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Abstract

Background: Mutations in the K-Ras gene are among the most frequent genetic alterations in various cancers, and inhibiting RAS
signaling has shown promising results in treating solid tumors. However, finding effective drugs that can bind to the RAS protein
remains challenging. This drove us to explore new compounds that could inhibit tumor growth, particularly in cancers that harbor K-
Ras mutations. Methods: Our study used bioinformatic techniques such as E-pharmacophore virtual screening, molecular simulation,
principal component analysis (PCA), extra precision (XP) docking, and ADMET analyses to identify potential inhibitors for K-Ras
mutants G12C and G12D. Results: In our study, we discovered that inhibitors such as afatinib, osimertinib, and hydroxychloroquine
strongly inhibit the G12C mutant. Similarly, hydroxyzine, zuclopenthixol, fluphenazine, and doxapram were potent inhibitors for the
G12Dmutant. Notably, all six of these molecules exhibit a high binding affinity for the H95 cryptic groove present in the mutant structure.
These molecules exhibited a unique affinity mechanism at the molecular level, which was further enhanced by hydrophobic interactions.
Molecular simulations and PCA revealed the formation of stable complexes within switch regions I and II. This was particularly evident
in three complexes: G12C-osimertinib, G12D-fluphenazine, and G12D-zuclopenthixol. Despite the dynamic nature of switches I and
II in K-Ras, the interaction of inhibitors remained stable. According to QikProp results, the properties and descriptors of the selected
molecules fell within an acceptable range compared to sotorasib. Conclusions: We have successfully identified potential inhibitors of
the K-Ras protein, laying the groundwork for the development of targeted therapies for cancers driven by K-Ras mutations.
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1. Introduction

The K-Ras gene is a proto-oncogene that can contain
various mutations, resulting in the disruption of cell sig-
naling and uncontrolled proliferation in cancer cells. It is
the most frequently mutated proto-oncogene in the RAS-
MAPK pathway [1,2]. K-Ras is identified in approxi-
mately 25% of all cancer cases, including the pancreas,
colon, and lung. K-Ras mutations contribute to the initia-
tion and progression of cancer, increasing the risk of resis-
tance and predicting a worse prognosis, resulting in more
than a million deaths annually [3,4]. The K-Ras protein is
a molecular switch that regulates cellular functions such as
cell proliferation, differentiation, and survival. It does this
by switching between an inactivated GDP-bound state and
an activated GTP-bound state, utilizing guanine nucleotide
exchange factors (GEFs) and GTPase-activating proteins
(GAPs) [5,6]. In typical quiescent cells, K-Ras is primar-
ily in its inactivated GDP-bound form. However, when
an extracellular stimulus activates receptor tyrosine kinases

(RTKs) and other cell-surface receptors, K-Ras switches to
its activated GTP-bound state. This further activates effec-
tor proteins (RAF-kinases, PI3K, and RalGDS) that regu-
late the MAPK and PI3K/mTOR pathways, thus control-
ling cellular processes [7,8]. K-Ras mutations most com-
monly occur at the Glycine-12 (G12), Glycine-13 (G13),
and Glutamine-61 (Q61) amino acid positions. These mu-
tations cause K-Ras to remain in its GTP-bound form and
remain active without extracellular stimuli, leading to over-
stimulation of downstream signaling pathways and promot-
ing tumorigenesis [3,9,10]. The G12C mutation, where
glycine is replaced by cysteine at codon 12, is one of the
most commonly found K-Ras mutations in NSCLC, with a
prevalence of over 13% in lung adenocarcinomas and 3%
in colorectal cancer patients [11,12]. The G12D mutation,
where glycine is substituted by aspartic acid at position 12,
is prevalent in several types of cancer, including colorectal
cancer, non-small cell lung cancer (NSCLC), uterine cor-
pus neoplasm, pancreatic exocrine neoplasm, and ovarian
neoplasm [13].
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Despite four decades of research aimed at developing
drugs to treat K-Ras mutations, only sotorasib has been suc-
cessful in treating the G12C K-Ras mutant. The challenge
in targeting K-Ras arises from its inherent characteristics,
including its high nucleotide affinity and the limited number
of accessible binding sites for inhibitor molecules [5,14].
As a result, several unconventional strategies are being used
to target K-Ras, including targeting downstream effector
proteins [15], using epigenetic strategies such as telomerase
inhibition [16], RNA interference [17], and synthetic lethal-
ity approaches like CDK inhibitors [18]. However, these
approaches have failed due to a lack of selectivity. Fur-
thermore, patients with K-Ras mutations respond poorly to
current therapeutics [19]. Hence, there is an unmet and ur-
gent need to develop immunotherapeutics targeting K-Ras-
driven mutations. Our recent study also found the dynamic
changes upon K-Ras mutation and FDA drugs that target
mutant K-Ras [20–22].

