,
respectively. t + N represents the cumulative sum for any
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given time t, where N is the length of the forecasted rolling
horizon.
JDG is modeled as the summation of the cost of fuel

required to produce sufficient energy to power the grid
loads and the cost of the associated emissions. The primary
greenhouse gases emitted by diesel fuel are carbon dioxide
(CO2), methane (CH4), and nitrous oxide (N2O). As CO2
represents 99.4% of the total emissions, the remaining gases
are neglected [23]. By knowing the gas masses associated
with burning diesel fuel, the cost of emissions can be
expressed as a function of fuel consumption, such as

JDG =

t+N∑
t=1

1t

(
PGenDG (t)F

Pmax
DG

(CFuel + CEmαCO2)

)
(9)

wherePGenDG (t) is the DG-generated power, which is defined as
the difference between the grids’ purchased and sold power
(Ppur (t) and Psold (t), respectively), Pmax

DG is the maximum
power produced by the diesel generator, CFuel is the cost of
fuel per liter, αCO2 and CEm are the gas mass associated with
burning fuel and the cost of said gases, respectively, and F is
the amount of diesel used per kWh.
JGrid is modeled as the cost of purchased power minus the

cost of sold power for each time segment.

JGrid =

∑t+N

t=1
1t
(
Cpur (t)Ppur (t) − Csold (t)Psold (t)

)
(10)

The objective function in (7) can then be simplified as

JTotal =

t+N∑
t=1

1t


Cpur (t) ηchESSP

ch
ESS (t) −

Csold(t)PdisESS(t)

ηdisESS
+

(Ppur(t)−Psold(t))F
Pmax
DG

(CFuel + CEmαCO2) +

Cpur(t)Ppur (t) − Csold(t)Psold (t)


(11)

It can be noticed that there are four main variables in the
objective function, namely Ppur (t), Psold (t), PchESS (t), and
PdisESS (t). Accordingly, the objective function can be rewritten
as

JTotal =

t+N∑
t=1

1t


PchESS (t)

(
Cpur (t) ηchESS

)
+Ppur (t)

(
F(CFuel+CEmαCO2)

Pmax
DG

+Cpur (t)
)

−PdisESS (t)
(
Csold(t)
ηdisESS

)
−Psold (t)

(
F(CFuel+CEmαCO2)

Pmax
DG

+Csold (t)
)


(12)

The proposed cost function is subject to multiple con-
straints governing the system’s behavior. The first constraint
set is the power balance constraint as

PDG (t) + PPV (t) + PdisESS (t) + Ppur (t)

− PchESS (t) − Psold (t) − PLoad (t) = 0 (13)

where PDG (t) is the measured generated power, PPV (t) is
the forecasted solar power, andPLoad (t) is the forecasted load
power. This is set to ensure that no excess power is generated.

A second constraint is set to balance the SOC of the ESS
during charging and discharging cycles as

SOC (t) = SOC (t − 1) +

1t

(
ηchESSP

ch
ESS (t) −

PdisESS(t)

ηdisESS

)
QESSSOH (t)

(14)

SOH (t) = αSOC(t − 1) + β (15)

where SOC (t) and SOH (t) are the current state of charge
and the state of health, respectively. This constraint ensures
that the next SOC state is governed by the change in SOC
with respect to time.

The values of α and β are set to be the constants of a linear
approximator of the SOH using the SOC and the Depth of
Discharge [23], [26], [27], and QESS is the maximum (rated)
capacity of the ESS.

