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Abstract The Deterministic Topology Optimization (DTO) model generates a single solution for a

given design space, while the Reliability-Based Topology Optimization (RBTO) model provides

several reliability-based topology layouts with high performance levels. The objective of this work

is to develop two approaches, which can lead to two new topology categories. The two alternative

approaches; namely Objective-Based Inverse Optimum Safety Factor (IOSF) and Performance-

Based IOSF, are developed based on the IOSF. When designing a structure, the uncertainty in

the input parameters influences the output parameters and thus a sensitivity analysis was carried

out for the developed approaches. The analysis shows the influence of each parameter on the struc-

ture performance. Two numerical applications are presented to show the effectiveness of the devel-

oped approaches. When considering a certain reliability level, unlike the DTO, the RBTO results in

different configurations. Unlike the results of the previous studies, the consideration of the geom-

etry uncertainty reveals that the structural volume increases as the reliability level increases. Addi-

tionally, the developed approaches can be considered as two generative tools that can produce two

different categories/families of solutions.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

The objective of the topology optimization is to answer one of

the first questions of the structure nature to fulfill the necessary
technical specifications. This way the problem is to determine
the structure’s general characteristics, and to make that initial

choice as automatically as possible [1]. Furthermore, in topol-
ogy optimization, both macroscopic structures and micro-
scopic materials can be treated [2].

In the literature, two topology optimization models can be
generally distinguished: Deterministic Topology Optimization
(DTO) and Reliability-Based Topology Optimization (RBTO).

In the DTO model, a single configuration for a given space can
be determined [3], while using the RBTO model, several config-
urations can be found with different advantages. This enables
the selection of the best resulting topology that fulfills the

required technical specifications. The structural weight of the
resulting configurations obtained by the RBTO model is min-
imized compared to the DTO model [4-8]. In addition to that,
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when using the RBTO model and even for the same structural
weight, the obtained configuration is found more reliable than
the deterministic one [9]. The different RBTO works can be

classified according to two points of view: topology optimiza-
tion and reliability analysis. The interested reader can find a
detailed review in Kharmanda et al. [10]. It has been found

that the different developments from a point of view ’topology
optimization’ seem to be interesting for topology designers,
because it provides several reliability-based structures with

respect to the reliability index changes. It leads to different lay-
outs, while the developments from a point of view ’reliability
analysis’ leads to the same layout structures with different den-
sities that have no sense for the following optimization stages

[11-13,15-17,28].
To model the uncertainty in the topology optimization

from a point of view ’topology optimization’, Kharmanda

and Olhoff [4] were the first researches who introduced reliabil-
ity constraints into deterministic topology optimization prob-
lems. The algorithm of their proposed Gradient-Based

Method (GBM) starts with the sensitivity evaluation with
respect to the different variables to identify the random vari-
ables that have large influence on the objective function. The

importance of the RBTO model is to provide structures that
are more reliable than those generated by DTO (see also [5-
7]). After that, Patel and Choi [18] applied probabilistic neural
networks in the case of highly nonlinear problems. Next, Wang

et al. [19] developed a non-probabilistic approach for detailed
design of continuum structures, in which the unknown But
Bounded Uncertainties (BBU) that exist in material as well

as external loads are simultaneously considered. Recently, in
Kharmanda et al. [10], the Inverse Optimum Safety Factor
(IOSF) was proposed to deal with the modal analysis where

there is no applied load and the integration of topology opti-
mization into free vibrated structures may lead to unrealistic
topologies. The application of the IOSF method was limited

to consider the parameterization only on the geometry of the
optimization domain.

To perform the RBTO problems, many Reliability-Based
Design Optimization (RBDO) techniques can be considered.

Several RBDO methods have been developed regarding to
their application fields [20]. For example, the Optimum
Safety Factor (OSF) method has been simply implemented

considering two main stages [21]. The first stage is to identify
the failure point using a simple optimization procedure, while
in the second stage, the OSF formulations are used to evalu-

ate the optimum solution. This method has shown its effi-
ciency on the nonlinear distribution cases [22]. Due to its
simple implementation, the OSF method has shown its effi-
ciency on several industrial applications by other researchers

[23,24]. The OSF is developed for detailed design stage (for
example sizing and shape optimization). The integration of
reliability concept into sizing and shape optimization is easy

since all of them are quantitative of nature. However, the
topology optimization which belongs to the conceptual
design stage, is not quantitative of nature. So, the integration

of reliability concept into topology optimization was a big
challenge [4] and needs special procedures processes. This
way the RBTO was previously performed using the GBM

which is a special optimization technique [4-7] where the limit
state function was modeled as a simple linear combination of
random variables and the structural compliance was consid-
ered as an objective function. This simplification was consid-
ered by several researchers as a serious drawback when
dealing with realistic failure probability problem [25]. In the

work of Mozumder et al. [25], when considering the struc-
tural volume as an objective function, the resulting
reliability-based topologies had the same geometry descrip-

tions with different dimensions, while the method proposed
in this paper leads to different geometry descriptions, which
represents a significant design tool to the topology designers.

Accordingly, there is a strong need to overcome these draw-
backs with the consideration of the nonlinearity of the failure
probability problems.

In this work, the basic idea of the OSF method is consid-

ered to develop two alternative IOSF approaches in order to
overcome the mentioned drawbacks and to provide the best
coupling between reliability analysis and topology optimiza-

tion which are different of nature (quantitative and non-
quantitative). Therefore, two alternative IOSF approaches
are developed to mitigate the drawbacks of the previous

research. These new approaches help produce two cate-
gories/families of solutionsthat can give many possibilities
for the designers and helps them to select the best configura-

tion that can give the most advantageous solution for their
problem. The resulting topology layouts are controlled by a
given design space (loading, material, geometry . . .). Two
numerical applications (2D & 3D) are detailed where the

topology optimization problem is modeled in two different
ways. In the first application, the study is carried out on a
simple MBB (Messerschmitt-Bölkow-Blohm) beam with two

holes considering the uncertainty on the input parameters
(loading and material properties) and the output parameters
(volume decrease ratio or compliance increase ratio). In the

second application, the geometry uncertainty is added to
show its effect on the different functions (compliance and vol-
ume). The studied 3D case gives the opportunity to apply the

uncertainty on several geometrical parameters without affect-
ing the structure performance, while applying the uncertainty
of the dimensions of the MBB beam or its two holes can
affect the boundary conditions and then the structure

performance.