The gaol of this study aims to discover new small
molecule inhibitors for G12C and G12D mutants using an
E-pharmacophore model-based virtual screening method.
The top-performing molecules from this evaluation were
then analyzed using docking energy and in silico QikProp
ADME analysis. The best-hit molecules obtainedwere sub-
jected to molecular dynamics simulation, which could be
developed into potent, therapeutically active inhibitors.

2. Methodology
2.1 Protein Preparation

The high-resolution K-Ras G12C mutant protein
structure (PDB ID: 6P8Y) that was inhibitor co-crystallized
was retrieved from Protein Data Bank [23,24]. The re-
trieved protein structure was in the inactive GDP form with
2.31 Å and an Rfree value of 0.269. The mutations found
in the PDB structure of G12C were reverted to the actual
amino acids (AA) (C51S; C80L; C118S) with the help of
the residue mutate module within the Schrödinger. The
G12C residue of the K-Ras protein was mutated to G12D
using the module mentioned above, and the protein model
was engaged for the K-Ras G12D mutation-based module.
The Schrödinger suite’s protein preparation wizard was em-
ployed to prepare the protein structure [25]. The proteins
were subjected to tautomerization and ionization state ad-
justments, as well as the inclusion of missing residues, hy-
drogens, formal charge correction, and bond order correc-
tion at pH 7. The protein structure was further processed
where the water molecules were removed; the structural
integrity was mended using the protein preparation mod-
ule and OPLS3e FF, respectively. While retaining the het-
eroatoms, the zero-order states were assigned to the metal,
and the conformations of the AA side chains were evalu-
ated. In K-Ras, the amino acids of histidine have a differ-
ent shape. The K-Ras structure was optimized, the protona-
tion states and tautomers were also predicted. The structure
was also refined by improving the H-bond and eliminating

the steric impediments by utilizing constrained heavy atom
minimizations with a root mean square deviation (RMSD)
value of 0.3.

2.2 Compound Library Selection and Ligand Preparation
For the E-pharmacophore modeling investigation,

seven inhibitors were identified from the literature sur-
vey and used as templates. The 3D structures of so-
torasib (AMG510), ARS1620, Indole lead 1Amgen, 4_am,
bortezomib, and MRTX849 [26–30] were retrieved from
the PubChem database. The molecules were prefiltered
based on the Rule of five (ROF) to exclude compounds
with no drug-likeness properties [31]. The LigPrep mod-
ule [32] was used to develop the ligand dataset files, and
the OPLS3e force field was then used to minimize energy
further. The ligand molecules were reconstituted to their
3D geometries using Epik, the hydrogens were added at
an ionization pH of 7.0 ± 2.0, and the optimum stereo-
chemical conformation for each ligand was calculated. Fur-
ther, the ligand sets were obtained from the Drug Bank
database [33,34]. The phase database was created using the
3D atomic structures of 2672 FDA-authorized compounds.
The LigPrep and Epik modules were initially used to pre-
pare the ligands. The Confgen (OPLS3e FF) was then used
to generate the ligands’ chiralities and conformers (50 con-
formers). The molecules underwent an initiatory screening
based on ROF to weed out any false-positive compound.
Further, ADME attributes of the molecules were estimated,
and maestro files were generated.

2.3 Molecular Docking and E-Pharmacophore Generation
The initial docking of ligands to the G12C and G12D

proteins is crucial for E-pharmacophore-based modeling,
which combines ligand- and structure-based approaches.
The Grid Ligand Docking and Energetics (GLIDE) module
from the Schrödinger interface performed docking studies
on the optimized protein structure. A 3D grid of 20 Å was
created around the active sites of the protein structures to ac-
commodate the binding residues before starting the docking
process [35–38]. The seven ligands were docked into the
active site of the protein structure using GLIDE XP mode.
The PHASEmodule of the Schrödinger suite was used with
the docked files to create an E-pharmacophore model. This
module uses six built-in pharmacophore features for model
generation: hydrogen bond acceptor (A), hydrogen bond
donor (D), hydrophobic (H), negative ionizable (N), posi-
tive ionizable (P), and aromatic ring (R). Pharmacophoric
sites are created around atoms contributing to GLIDE XP
energies during hypothesis development. These sites are
ranked by calculating the energy terms of atoms. The hy-
pothesis is used as a query to search for hits in the phase
database that are more potent than the reference ligand.
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Fig. 1. The pharmacophore hypotheses were represented using the PHASE module, which included features from Sotorasib
(AMG510), MRTX849, ARS1620, Bortezomib, ARS853, ARS1630, and ARS1323. The hypothesis for G12C (with A4, D7, R15,
R16, R17) is shown in (A), while the hypothesis for G12D (with A4, R14, R16) is shown in (B). The acceptor groups are represented
in blue with arrows indicating h-bond acceptors. The donor groups are represented in pink with arrows indicating h-bond donors. The
aromatic rings are represented in orange.