The third set of constraints was added to control the
behavior of the charge/discharge profile of the ESS as

ESScon =



x.PchESS−min ≤ PchESS (t) ≤ x.PchESS−max

y.PdisESS−min ≤ PdisESS (t) ≤ y.PdisESS−max

SOCmin ≤ SOC (t) ≤ SOCmax

SOHmin ≤ SOH (t) ≤ SOHmax

x, y ∈ {0, 1}
y = 1 − x

(16)

where PchESS−min, P
ch
ESS−max, P

dis
ESS−min, and PdisESS−max, are

the maximum/minimum bounds of the ESS’s charging
and discharging power, respectively, and SOCmin, SOCmax,
SOHmin, and SOHmax, are the maximum/minimum bounds of
the SOC and SOH, respectively. The SOC constraint ensures
minimum and maximum reserve levels, while the charging
and discharging power constraints ensure the transmission
safety of the ESS. The variables x and y are considered
to be binary (integer) variables responsible for the either/or
behavior of the charging/discharging cycles of the ESS.
The final set of constraints is related to the grid, where

the grid power and the diesel generator power are bounded
between maximum and minimum values to ensure the
transmission safety of the grid, as

Gridcon =

{
0 ≤ PDG (t) ≤ Pmax

DG

Pmin
Grid ≤ Ppur (t) − Psold (t) ≤ Pmax

Grid
(17)

Equation (18) represents the final optimization problem.

 |min |

Ppur (t),Psold (t),PchESSS (t),P
dls
ESSS (t)

JTotal

s.t (13) − (17)
(18)

D. MIXED-INTEGER LINEAR PROGRAMMING
Mixed-integer linear programming is a mathematical opti-
mization tool that finds the best possible solution for a given
objective function with respect to a set of constraints. MILP
problems can be solved using three different methods: tree
search, cutting plane, and feasibility pump [28].
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FIGURE 6. System Block Diagram With Optimization Algorithm Flowchart.

Because the proposed design utilizes the Gurbori opti-
mization tool, the chosen MILP method is a tree search [29]
that consists of three main stages: (1) the branching stage,
where the problem is divided into two problems using a
randomly chosen variable; (2) the bounding stage, where
the branched problem is solved by finding the most optimal
value for the chosen variable; and (3) the pruning stage,
in which tree branching stops if the developed branch is
infeasible [30].

The problem found in (18) was formulated based onMILP,
and as such, it was written in the general MILP minimization
format. The only integers are x and y, whereas Ppur (t),
Psold (t), PchESS (t), and PdisESS (t)are real variables.

MILP was chosen as the optimization method because of
its high accuracy, considering its computational feasibility
compared to other intelligent, metaheuristic, and classical
methods [7].

E. FEEDBACK CORRECTION LOOP
To accommodate the forecasting errors and the non-uniform
nature of errors in the forecasted data, a new 24-hour
optimal schedule will be generated every 15 minutes. For
any future values (t > 0), those newly generated schedules
will not change. However, when the current time reaches a
previously-scheduled time (or t = 0), real-time values of
load, PV power, and SOC (PLoad (0) ,PPV (0) ,and SOC (0),
respectively) will be the inputs of a parallel optimization loop
that solves the same problem found in (18).

This optimization loop will decide the real-time (or
t = 0) optimal sold and purchased power (PSold (t) and
PPur (t) respectively), as well as the optimal ESS charge
and discharge power (PchESS (t) and PdisESS (t) respectively).
This optimization loop’s outputs are then subtracted from
the previous optimized results from forecasted values, and
corrections to the rolling horizon are made. This ensures

TABLE 3. Simulation Parameters.

accurate corrections to the scheduled rolling horizon to
accommodate any sudden changes or deviations from the
forecasted values.

III. SIMULATION RESULTS AND ANALYSIS
A. SIMULATION PARAMETERS
A Python library (CVXOPT) was used to solve the opti-
mization problem. The system was tested and benchmarked
against a heuristic model using the same parameters and a
stochastic EMS model found in [15]. The heuristic model is
a local search heuristic model, which follows a certain set of
rules, and is similar to the heuristic model found in [15]. The
ESS, in this case, charges when there is higher PV power than
the load or at off-peak times, and discharges when the PV
power is no longer sufficient.

The cost data were real-time sell/buy electricity pool
prices sampled at 15-minute intervals. Table 3 presents the
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TABLE 4. Optimization Results.