2. Materials and methods

2.1. Deterministic topology optimization (DTO) methods

In this work, the topology optimization problem is solved
using two different methods: The first method is to minimize
the compliance, subject to a target decrease ratio of the struc-

tural volume Vf. The DTO problem can be mathematically for-

mulated as follows:

min : CðxÞ
s:t: : VðxÞ

V0 6 Vf

ð1Þ

where CðxÞ is the compliance considering the material den-
sities in each element as optimization variables which belong to

the interval [0,1]. V0and VðxÞ are the initial- and current struc-
tural volume values. The second method is to minimize the

structural volume, subject to a target increase ratio of the com-
pliance Cf. The DTO problem can be mathematically formu-

lated as follows:
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min : VðxÞ
s:t: : CðxÞ

C0 6 1þ Cf

ð2Þ

where VðxÞ is the structural volume considering the mate-
rial densities in each element as optimization variables which

belong to the interval [0,1]. C0and CðxÞ are the initial- and cur-
rent compliance values. Formulations 1 and 2 are basic forms

and can be used with several topology optimization methods
such as SIMP (Solid Isotropic Microstructure with Penalty)
[26].

2.2. Reliability methods

To evaluate the reliability level, the First and the Second Order
Reliability Methods FORM/SORM have been proposed. Both

of these methods are important in structural reliability applica-
tion, especially for risk assessment [14,27]. However, in this
work, the reliability concept is only used at the conceptual

design stage which is represented by the topology optimization
procedure. So, FORM is used in a simple way to be integrated
with topology optimization.

In order to control the resulting topologies, a reliability
indexb is introduced with a normalized vector u [4]. Fig. 1
shows the transformation between the random variables y in
the physical space (Fig. 1a) and the normalized vector u in

the normalized space (Fig. 1b). The general evaluation of the
reliability index can be realized by the following optimization
problem:

b ¼ mindðuÞ
s:t : HðuÞ ¼ 0

ð3Þ

where the distance dðuÞis given by:

dðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ :::þ u2n

q
ð4Þ

The optimum value of b (minimum distance) corresponds
to the Most Probable failure Point (MPP). The evaluation of
the reliability index is carried out by FORM (First Order Reli-

ability Method).
Fig. 1 Transformation between a) the phy
The effect of the reliability index values plays an important
role in the conceptual design stage. The validation of this effect
is recently studied by Kharmanda et al. [10]. In general, the

nuclear and spatial applications necessitate a very small value
of failure probability, the failure probability has to be:

Pf 2 ½10�6 � 10�8� which corresponds to a reliability index

b 2 ½4:75� 5:6�, while in structural engineering, the failure

probability has to be: Pf 2 ½10�3 � 10�5� which corresponds

to a reliability index b 2 ½3� 4:25�. The interested reader can
refer to a detailed study of target safety indices in [29,30].

2.3. Reliability-Based topology optimization (RBTO) methods

In general, there is a big difference between the reliability and

the reliability-based optimization approaches. When dealing
with a simple reliability evaluation, direct algorithms can be
used, while the reliability-based optimization (RBDO &
RBTO) procedures are generally composed of two nested

problems. The use of classical reliability algorithms may lead
to several difficulties such as high computing time and conver-
gence stability [20,21] Therefore, it is the objective to devel-

oped new efficient methods to be suitable for this kind of
reliability-based optimization problems.

In our previous works [4-8], a decoupled RBTO technique

so-called Gradient-Based Method (GBM) had been developed
where the reliable design was achieved by implementing the
reliability analysis at the beginning of the optimization pro-
cess. The advantage of the GBM is to provide several solutions

with respect to the reliability index values compared to the
developments from a point of view ’reliability analysis’
[25,31]. In this paper, two different strategies based on a sensi-

tivity study are developed.

2.3.1. RBTO by Objective-Based IOSF Approach

The previous OSF method can efficiently reduce the size of the

RBDO problem using the sensitivities of the limit state with
respect to all the structure’s variables, especially when the sen-
sitivity can be evaluated analytically [32]. The basic idea of the

classical OSF method used in RBDO applications is to find the
sical space and b) the normalized space.
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failure point and next the optimum solution using the OSF for-
mulations [23]. The RBTO problem aims to minimize the com-
pliance, subject to a target decrease ratio of the structural

volume Vf and the reliability constraint. The RBTO problem

can be mathematically formulated as follows:

min : CðxÞ
s:t: : VðxÞ

V0 6 Vf

and : b P bt

ð5Þ

where bt is the target (required) reliability index to be
respected. The failure is related to the compliance which is con-
sidered as an objective function. Thus, the sensitivity can be
estimated considering the objective function as a failure crite-

rion. This way the optimum value of the normalized vector
can be written in the following form:

u�i ¼ bt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@F
@yi

���
���

Pn
j¼1

@F
@yj

���
���

vuuuut ð6Þ

where the sign of ± depends on the sign of the sensitivity of

the objective function with respect to random vector yi, i.e.,

@F

@yi
> 0 () u�i > 0 and

@F

@yi
< 0 () u�i < 0 ; i ¼ 1; :::; n ð7Þ

where F is the objective function represented by the compli-
ance. This method takes into account both concepts of the
OSF and failure criterion. When the failure criterion is treated

as an objective function, the Objective-Based IOSF Approach
can be implemented. However, when the failure criterion is
treated as a performance function, the method can be called

Performance-Based IOSF Approach, which is presented in
the next section.