2.4 Virtual Screening

A three-step virtual screening method was performed
on the phase database using GLIDE software v12.5, New
York, NY, USA, a conventional molecular docking tool
that has successfully screened large databases during drug
development [39]. The virtual screening process includes
High Throughput Virtual Screening (HTVS), Standard Pre-
cision (SP), and XP docking. This approach is the first step
in the docking process to reduce the number of compounds
used for precision docking investigations, as HTVS helps
in rapid screening. The G12C and G12D hypotheses were
used to screen the phase database for suitable compounds.
These compounds were then subjected to HTVS, followed
by SP and rigorous XP docking to obtain better binding
affinities and eliminate false positives [36,40]. Based on
their binding energies, the docking results were compared
to those of the reference compound (sotorasib) [41]. Addi-
tionally, the pharmacokinetic properties of the compounds
that passed the filtering procedures were evaluated.

2.5 QikProp Analysis

One way to decrease the failure rates during drug de-
velopment is to focus on molecular characteristics such as
absorption, distribution, metabolism, excretion, and tox-
icity (ADMET) [42]. The current study employed the
QikPropmodule to forecast the ADMEproperties and drug-
likeness (DL) [43]. QikProp evaluates molecular properties
using a pharmacokinetic descriptor range that covers 95%
of existing drugs. To better understand the molecule’s po-
tential as an inhibitor, sotorasib was compared to the pre-
dictions generated for other hit compounds.

Table 1. E-pharmacophore hypothesis with the feature types
and extra precision (XP) scores for G12C and G12D K-Ras

proteins.
S.No Types of features of E-pharmacophore XP scores

G12C

1. A4 –0.67 kcal/mol
2. R15 –0.45 kcal/mol
3. R16 –0.45 kcal/mol
4. R17 –1.01 kcal/mol
5. D7 –0.33 kcal/mol

G12D

6. A4 –0.27 kcal/mol
7. R14 –0.32 kcal/mol
8. R16 –0.16 kcal/mol

2.6 Molecular Dynamics Simulation (MDS)

MDS of nine K-Ras mutant complexes were per-
formed using GROMACS software for 1800 ns [44].
The complexes were prepared with drugs such as sotora-
sib, afatinib, osimertinib, hydroxychloroquine, sotorasib,
doxapram for G12C and fluphenazine, hydroxyzine, and
zuclopenthixol for G12D. The force field parameters for
the hit molecules were calculated using Charmm27 [45,46],
and the variables and topological files were generated using
SwissParam [47]. A dodecahedral box with simple point-
charge (SPC) waters was positioned at 1.0 nm from the
box’s edge for the mutants complexed with hit molecules,
and sotorasib and counterions were added to neutralize the
system. Energy minimization was performed using the
steepest descent method for 5000 steps to remove steric
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Table 2. The XP Gscores and molecular mechanics with generalized Born and surface area solvation (MM-GBSA) binding
energies of identified hit molecules for G12C and G12D K-Ras proteins.

S.No Hit Molecules XP Gscore (kcal/mol) MM-GBSA (kcal/mol)

G12C

1. * Sotorasib (reference compound) –4.648 –31.70
2. Afatinib –7.375 –52.65
3. Osimertinib –5.884 –32.77
4. Hydroxychloroquine –4.676 –46.34

G12D

5. ** Sotorasib (reference compound) –3.449 –30.66
6. Hydroxyzine –5.631 –44.35
7. Zuclopenthixol –4.789 –48.18
8. Fluphenazine –4.508 –36.96
9. Doxapram –3.826 –39.84
* G12C-K-Ras-Sotorasib complex.
** G12D-K-Ras-Sotorasib complex.

conflicts. The volume and pressure ensembles were set to
default values. The molecular dynamics (MD) trajectories
of each complexwere analyzed usingGROMACS and visu-
alized using ggplot2 in R studio [48]. Principal component
analysis (PCA) was used to obtain the spatial structure of
the mutant K-Ras inhibitor complexes and sotorasib [49].
The PC1 and PC2 projections and eigenvectors were cal-
culated using the default approach in GROMACS and our
previous simulation protocol [50–53]. The covariance ma-
trices of all complexes were evaluated, and the conforma-
tional space was computed using the atom positions from
the MD trajectories. The 3D free energy landscape (FEL)
was plotted usingOriginPro 2022 SR1 software, Northamp-
ton, MA, USA, and its projections on eigenvectors 1 and 2
were evaluated and plotted using R studio.