FIGURE 7. PV and load test data.

simulation parameters used in this study and the hybrid
plants’ parameters. The simulation uses real-time load, PV,
and cost data, from the same Pecan Street Data dataset, for
a later year. As such, the PV system is rated for 80 kW, the
ESS has a maximum capacity of 100 kWh, and the DG can
produce 100 kW.

Fig. 6 shows a general block diagram of the proposed
algorithm and the optimization algorithm process. As shown
in Fig. 6, the proposed model supports feedback correction in
which the first step of the prediction horizon changes with
time. This will help reduce the scheduling errors resulting
from forecasting errors. It is also worth mentioning that
forecaster training was periodically performed.

B. RESULTS AND ANALYSIS
Fig. 7–10 show the test results for both models. Fig. 7
represents the output of the forecasting stage, showing
the forecasted PV and load profiles for the next 24-hours
segment. In this case, the forecasted data starts and ends at
midnight on two different days.

Fig. 8 shows the SOC% of the ESS throughout the day.
It can be observed that the heuristic method utilizes the
ESS only after sunset. This behavior is expected to change
when the initial SOC% of the system is low, as it will
only charge during off-peak hours and discharge during peak
hours, leading to underutilization of the ESS. However, the

FIGURE 8. ESS SOC % comparison.

FIGURE 9. ESS power comparison.

proposed EMS fully utilizes the ESS during the day in terms
of current and future power needs.

Fig. 9 shows the power flow of the ESS unit for both
algorithms. As shown in Figs. 8 and 9, the EDE utilized
an ESS with higher optimality than the heuristic method,
where it was charged and discharged considering all given
constraints and future power needs. By contrast, the heuristic
system only charged the system when there was an influx of
power and discharged it after sunset.

Fig. 10 shows the power consumed by or supplied to the
grid. In the heuristic algorithm, the net grid power is positive
and only experiences a dip when the PV system is active
and ESS discharges. Unlike the heuristic algorithm, the net
grid power in the proposed EDE algorithm experienced subtle
fluctuations within the maximum and minimum power limits
of the grid.

It can also be noticed that the net negative grid power in the
proposed EDE is larger than the net negative grid power in the
heuristic method (214.5 kWh and 149.4 kWh, respectively).
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FIGURE 10. Grid power comparison.

This is because of ESS utilization by the proposed EDE.
The system evaluation was related to the daily operational
electricity and carbon emission costs, and the results are
presented in Table 4. The rolling price of the heuristic method
was higher than its EMS counterpart except during the sunset
period.

The 24-hour electricity cost was 42.91$/24h for the EMS
algorithm, 9.2% less than the heuristic method cost calculated
at 47.27$/24h. Similarly, the daily CO2 emission cost for the
proposed EDE is 6.55$/24h, which is 29.4% less than the
heuristic method CO2 emission cost at 9.28$/24h.
The test results were also compared with the optimization

method used in [15] with no daily CO2 emission cost
modification. Table 4 also lists the daily operational cost for
the stochastic EMS in [15] as 44.35$/24h, 3.5% higher than
the EDE optimized cost.

IV. CONCLUSION
Complicated ESS limitations, feedback correction, and load
and solar power forecasting errors cause difficulties in the
very short-term and short-term scheduling of hybrid plants.
A two-stage MILP-based EDE was proposed in this study.
The proposed model uses precise load and power forecasts,
a feedback correction loop, and a set of constraints to
control the SOC and SOH of the ESS and guarantee near-
optimal scheduling. Such an EDE aims to reduce DG use
and plant running expenses. Real-time load and PV data from
75 households were gathered and utilized with a PV-DG-ESS
hybrid plant to assess the performance of the created model.
The overall daily cost of the system was used as a metric
to evaluate the system against a heuristic control model and
multistage stochastic control model. Due to the forecasting
technique, issue formulation, and feedback correction, the
test results showed a 9.2% reduction in daily expenditures and
a 29.4% reduction in CO2 emission costs compared with the
heuristic control approach.
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