2.3.2. RBTO by Performance-Based IOSF Approach

The different RBDO developments of the OSF method for lin-
ear and nonlinear distribution laws are carried out considering
the structural reliability philosophy [23]. These developments

fit with the basic idea of this proposed method where the com-
pliance is considered as a performance function (constraint
function). Thus, the RBTO problem aims to minimize the
structural volume subject to the compliance constraint and

the reliability constraint. The RBTO problem can be mathe-
matically formulated as follows:

min : VðxÞ
s:t: : CðxÞ

C0 6 1þ Cf

and : b P bt

ð8Þ

The optimum value of the normalized vector can be written
in the following form:

u�i ¼ bt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@G
@yi

���
���

Pn
j¼1

@G
@yj

���
���

vuuuut ð9Þ

where the sign of ± depends on the sign of the sensitivity of
the limit state function with respect to random vector yi, i.e.,

@G

@yi
> 0 () u�i > 0 and

@G

@yi
< 0 () u�i < 0 ; i ¼ 1; :::; n ð10Þ
where G is the objective function represented by the compli-
ance. This method treated the compliance as a performance
function. The main difference between this method and the

classical OSF in RBDO model is the sign of the derivative.
Both proposed methods provide different solutions.

2.4. Distribution laws

The OSF formulation has been developed considering the most
common distribution laws in the RBDO studies (normal, log-

normal, uniform, Weibull and Gumbel). In this work, the nor-
mal distribution law is considered and hence the random
variable vector follows the normal distribution law. Thus,

the safety factor can be written as follows [22,33,34]:

Sfi ¼ 1þ ci � u�i ð11Þ
where the variance coefficient ci relates the mean mi and

standard-deviation ri by the following expression:

ci ¼ ri=mi ð12Þ
In both developed approaches, the starting point is consid-

ered as a failure point P�
y, and next a reliability-based topology

P�
x is found to be more reliable than the first solution P�

y con-

sidering a required reliability level bt. So the failure point P�
y is

found by a DTO procedure and the reliability-based topologies
P�

x are found using the both developed approaches. In this

work, the target reliability indices are: bt ¼ 3 which corre-
sponds to the first point of the safety interval (b 2 ½3� 4:25�)
and bt ¼ 3:8 which is the used target reliability index for many

structural engineering applications [30].

3. Results and discussion

3.1. MBB beam with two holes (2D model)

In this case, the topology optimization is applied to a 2D MBB
beam with two holes. Here, two studied optimization problems
are considered: The first optimization problem is to minimize
the structural compliance CðxÞ subject to the constraint of

the volume decrease ratio Vf (Eqs (1) and (5)). While, the sec-

ond optimization problem is to minimize the structural volume
VðxÞ subject the constraint of the compliance increase ratio Cf

(Eqs (2) and (8)). It is the objective to alert between the com-
pliance and the volume functions as objective and performance
functions.

The objective is to find the best distribution of material con-
sidering three studies: DTO and RBTO using Objective-Based
IOSF approach, and RBTO using Performance-Based IOSF
approach.

The initial domain is represented by a rectangle (1� 0:4m)
with two holes where the diameter is: 0.16 m. All other dimen-
sions are shown in Fig. 2 in meters. The material of this beam

is steel, which has a Young’s modulus E ¼ 200000(MPa) and a
Poisson’s ratio m ¼ 0:3. The material behavior is linear elastic
isotropic. The applied force is: F= 1000 N. The boundary

conditions are shown in Fig. 2. The number of elements can
affect the resulting topology. In Kharmanda and Olhoff [4],
the randomness was considered on the number of elements

in the horizontal and vertical directions. However, in this
work, a free mesh technique called Smart-Mesh is used. This



Fig. 2 Initial configuration of the studied 2D MBB beam with

two holes.

Fig. 3 Resulting 2D topologies when considering the compliance

as an objective function: a) DTO configuration, b) RBTO

configuration for bt ¼ 3, and c) RBTO configuration for bt ¼ 3:8.
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technique is implemented in ANSYS and help to improve the

result quality.
To perform the RBTO using both Objective-Based and

Performance-Based IOSF Approaches, a sensitivity evaluation

is required on the starting point configuration using the central
finite difference approach as an accurate tool for sensitivity
analysis [35]. Two categories of solutions are distinguished:

3.1.1. First category of solutions for the studied MBB beam with
two holes

The starting configuration is considered to be the failure point
where the problem is to minimize the compliance subject to the

volume constraint for the DTO (Eq. (1)) and also the reliability
constraint for the RBTO (Eq. (5)). The used method for this
kind of topology optimization problems, is the Optimality Cri-

teria (OC) implemented in ANSYS Software.
Fig. 3a, b and c show the resulting topologies when consid-

ering the compliance as an objective function for DTO model

(failure point P�
y) and for RBTO models using Objective-Based

IOSF approach when the target reliability indices are: bt ¼ 3,
and bt ¼ 3:8. These target values are selected according to dif-
ferent structural engineering application [30]. In fact the lay-

outs change when the reliability index value increases, in
which some parts that colored in red and represent the full
material distribution start to disappear. For example, the con-

figuration around the two holes is found different (see Fig. 3a,
b, and c). When considering the compliance as an objective
function, the increase of the reliability index values leads to
change of resulting reliability-based topologies which confirm

our previous findings [4-7].
The corresponding resulting compliances are shown in

Table 1 for the initial configuration C0 and the optimal one
C�. The used number of element for optimization is 3855 non-
linear elements (PLANE82, 8-node). The uncertainty is consid-

ered on the material properties (E and m), the loading (F) and
the volume decrease ratio (Vf). The four random variables are

then: F, E, m and Vf. The standard deviations are assumed to be

proportional to the starting values (P�
y) presented in Table 1,

i.e. ri ¼ cimi (Eq. (12)) where ci ¼ 0:1.
Table 1 presents the input and output parameters of the

DTO and RBTO studies for the first category of solutions
for the studied MBB beam with two holes. It is shown for

the RBTO results that the reduction of the structural volume
is almost 10%, while the increase of the structural compliance
is almost 16%.