3. Results
3.1 E-Pharmacophore Generation

The PHASE module in the Maestro workspace gen-
erated an E-pharmacophore hypothesis based on seven
pre-existing inhibitor compounds: sotorasib (AMG510),
ARS1620, ARS1323, ARS853, bortezomib, MRTX849,
and ARS1630. The pharmacophore model was developed
using docked poses of these inhibitors and incorporates
structural and energy information between G12C, G12D,
and the ligands. The model generation aims to identify new
active sites for developing novel inhibitors. The seven lig-
ands were docked using XP, and their descriptor files served
as input for generating the model. The “E-pharmacophore”
option was defined using the docking post-processing mod-
ule in the Maestro interface. To map the ligands and
pharmacophoric sites into the ligand’s atoms, the fragment
mode option was used during model building. The phar-
macophoric sites retrieved were fixed to two at the start,
and a pharmacophore hypothesis was generated in which
the features were prioritized according to their energy con-

tributions to binding. For G12C, the top five attributes were
selected for the hypothesis, while for G12D, the top three
attributes were taken based on an energy score of >1.0
kcal/mol (Table 1). The pharmacophoric model generated
for G12C featured three aromatic groups (R), one hydrogen
bond donor, and one acceptor group, respectively (Fig. 1A),
while G12D contained two aromatic rings (R) and one hy-
drogen bond acceptor group (Fig. 1B). The phase database
was then screened using the generated E-pharmacophore
models, which identified many active compounds, indicat-
ing that the database was effectively screened. This ad-
vanced scientific edit provides a detailed overview of how
the E-pharmacophore hypothesis was generated and its po-
tential use in identifying new active sites for developing
novel inhibitors.

3.2 E-Pharmacophore Model

The E-pharmacophore model (DDRRR) was used to
screen the phase database and identify a large group of
potential inhibitors for G12C and G12D. During phase
database construction, Ligand conformers were generated
using the ConfGen option, so on-the-fly conformer gener-
ation was unnecessary. The ligand conformers were then
compared to the E-pharmacophore model to identify those
that matched its features. Reorienting the ligand conform-
ers also helped to determine if they matched the pharma-
cophoric sites. The basic criteria for ligand site match-
ing with the E-pharmacophore model were set to 4 out of
5 sites to ensure no potential molecule was missed. Dur-
ing database screening, the “hit treatment” option was set
to “Return at most 1000 hit molecules”. PHASE identi-
fied 110 hit molecules for G12C and 189 for G12D that
could superimpose the hypothesis when the process was
completed. All 299 hit compounds were then subjected to
virtual screening processes.
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Fig. 2. The 3D representation of the G12C K-Ras mutant complexes’ docked poses with hit compounds. The complexes include:
(A) G12C-Sotorasib (Purple). (B) G12C-Afatinib (Green). (C) G12C-Osimertinib (Blue). (D) G12C-Hydroxychloroquine (Red). The
hit compounds are represented using a ball and stick model, with Sotorasib in purple, Afatinib in green, Osimertinib in blue, and Hy-
droxychloroquine in red. The oxygen and nitrogen atoms of the hit compounds are shown as red and blue balls, respectively, while the
chloride and fluoride ions within the hit compounds are depicted as green and light green balls. The interacting amino acid residues
are shown as green sticks, with blue, yellow, pink, and green dashes indicating Pi-Pi stacked hydrogen bonds, attractive charges, and
Pi-Cation interactions. The names of the interacting residues are written in light green fonts. The binding pocket is shown as a grey
surface model.

3.3 Glide

In the first screening, 299 hit compounds were iden-
tified out of 2672 FDA-approved compounds. These com-
pounds were expected to have properties from the implied
E-pharmacophore and were labeled as possible hit com-
pounds if all the properties were satisfied. After the ini-
tial PHASE filtering, docking with the Glide module was
used. The molecules with higher glide scores and ener-
gies than the reference inhibitor Sotorasib (G12C: –4.648
kcal/mol, G12D: –3.449 kcal/mol) were screened. The
FDA-approved inhibitors (sotorasib-AMG510) were used