As shown in Fig. 3, the resulting reliability-based topologies

can be modeled with different layouts for the next stage (de-
tailed design). When increasing the reliability index value, dif-
ferent topologies are obtained (Fig. 3b and c). This

observation is numerically supported by the decrease of the
structural volume VðxÞ, when increasing the reliability index
values (see Table 1).

Fig. 4 shows the sensitivity magnitude value of the compli-
ance that is considered as an objective function. The figure
shows that the effect of the volume decrease ratio is more than
three times compared to the effect of force. It is found that the

volume decrease ratio Vf has the biggest effect on the resulting

compliance, while the Poisson’s ratio has no influence on the
resulting compliance as shown in Fig. 4.

3.1.2. Second category of solutions for the studied MBB beam

with two holes

The starting configuration is considered to be the failure point
where the problem is to minimize the volume subject to the

compliance constraint for the DTO (Eq. (2)) and also the reli-
ability constraint for the RBTO (Eq. (8)). The used method for
this kind of topology optimization problems, is the Sequential
Convex Programming (SCP) implemented in ANSYS

Software.
Fig. 5a, b and c show the resulting topologies when consid-

ering the compliance as a performance function for DTO



Table 1 DTO and RBTO results for the first category of solutions for the studied MBB beam with two holes.

Parameters P�
y bt ¼ 3 bt ¼ 3:8

ui Sfi P�
x ui Sfi P�

x

F(N) 1000 1.02593 1.102593 1102.593 1.29951 1.129951 1129.951

E(MPa) 200,000 0.0513 0.99487 198,974 0.06498 0.993502 198700.4

m 0.3 0 1 0.3 0 1 0.3

Vf 50 2.81866 1.281866 64.09329 3.5703 1.35703 67.8515

C0(N.m) 255.179 541.973 685.468

C�(N.m) 87.2253 141.274 163.798

VðxÞ(m3) 0.179894 0.129188 0.115666

Fig. 4 Sensitivity magnitude values of the compliance as an

objective function.

Fig. 5 Resulting 2D topologies when considering the compliance

as a performance function: a) DTO configuration, b) RBTO

configuration for bt ¼ 3, and c) RBTO configuration for bt ¼ 3:8.

4582 G. Kharmanda et al.
model (failure point P�
y) and for RBTO models when the target

reliability indices are: bt ¼ 3, and bt ¼ 3:8. The figure shows

that there is almost no difference between the three subfigures.
These results are similar to the developments of Mozumder
et al. [25] where the structural volume is considered as an
objective function and the structural compliance as a perfor-

mance function.
The corresponding resulting volumes are shown in Table 2

for the initial configuration V0 and the optimal one V�. The
used number of element for optimization is 3855 nonlinear ele-

ments (PLANE82, 8-node). The uncertainty is considered on
the material properties (E and m), the loading (F) and the com-
pliance increase ratio (Cf). The random variables are then: E, m,
F and Cf. The standard deviations are assumed to be propor-

tional to the starting values (P�
y) presented in Table 2, i.e.

ri ¼ cimi (Eq. (12)) where ci ¼ 0:1.
Table 2 presents the input and output parameters of the

DTO and RBTO studies for the second category of solutions

for the studied MBB beam with two holes. It is shown for
the RBTO results that the reduction of the structural volume
is almost 2.4%, while the increase of the structural compliance

is almost 9.4%.
Fig. 6 shows the sensitivity magnitude values of the compli-

ance that is considered as a performance function. Here, the

effect of the material properties can be ignored and the compli-
ance increase ratio Cf plays an important role in the compli-

ance. The compliance increase ratio Cfhas also the biggest

influence on the resulting compliance and the Poisson’s ratio

has no effect on the resulting compliance. The figure shows
that the effect of the compliance increase ratio is more than
seven times compared to the effect of the force.

When using the Performance-Based IOSF Approach, the
difference between the biggest and smallest values of the sensi-
tivity is smaller than that produced by the Objective-Based

IOSF Approach (see Figs. 4 and 6).
Fig. 7a and b show a comparison between the compliance

and the volume values for the first and the second categories



Table 2 DTO and RBTO results for the second category of solutions for the studied MBB beam with two holes.

Parameters P�
y bt ¼ 3 bt ¼ 3:8

ui Sfi P�
x ui Sfi P�

x

F(N) 1000 1.45085 1.145085 1145.085 1.83775 1.183775 1183.775

E(MPa) 200,000 0.07254 0.992746 198549.1 0.09189 0.990811 198162.2

m 0.3 0 1 0.3 0 1 0.3

Cf 50 2.62483 1.262483 63.12417 3.32479 1.332479 66.62395

V0(m3) 0.359788 0.359788 0.359788

V�(m3) 0.157306 0.142554 0.139161

CðxÞ(N.m) 96.2535 138.243 151.227

Fig. 6 Sensitivity magnitude values of the compliance as a

performance function.
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of solutions for the studied MBB beam with two holes.
According to Fig. 7a and b, when increasing the reliability
index values, the resulting compliance values increases while

the resulting structural volume values decreases.
As result, when using the Objective-Based IOSF Approach,

the compliance is treated as an objective function and its sen-
sitivity is evaluated with respect to four parameters. This way a

first RBTO solution category is obtained when changing the
Fig. 7 Comparison between the compliance and the volume values f

MBB beam with two holes.
reliability index values. However, when using the

Performance-Based IOSF Approach, the compliance is treated
as a performance function and its sensitivity is evaluated with
respect to four parameters. A second RBTO solution category

is obtained when changing the reliability index values. When
changing the reliability index values, a small difference is
observed between the resulting RBTO layouts (Fig. 5b and

c) compared to those produced by the Objective-Based IOSF
Approach (Fig. 3b and c). The numerical results in Table 2
show that the optimal values of the structural volume V�

decrease when increasing the reliability index values.