as a reference drug for both mutants. In HTVS, 110 and 189
compounds were docked with the mutant models (G12C
and G12D). After HTVS docking, the compounds were
subjected to SP docking, based on the Glide G-score (>3.0
kcal/mol and 4.0 kcal/mol), 67 and 128 hit compounds, re-
spectively, for G12C and G12D were selected for the XP
docking module. As a result, 29 and 113 compounds were
obtained as hits from XP docking. The final hits (G12C: 3,
G12D: 4) that obtained a higher G-score and MM-GBSA
binding energies than the reference compound (sotorasib)
(Table 2) were selected for ADME analysis.
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Fig. 3. The 3D representation of the G12D K-Ras mutant complexes’ docked poses with hit compounds. The complexes include:
(A) G12D-Sotorasib. (B) G12D-Hydroxyzine. (C) G12D-Zuclopenthixol. (D) G12D-Fluphenazine. (E) G12D-Doxapram. The hit
compounds are displayed in a ball and stickmodel, with Sotorasib in violet, Hydroxyzine in green, Zuclopenthixol in yellow, Fluphenazine
in red, and Doxapram in blue. The oxygen and nitrogen atoms are shown in red and blue ball models. The chloride and fluoride ions are
depicted in green and light green ball models. The sulfur atom is shown in a yellow ball model. The interacting amino acid residues are
displayed in a green stick model. The blue, yellow, pink, and green dashes represent Pi-Pi stacked hydrogen bonds, attractive charges,
and Pi-Cation interactions. The names of the interacting residues are written in light green. The binding pocket is shown as a grey surface
model.

3.4 ADME Property Analysis

The Schrodinger’s (v12.5, New York, NY, USA)
QikProp module was used to evaluate the ADME prop-
erties of hit compounds for the G12C (Afatinib, Osimer-
tinib, Hydroxychloroquine) (Supplementary Fig. 1A–C)
and G12D (Hydroxyzine, Zuclopenthixol, Fluphenazine,
Doxapram) (Supplementary Fig. 2A–D) models. The
CNS descriptors were a key focus of the study, as they can
determine a molecule’s ability to cross the blood-brain bar-
rier. The QikProp results for all hits and their characteristics
for the K-Ras mutations are listed in Supplementary Ta-
bles 1,2. Compounds that met the descriptionwhile remain-
ing within acceptable bounds were selected as potential in-
hibitors. The pharmacokinetic properties of the hit com-
pounds were evaluated for drug-like behavior and found to
be within acceptable limits (Table 3). The screened com-
pounds with favorable predicted properties were examined
as a group, and the results indicate that the hit compounds
satisfied all the ADME descriptors.

3.5 Insights into Ligand Interaction
The interaction of the compounds with mutant mod-

els was visualized using Schrödinger’s LID and Discov-
ery Studio to gain further insights into the binding patterns.
Figs. 2,3 show the hit molecules for mutant models in 3D,
highlighting their interactions. The grey surface model for
G12C (Fig. 2A–D) depicts the binding pocket, while the
hit molecules are represented as sotorasib (violet), afatinib
(green), osimertinib (blue), and hydroxychloroquine (red).
In G12D (Fig. 3A–E), the hit molecules are represented
as sotorasib (violet), hydroxyzine (green), zuclopenthixol
(yellow), fluphenazine (red), and doxapram (blue) in a ball
and stick model. The interaction mechanism of the G12C-
sotorasib complex in 2D revealed three H-bonds with car-
bon atoms C12, E62, and R68, Pi-alkyl with V9, and Pi-Pi
stacking at Y96 (Supplementary Fig. 3A,B). The G12D-
sotorasib complex had one H-bond with R68, a Pi-cation
with K88, and two Pi-Pi stacks at Y96 (Supplementary
Fig. 3C,D). The binding patterns of top compounds were

6
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Table 3. Properties and descriptors of identified hit molecules from QikProp module for G12C and G12D K-Ras proteins.
S.No Drugbank ID Hit Molecules MWa (Da) Stars CNSb SASAc FOSAd FISAe PISAf donorHBg accptHBh QPlogPocti QPlogPwj QPlogPo/wk QPlogSl QPlogBBm QPPCacon QPlogKhsao HOAp HOAq (%)

1. DB15569 Sotorasib (reference
compound)

560.602 1 –1 852.93 396.232 120.595 273.864 1 9.75 27.719 14.663 5.201 –7.636 –0.814 711.704 0.923 1 82.532

Molecules for G12C K-Ras

2. DB08916 Afatinib 434.519 0 1 795.193 379.494 93.837 221.546 2 9.45 24.448 14.286 3.697 –5.13 –0.314 318.378 0.289 3 93.39
3. DB01611 Hydroxychloroquine 408.881 0 1 644.022 312.637 80.714 179.07 2 5.7 17.688 9.399 3.321 –3.349 –0.265 424.024 0.157 3 93.416
4. DB09330 Osimertinib 318.338 1 1 836.883 450.985 69.724 316.175 2 8.75 25.996 13.921 4.807 –5.485 –0.332 539.027 0.775 3 100