3.2. Bridge structure (3D model)

In this case, the topology optimization is applied to a 3D

bridge structure considering two studied optimization cases:
The first optimization case is to minimize the structural com-
pliance CðxÞ subject the constraint of the volume decrease

ratio Vf (Eqs (1) and (5)). While, the second optimization case

is to minimize the structural volume VðxÞ subject the con-

straint of the compliance increase ratio Cf (Eqs (2) and (8)).

The objective is to find the best material distribution consider-
ing three studies: DTO, RBTO using Objective-Based IOSF
approach, and RBTO using Performance-Based IOSF
approach.

The initial domain is divided to optimized and non-
optimized domains as shown in Fig. 8. The dimensions of
or a) the first and b) the second categories of solutions the studied



Fig. 8 Initial configuration of the studied bridge structure.
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the outer geometry are: L ¼ 115m and H ¼ 65m. All other
geometrical parameters are shown by their symbols (H1, H2,
H3, H4, T and W) in Fig. 8 and the values of these symbols

are presented in Table 4 in meters (see Mean Point). The third
dimension (depth) equals to: Z ¼ 20m. In this 3D application,
there is a possibility to consider the geometry uncertainty on

several number of geometrical parameters compared to the
previous 2D case. The material of this bridge is steel, which
has a Young’s modulus E ¼ 200000(MPa) and a Poisson’s

ratio m ¼ 0:3. The material behavior is linear elastic isotropic.
Two pressures are applied on the upper non-optimized
domain: P1 ¼ 10000and P2 ¼ 100N/m2. The boundary condi-
tions are shown in Fig. 8. To perform the RBTO using

Objective-Based and Performance-Based IOSF Approaches,
a sensitivity evaluation is carried out on the starting point con-
figuration and considering the central finite difference

approach as an accurate tool for sensitivity analysis [34]. In
this 3D model, the uncertainty is also integrated to the geom-
etry in order to analyze its effect on the different functions (ob-

jective and performance) and to generate additional layouts.

3.2.1. First category of solutions for the studied bridge structure

The starting configuration is considered to be the failure point

where the problem is to minimize the compliance subject to the
volume constraint for the DTO (Eq. (1)) and also the reliability
constraints for the RBTO (Eq. (5)). Optimality Criteria (OC)

implemented in ANSYS Software is the used method for this
kind of topology optimization problems.

Fig. 9a shows the resulting 3D bridge topologies when con-
sidering the compliance as an objective function for DTO

model (failure point P�
y). Fig. 9b and d show the resulting

3D bridge topologies when considering the compliance as an
objective function for RBTO models without considering the
geometry uncertainty when the target reliability indices are:

bt ¼ 3, and bt ¼ 3:8, respectively. Fig. 9c and e show the
resulting 3D bridge topologies when considering the compli-
ance as an objective function for RBTO models considering

the geometry uncertainty when the target reliability indices
are: bt ¼ 3, and bt ¼ 3:8, respectively. The corresponding
resulting compliances are shown in Table 3 for the initial con-

figuration C0 and the optimal one C�. The used number of ele-
ment for optimization is 132 nonlinear elements (SOLID95,
20-node).

For Fig. 9d, at bt ¼ 3:8 and not considering geometry

uncertainty, a big difference is shown compared to the other
subfigures. To consider the structural compliance as an objec-
tive function, different layout configurations can be obtained

when increasing the reliability index values.

3.2.1.1. First category without considering the geometry uncer-

tainty. The uncertainty is only considered on the material
properties (E and m), the loading (P1 and P2) and the volume
decrease ratio (Vf). The five random variables are then: E, m,
P1, P2 and Vf. The standard deviations are assumed to be pro-

portional to the starting values (P�
y) presented in Table 3, i.e.

ri ¼ cimi (Eq. (12)) where ci ¼ 0:1.
When increasing the reliability index values, different

topologies are obtained (Fig. 9b and d). This observation is

numerically supported by the decrease of the structural volume
VðxÞ, when increasing the reliability index values. Table 3 pre-
sents the input and output parameters of the DTO and RBTO

studies for the first category of solutions for the studied 3D
bridge structure without considering the geometry uncertainty.
It is shown for the RBTO results that the reduction of the

structural volume is almost 9.3%, while the increase of the
structural compliance is almost 10%.

Fig. 10 shows the resulting sensitivity magnitude values of

the compliance as an objective function with respect to the five
random variables. Here, the effect of the material properties
can be ignored and the volume decrease ratio Vf plays an

important role in the compliance. It is found that the volume
decrease ratio Vf has the biggest effect on the resulting compli-

ance, while the Poisson’s ratio has no influence on the resulting
compliance as shown in Fig. 10. The effect of the volume

decrease ratio is more than four times compared to the effect
of pressure P2 and more than sixteen times compared to the
effect of pressure P1.

Table 3 presents the input and output parameters when
considering the compliance as an objective function. In this
table, the failure point P�

y and the optimum solution P�
x for

the two chosen target reliability indices (bt ¼ 3 and bt ¼ 3:8)
are presented. The normalized vector ui is calculated using



Fig. 9 Resulting 3D bridge topologies when considering the compliance as an objective function: a) DTO configuration, b) RBTO

configurations for bt ¼ 3 without considering the geometry uncertainty, c) RBTO configurations for bt ¼ 3considering the geometry

uncertainty, d) RBTO configuration for bt ¼ 3:8 without considering the geometry uncertainty, and e) RBTO configuration for bt ¼ 3:8

considering the geometry uncertainty.
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Eq. (6) and the corresponding safety factors Sfi are computed

using Eq. (11).