Molecules for G12D K-Ras

5. DB00557 Hydroxyzine 374.909 0 2 678.051 272.227 48.222 285.953 1 7.4 18.59 10.417 3.043 –2.289 0.508 214.987 0.081 3 86.507
6. DB01624 Zuclopenthixol 400.965 0 2 709.126 275.596 52.801 272.366 1 5.7 18.591 9.21 4.132 –4.055 0.646 194.532 0.608 3 92.107
7. DB00623 Fluphenazine 437.522 0 2 721.765 271.696 64.259 235.536 1 6.2 19.718 9.575 4.358 –4.151 0.637 151.473 0.634 3 91.484
8. DB00561 Doxapram 378.513 0 2 678.183 355.696 24.932 297.555 0 6.7 18.022 10.694 3.22 –3.049 0.479 1005.387 –0.033 3 100
aMolecular Weight; bPredicted central nervous system activity on a –2 (inactive) to +2 (active) scale; cTotal solvent accessible surface area; dHydrophobic component of the SASA; eHydrophilic component of the SASA; fπ
(carbon and attached hydrogen) component of the SASA; gNumber of donor hydrogen bonds; hNumber of acceptor hydrogen bonds; iPredicted octanol/gas partition coefficient; jPredicted water/gas partition coefficient; kPredicted
octanol/water partition coefficient; lPredicted aqueous solubility; mPredicted brain/blood partition coefficient; nPredicted apparent Caco-2 cell permeability in nm/sec; oPrediction of binding to human serum albumin; pPredicted
qualitative human oral absorption; qPredicted human oral absorption on 0 to 100% scale.
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compared with the G12C-sotorasib model. The G12C-
afatinib complex had two H-bonds with G10 and D69,
a Pi-Pi stack with Y96, and a Pi-alkyl with V9, M72,
and Y96 (Fig. 4A,B). For G12C-osimertinib, it was ob-
served that five H-bonds were formed with G10, C12,
T58, R68, and Y96, with two Pi-Pi stacking with H95 and
Y96 (Fig. 4C,D). For G12C-hydroxychloroquine, it was ob-
served that two H-bonds formed with T58 and D92, two
Pi-Pi stacking at V9 and H95, and a halogen bond with
T58 (Fig. 4E,F). Finally, the binding patterns of top-hit
molecules were compared with the reference compound
for G12D. For the G12D-hydroxyzine complex, two H-
bonds formed with A59 and Q61 and Pi-alkyl with V7,
V9, and M72 (Fig. 5A,B). Three H-bonds were formed for
G12D-zuclopenthixol with K16, D12, and D69; a Pi-cation
with R68; and three Pi-alkyls with R68, H95, and Y96
(Fig. 5C,D). For the G12D-fluphenazine complex, it was
observed that a single H-bond formed with G10 and a Pi-PI
stacked with Y96 (Fig. 5E,F). A single H-bond formation
was observed for the G12D-doxapram complex with K16,
a single Pi-Pi stacking at Y96 (Fig. 5G,H).

3.6 Molecular Dynamics Simulation Analysis

The MDS of 200 ns were performed on each com-
plex to examine the stability of the docked hit molecules
compared to sotorasib. The Charmm27 force field was
used for the simulations. The structural stability of the
nine complexes was assessed using the RMSD. The G12C-
afatinib and G12C-hydroxychloroquine complexes showed
more deviations (more than 0.2 nm) (Supplementary Fig.
4A), while the G12D-zuclopenthixol complex showed the
most fluctuations (0.25 nm) (Supplementary Fig. 4B).
The G12C-osimertinib and G12D-hydroxyzine complexes
exhibited the least deviations compared to the G12C and
G12D-sotorasib complexes. The intermolecular hydrogen
bonds were calculated for all nine complexes to determine
which bonds contribute to stable complex formation. All
three inhibitors in G12C had a greater number of hydro-
gen bonds than sotorasib (1–2), with a total of 5–6 bonds in
each case (Supplementary Fig. 4C). In G12D, all four in-
hibitors showed a moderate number of hydrogen bonds (1–
4) in comparison to sotorasib (Supplementary Fig. 4D).
The root mean square fluctuations (RMSFs) values were
calculated for each of the complexes using ggplot2. In
G12C, the highest fluctuations were observed in G12C-
hydroxychloroquine (0.38 nm), followed by G12C-afatinib
(~0.35 nm) (Fig. 6A). In contrast, in G12D, the highest
fluctuations were seen in G12D-doxapram (~0.34 nm), fol-
lowed by G12D-fluphenazine (~0.29 nm) in comparison to
sotorasib and other inhibitors (Fig. 6B). The compact nature
of protein was assessed by visualizing the radius of gyra-
tion (Rg) from the MD trajectory. The osimertinib complex
showed a steady graph in comparison to the sotorasib com-
plex (Fig. 6C), while the G12D-doxapram, zuclopenthixol,
and hydroxyzine complexes all displayed a consistent Rg

trend in comparison to the sotorasib complex (Fig. 6D).
Across the simulation process, the mean Rg for all nine
complexes was 1.53–1.59 nm.