3.2.1.2. First category when considering the geometry uncer-
tainty. The uncertainty is considered on the geometrical dimen-
sions (H1, H2, H3, H4, Z, T and W), the material properties (E

and m), the loading (P1 and P2) and the compliance increase
ratio (Cf). For the starting point, the used number of elements

for optimization is 132 nonlinear elements (SOLID95, 20-
node), while for the RBDO solutions, the used number of ele-



Table 3 Different input and output parameters for the first category of solutions for the studied 3D bridge structure without

considering the geometry uncertainty.

Parameters P�
y bt ¼ 3 bt ¼ 3:8

ui Sfi P�
x ui Sfi P�

x

E(MPa) 200,000 0.10459 0.989541 197908.3 0.13248 0.986752 197350.5

m 0.3 0 1 0.3 0 1 0.3

P1(MPa) 10,000 0.64907 1.064907 10649.07 0.82216 1.082216 10822.16

P2(MPa) 100 1.28326 1.128326 112.8326 1.62547 1.162547 116.2547

Vf 50 2.63078 1.263078 63.1539 3.33232 1.333232 66.66161

C0(N.m) 19.3602�106 32.5209�106 37.9995�106

C�(N.m) 7.13953�106 8.80841�106 9.70148�106

VðxÞ(m3) 8750 6448.07 5847.41

Table 4 Different input and output parameters for the first category of solutions for the studied 3D bridge structure considering the

geometry uncertainty.

Parameters P�
y bt ¼ 3 bt ¼ 3:8

ui Sfi P�
x ui Sfi P�

x

H1(m) 5 0.48862 1.048862 5.24431 0.61892 1.061892 5.309459

H2(m) 5 0.34389 1.034389 5.171947 0.4356 1.04356 5.217799

H3(m) 5 0.08393 1.008393 5.041964 0.10631 1.010631 5.053154

H4(m) 20 0.76903 1.076903 21.53806 0.9741 1.09741 21.94821

Z(m) 20 1.35069 1.135069 22.70137 1.71087 1.171087 23.42174

E(MPa) 200,000 �0.0115 0.99885 199769.9 �0.01457 0.998543 199708.5

m 0.3 0 1 0.3 0 1 0.3

P1(MPa) 10,000 0.0714 1.00714 10071.4 0.09044 1.009044 10090.44

P2(MPa) 100 0.14116 1.014116 101.4116 0.17881 1.017881 101.7881

T(m) 5 2.46711 1.246711 6.233554 3.125 1.3125 6.562502

W(m) 50 0.15701 1.015701 50.78507 0.19888 1.019888 50.99442

Vf 50 0.28939 1.028939 51.44696 0.36656 1.036656 51.83281

C0(N.m) 19.3602�106 32.1087�106 36.3114�106

C�(N.m) 7.13953�106 11.7099�106 13.1751�106

VðxÞ(m3) 8750 11295.7 12037.3

Fig. 10 Sensitivity magnitude values of the compliance as an

objective function without considering the geometry uncertainty.
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ments for optimization is 192 nonlinear elements (SOLID95,
20-node). The 12 random variables are then: H1, H2, H3, H4,
Z, E, m, P1, P2, T, Wand Vf. The standard deviations are

assumed to be proportional to the starting values (P�
y) pre-

sented in Table 4, i.e. ri ¼ cimi (Eq. (12)) where ci ¼ 0:1.
Table 4 presents the input and output parameters of the

DTO and RBTO studies for the first category of solutions
for the studied 3D bridge structure considering the geometry
uncertainty. The numerical results in Table 4 show that the

structural volume VðxÞ increases when increasing the reliabil-
ity index values. It is shown that the increase of the structural
volume is almost 6.6%, while the increase of the structural

compliance is almost 13%.
Fig. 11 shows the sensitivity values of the compliance as an

objective function with respect to the 12 random variables.

Here, the effect of the material properties can be ignored
and the geometrical parameters play the most important role
with different degrees. It is also found that the thickness T
has the biggest effect on the resulting compliance, while the

Poisson’s ratio has no influence on the resulting compliance



Fig. 11 Sensitivity magnitude values of the compliance as an objective function considering the geometry uncertainty.
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as shown in Fig. 11. The effect of the thickness T is more than
three times of the third dimension Z. The compliance sensitiv-
ity with respect to the height of support part H3 is the lowest
value between the geometrical parameters. This value is even

lower than the compliance sensitivity with respect to the pres-
sure P2. This way it is difficult to say that all geometrical
parameters play the most important role in the structural

compliance.

3.2.2. Second category of solutions for the studied bridge

structure

The starting configuration is considered to be the failure point
where the problem is to minimize the structural volume subject
to the compliance constraint for the DTO (Eq. (2)) and also

the reliability constraints for the RBTO (Eq. (8)). Sequential
Convex Programming (SCP) implemented in ANSYS Soft-
ware is the used method for this kind of topology optimization

problems.
Fig. 12a shows the resulting 3D bridge topologies when

considering the compliance as a performance function for
DTO model (failure point P�

y). Fig. 12b and d show the result-

ing 3D bridge topologies when considering the compliance as a
performance function for RBTO models without considering
the geometry uncertainty when the target reliability indices

are: bt ¼ 3, and bt ¼ 3:8, respectively. Fig. 12c and e show
the resulting 3D bridge topologies when considering the com-
pliance as a performance function for RBTO models consider-
ing the geometry uncertainty when the target reliability indices

are: bt ¼ 3, and bt ¼ 3:8, respectively. The corresponding
resulting volumes are shown in Table 4 for the initial configu-

ration V0 and the optimal one V�. When starting from
Fig. 12a, the change of the material distribution layouts in

all other figures due to the change of reliability index values
is related with the application of geometry uncertainty.
Fig. 12d possesses a small change in the material distribution
compared to Fig. 12b. The same observation can be noted

when comparing Fig. 12e and c. In the literature, to consider
the structural volume as an objective function, the introduc-
tion of reliability concept may not affect the geometrical

description of the layouts [25]. However, Fig. 12c and e show
that both IOSF approaches provide different layouts that can
be helpful to designers.
3.2.2.1. Second category without considering the geometry
uncertainty. The uncertainty is only considered on the material

properties (E and m), the loading (P1 and P2) and the compli-
ance increase ratio (Cf). The used number of elements for opti-

mization is 132 nonlinear elements (SOLID95, 20-node). The
five random variables are then: E, m, P1, P2 and Cf. The stan-

dard deviations are assumed to be proportional to the starting
values (P�

y) presented in Table 5, i.e. ri ¼ cimi (Eq. (12)) where

ci ¼ 0:1
Table 5 presents the input and output parameters of the

DTO and RBTO studies for the second category of solutions,
for the studied 3D bridge structure without considering the
geometry uncertainty. It is shown for the RBTO results that

the reduction of the structural volume is almost 1.6%, while
the increase of the structural compliance is almost 5.1%. In
this table, the failure point P�

y and the design point P�
x for

the two chosen target reliability indices (bt ¼ 3 and bt ¼ 3:8)
are presented. The normalized vector ui is calculated using
Eq. (9) and the corresponding safety factors Sfi are computed

using Eq. (11). The numerical results in Table 5 show that the
optimal values of the structural volume V� decrease when
increasing the reliability index values.

Fig. 13 shows the sensitivity values of the compliance as a
performance function with respect to the five random vari-
ables. Here, the effect of the material properties can be ignored

and the compliance increase ratio Cf plays an important role in

the compliance. It is found that the compliance increase ratio
Cf has the biggest effect on the resulting compliance, while

the Poisson’s ratio has no influence on the resulting compli-
ance as shown in Fig. 13. The effect of the compliance increase
ratio is more than five times compared to the effect of pressure

P2.

3.2.2.2. Second category when considering the geometry uncer-
tainty. The uncertainty is considered on the geometrical dimen-

sions (H1, H2, H3, H4, Z, T and W), the material properties (E
and m), the loading (P1 and P2) and the compliance increase
ratio (Cf). For the starting point, the used number of elements

for optimization is 132 nonlinear elements (SOLID95, 20-
node), while for the RBDO solutions, the used number of ele-

ments for optimization is 192 nonlinear elements (SOLID95,
20-node). The 12 random variables are then: H1, H2, H3, H4,



Fig. 12 Resulting 3D bridge topologies when considering the compliance as a performance function: a) DTO configuration, b) RBTO

configurations for bt ¼ 3 without considering the geometry uncertainty, c) RBTO configurations for bt ¼ 3considering the geometry

uncertainty, d) RBTO configuration for bt ¼ 3:8 without considering the geometry uncertainty, and e) RBTO configuration for bt ¼ 3:8

considering the geometry uncertainty.
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Z, E, m, P1, P2, T, Wand Cf. The standard deviations are

assumed to be proportional to the starting values (P�
y) pre-

sented in Table 6, i.e. ri ¼ cimi (Eq. (12)) where ci ¼ 0:1
Table 6 presents the input and output parameters of the

DTO and RBTO studies for the second category of solutions,
for the studied 3D bridge structure considering the geometry
uncertainty. The numerical results in Table 6 show that the

optimal values of the structural volume V� increases when
increasing the reliability index values. It is shown that the

increase of the structural volume is almost 9.2%, while the
increase of the structural compliance is almost 12%.

Fig. 14 shows the sensitivity values of the compliance as a

performance function with respect to the 12 random variables.
Here, the effect of the material properties can be ignored and
the geometrical parameters play the most important role with
different degrees. It is also found that the thickness T has the



Table 5 Different input and output parameters for the second category of solutions for the studied 3D bridge structure without

considering the geometry uncertainty.

Parameters P�
y bt ¼ 3 bt ¼ 3:8

ui Sfi P�
x ui Sfi P�

x

E(MPa) 200,000 0.07416 0.992584 198516.8 0.09394 0.990606 198121.2

m 0.3 0 1 0.3 0 1 0.3

P1(MPa) 10,000 0.45392 1.045392 10453.92 0.57497 1.057497 10574.97

P2(MPa) 100 1.18127 1.118127 111.8127 1.49628 1.149628 114.9628

Cf 50 2.71902 1.271902 63.59508 3.44409 1.344409 67.22043

V0(m3) 17,500 17,500 17,500

V�(m3) 4052.43 3785.73 3725.33

CðxÞ(N.m) 10.4453�106 12.6581�106 13.2987�106

Fig. 13 Sensitivity values of the compliance as a performance

function without considering the geometry uncertainty.

Table 6 Different input and output parameters for the second cate

the geometry uncertainty.

Parameters P�
y bt ¼ 3

ui Sfi

H1(m) 5 �0.15357 0.984643

H2(m) 5 0.61428 1.061428

H3(m) 5 0.08866 1.008866

H4(m) 20 0.69767 1.069767

Z(m) 20 1.37238 1.137238

E(MPa) 200,000 �0.0117 0.99883

m 0.3 0 1

P1(MPa) 10,000 0.0716 1.00716

P2(MPa) 100 0.18633 1.018633

T(m) 5 2.4357 1.24357

W(m) 50 0.25389 1.025389

Cf 50 0.4289 1.04289

V0(m3) 17,500 23706.5

V�(m3) 4052.43 6011.56

CðxÞ(N.m) 10.4453�106 16.87743�106
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biggest effect on the resulting compliance, while the Poisson’s

ratio has no influence on the resulting compliance as shown in
Fig. 14. The effect of the thickness T is more than three times
of the third dimension Z. The compliance sensitivity with

respect to the height of the upper beam H1 is negative. The
compliance sensitivity with respect to the height of support
part H3 is the lowest magnitude value between the geometrical