The movements of the C atoms in each of the nine
complexes were analyzed using PCA, as the atomic dy-
namics of the macromolecule are collective. The PCA
plot was created using the first and last PCs, represent-
ing the models’ basic aggregate motion. When compared
to sotorasib, osimertinib showed less separation of mo-
tion in the G12C mutant (Fig. 7A), while hydroxyzine
and zuclopenthixol showed less separation of motion in
G12D (Fig. 7B). The 3D Gibbs FEL plots show a lower di-
mensionality in the G12C-osimertinib complex and G12D-
zuclopenthixol compared to other inhibitors and reference
compounds (Supplementary Figs. 5,6). The stability of
the complexes is represented by the volume and shape of
the lowest energy region, shown in blue.

4. Discussion
K-Ras mutations are among the most common onco-

genic mutations and play a crucial role in tumor initiation
and development, making them a high-priority drug target
[7,10,54]. According to Lu et al. (2016) [55], K-Ras-
G12 mutations account for 89% of all human malignan-
cies, while G13 and Q61 mutations account for 9% and
1%, respectively. However, because of smooth surface
and unique binding crater, K-Ras is still difficult for small
molecule inhibitors to target precisely [56,57]. To address
this challenge, we used a virtual screening technique based
on pharmacophores to identify key inhibitors with anti-
cancer efficacy against K-Ras mutants. Two different phar-
macophore hypotheses were constructed based on seven ex-
isting inhibitor compounds, accommodating five features
(three aromatic groups, one hydrogen bond donor, and ac-
ceptor group) (Fig. 1A) and three features (two aromatic
groups and a hydrogen bond acceptor group) (Fig. 1B) for
G12C and G12D respectively. These hypotheses were used
to create a phase database to find hit molecules that might
superimpose with the hypotheses. After filtering, we found
299 hit compounds from 2672 FDA-approved compounds.
These compounds were then submitted to docking using the
three Glide modules, and we identified 3 and 4 hit com-
pounds with higher XPGscores against K-Ras mutant mod-
els compared to the reference compound (sotorasib). These
hit compounds were then subjected to an ADMET study us-
ing QikProp.

Our study selected three and four hit molecules for
G12C and G12D, respectively, based on the XP Gscore
and QikProp assessments. All of these hit compounds ex-
hibited substantial descriptor scores compared to sotora-
sib. Many studies have linked K-Ras mutations to brain
tumor progression and distant brain failure (DBF) in ad-
vanced NSCLC and lung adenocarcinomas. Compared to
sotorasib, all of our hits had substantial descriptor scores.
Recent studies have shown that mutant K-Ras is involved
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Fig. 4. The image depicts multiple interactions between the ligand and the G12C K-Ras protein. The diagrams (A), (C), and (E)
show the ligand interactions as visualized by the Maestro suite, while (B), (D), and (F) show the 2D ligand interactions as visualized by
Discovery Studio. The complexes shown in (A) and (B) are G12C-Afatinib, those in (C) and (D) are G12C-Osimertinib, and those in (E)
and (F) are G12C-Hydroxychloroquine. In the Maestro suite’s ligand interaction diagrams, the red, green, and purple residue interactions
represent Pi-Cation, Pi-Pi stacked/T-shaped, and hydrogen bonds, respectively.
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Fig. 5. The image depicts multiple interactions between a ligand and the G12D K-Ras protein. The diagrams (A), (C), (E), and
(G) are from the Maestro suite, while (B), (D), (F), and (H) are 2D ligand interactions from Discovery Studio. The G12D-Hydroxyzine,
G12D-Zuclopenthixol, G12D-Fluphenazine, and G12D-Doxapram complexes are represented by (A) and (B), (C) and (D), (E) and (F),
and (G) and (H) respectively. In the Maestro’s ligand interaction graphs, the red, green, and purple residue interactions represent Pi-
Cation, Pi-Pi stacked/T-shaped, and hydrogen bonds, respectively.
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Fig. 6. The plots represent the RMSF and Rg of the G12C andG12Dmodels complexed with reference (Sotorasib) and shortlisted
inhibitor compounds. The first plot (A) shows the RMSF of the G12C model complexed with Sotorasib, Osimertinib, Afatinib, and
Hydroxychloroquine. The second plot (B) shows the RMSF of the G12D model complexed with Sotorasib, Doxapram, Fluphenazine,
Hydroxyzine, and Zuclopenthixol. The third plot (C) shows the Rg of the G12C model complexed with Sotorasib, Afatinib, Osimertinib,
and Hydroxychloroquine. The fourth plot (D) shows the Rg of the G12D model complexed with Sotorasib, Doxapram, Fluphenazine,
Hydroxyzine, and Zuclopenthixol.