parameters. This last value is lower than the compliance sensi-
tivity with respect to the pressure P2. So, the sensitivities with
respect to the geometrical parameters can be negative or posi-

tive depending on the used approach.
Fig. 15a and b show a comparison between the compliance

and the volume values for the first categories of solutions with-
out considering and when considering the geometry uncer-

tainty, respectively. Fig. 15c and d show a comparison
between the compliance and the volume values for the second
categories of solutions without considering and when consider-

ing the geometry uncertainty, respectively. In Fig. 15a, b, c and
d, the volume values are divided by 103 m3, while the compli-
ance values are divided by 106N.m. It is shown in Fig. 15a and
gory of solutions for the studied 3D bridge structure considering

bt ¼ 3:8

P�
x ui Sfi P�

x

4.923215 �0.19452 0.980548 4.902739

5.30714 0.77809 1.077809 5.389045

5.044332 0.11231 1.011231 5.056154

21.39534 0.88372 1.088372 21.76743

22.74476 1.73835 1.173835 23.4767

199,766 �0.01482 0.998518 199703.6

0.3 0 1 0.3

10071.6 0.0907 1.00907 10090.7

101.8633 0.23602 1.023602 102.3602

6.217851 3.08522 1.308522 6.542611

51.26947 0.3216 1.03216 51.608

52.14449 0.54327 1.054327 52.71636

25572.2

6568.38

18.9504�106



Fig. 14 Sensitivity values of the compliance as a performance function considering the geometry uncertainty.

Fig. 15 Comparison between the compliance and the volume values for the first categories of solutions a) without considering and b)

when considering the geometry uncertainty and for the second categories of solutions c) without considering and d) when considering the

geometry uncertainty.
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c that when increasing the reliability index values, the struc-
tural compliance values increases, while the structural volume

decreases. However, it is not the same findings in Fig. 15b and
d. The geometry uncertainty affects the behavior of the objec-
tive and performance functions where the increase of the reli-
ability index values leads to an increase of both functions

(objective and performance).
As result, when using the Objective-Based IOSF Approach,

the compliance is treated as an objective function. In this case,

two studied are carried out. The first study does not consider
the uncertainty on the geometry. So, the sensitivity is evaluated
with respect to five parameters (Fig. 10). The resulting RBTO
configurations can be modeled with different layouts for the
next stage (detailed design). However, the second study is to

consider the uncertainty on the geometry. So, the sensitivity
is evaluated with respect to 12 parameters (Fig. 11). The result-
ing RBTO configurations can be modeled with similar layouts
for the next stage (detailed design). Here, there is no significant

effect of the geometry uncertainty for this example. For the
Performance-Based IOSF Approach, the compliance is treated
as a performance function. In this case, two studies are carried

out. The first study is to not consider the uncertainty on the
geometry. So, the sensitivity is evaluated with respect to five
parameters (Fig. 13). However, the second study is to consider
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the uncertainty on the geometry. So, the sensitivity is evaluated
with respect to 12 parameters (Fig. 14). The geometry uncer-
tainty can affect the layouts for both approaches.

In the case of the ignorance of the geometry uncertainty,
the structural compliance increases while the structural volume
decreases when increasing the reliability index values. This

result is similar to the first RBTO findings [4-7]. In contrast,
when considering the geometry uncertainty, both of structural
compliance and volume values increase when the reliability

index values increase. This result can be considered as a main
observation of this work. It can be as a basic idea to develop a
new strategy combining the different findings of the develop-
ments from both points of view ’reliability and topology’.

4. Conclusion

In this work, two alternative approaches based on the Inverse
Optimum Safety Factor (IOSF) are developed; Objective-
Based IOSF Approach and Performance-Based IOSF
Approach. Moreover, a comparison between the two

approaches was conducted considering the effect of different
parameters such as geometry, material properties, and load-
ings. A 2D finite element model of a simple MBB beam with

two holes, and a 3D finite element model are presented. In
the 2D model, the uncertainty of the input parameters (loading
and material properties) and the output parameters (volume

decrease ratio or compliance increase ratio) are considered.
Moreover, the geometry uncertainty of the 3D model is added
to show its effect on the different functions (compliance and
volume).

The studied 3D case gives the opportunity to apply the
uncertainty on several geometrical parameters without affect-
ing the structure performance, while to apply the uncertainty

of the dimensions of the MBB beam or its two holes can affect
the boundary conditions and then the structure performance.
The resulting layouts from both IOSF approaches can cover

the different developments in the literature where two alterna-
tive options can be found: The first choice is to consider the
structural compliance as an objective function that can lead

to different geometrical descriptions. The second choice is to
consider the structural volume as an objective function that
leads to the same geometrical descriptions as mentioned in
the literature, but when considering the geometry uncertainty,

it can provide different layouts.
As a result, it is very important to use both alternative

approaches when dealing with this kind of problems during

the conceptual design stage in order to open more categories
of solutions as layouts for the detailed design stage. When
increasing the reliability index values, the Objective-Based

IOSF Approach leads to different RBDO layouts for the stud-
ied MBB beam with two holes compared to the DTO layout,
while the Performance-Based IOSF Approach leads to differ-
ent RBDO layouts for the studied 3D bridge structure com-

pared to the DTO layout. Thus, reliability-based topology
optimization using both developed approaches is able to gen-
erate two groups of solutions, giving the designer a range of

topologies. Taking the geometry uncertainty into account, it
is possible to produce different RBTO layouts. In which this
can also change the relationship between the output parame-

ters. This work can be extended to nonlinear distribution laws
(lognormal, uniform, Weibull, Gumbel . . .). This work
provides a detailed RBTO model that considers the uncer-
tainty of inputs and generates several design alternatives in
the conceptual design phase. The uncertainty on the geometri-

cal parameters plays an important role on the behavior of the
objective and performance functions when increasing the reli-
ability index values.
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