Fig. 7. The figure shows the PC1 and PC2 contact maps of the G12C and G12D models complexed with inhibitor molecules,
illustrating the Cα motions relative to the reference molecule Sotorasib. Essentially, these plots depict the alterations in the protein
structure of the G12C and G12D models upon complexation with inhibitor molecules, relative to their structure when complexed with
Sotorasib. The initial plot (A) illustrates the contact maps for PC1 and PC2 of the G12Cmodel when complexed with Sotorasib, Afatinib,
Osimertinib, and Hydroxychloroquine. The subsequent plot (B) displays the contact maps for PC1 and PC2 of the G12D model when
complexed with Sotorasib, Doxapram, Fluphenazine, Hydroxyzine, and Zuclopenthixol.

in metastatic brain development and DBF in lung adeno-
carcinomas and NSCLC. Our selected molecules have de-
scriptors within a substantial range and were observed to

be more efficient than sotorasib in satisfying the ADME
criteria. The hit compounds demonstrated CNS action and
could penetrate the BBB in severe forms of cancer, particu-
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larly when brain metastases develop, which was considered
as the primary criteria for the ADME evaluation stated in
Supplementary Tables 1,2.

Sotorasib, a commercialized drug, was generated with
improved potency and relatively good developmental prop-
erties throughH95 groove binding [58]. H95 is a distinctive
aspect of AMG510 binding to the P2 pocket of K-Ras [58].
AMG510 strengthens its conjunction from the backbone of
helix 2 to switch II by pervading the interaction of Y96 by
hydrophobic and H95 grooves. The interactions between
our G12C-sotorasib complex were retained due to this sin-
gular occurrence. G12C-osimertinib (Fig. 4C,D) and hy-
droxychloroquine (Fig. 4E,F) exhibited novel H95 groove
binding through Pi-Pi stacking interactions, while G12D-
zuclopenthixol utilized groove binding (H95) to improve
chemical selectivity and potency through a Pi-alkyl inter-
action (Fig. 5C,D). As previously stated, these interactions
boosted the effectiveness and potency of sotorasib. With
our study, we anticipate that our estimated hit compounds
will functionally and efficiently inhibit K-Ras mutants.

Recent studies have discovered cavities in the K-Ras
protein that drugs can target, specifically the switch I/II
pocket between switches I and II [59–62]. Our study found
that the G12C-osimertinib (R68) complex interacts with
residues in the switch I/II pocket, and when the G12D mu-
tant was complexed with zuclopenthixol (R68), a similar
interaction was observed. This unique interaction may en-
hance the drug’s ability to inhibit mutant K-Ras by increas-
ing its binding affinity and efficacy. Molecular dynamics
simulations were used to study the behavior and motion
of K-Ras mutants when combined with hit molecules. We
analyzed a simulation trajectory of 1800 ns for both mu-
tant models. The Afatinib and hydroxychloroquine com-
plexes causedmore significant changes in backbone RMSD
than the Osimertinib complex in G12C (Supplementary
Fig. 4A), while in G12D, zuclopenthixol, doxapram, and
fluphenazine complexes caused more significant changes
than the hydroxyzine complex (Supplementary Fig. 4B).
We also calculated the RMSF of C atoms to understand how
the binding of hit molecules affects the flexibility and fluc-
tuation of mutant complex residues. Our findings showed
that the G12C-osimertinib complex had the least structural
variation (Fig. 6A), while the zuclopenthixol complex had
the least variation in G12D. In the switch I/II regions, sig-
nificant variations were observed for the complexes of hy-
droxychloroquine and afatinib with G12C and doxapram
and hydroxyzine with G12D. The binding of a solid sub-
stance in the cryptic groove of K-Ras could lead to struc-
tural inactivation, which may be linked to reduced fluctu-
ations. This could favor the inhibition of the G12 mutant
when hit chemicals are bound to the mutant structure. Con-
versely, hydroxyzine and fluphenazine showed comparable
results, ensuring improved binding of the hit compounds
(Fig. 6B).

The computation of protein compactness was visual-
ized by analyzing the Rg for the complexes, which is a crit-
ical factor in predicting the compaction of a protein in a
solvent [63,64]. The G12C and G12D complexes with os-
imertinib and doxapram exhibited lower Rg values (1.3–1.5
nm) throughout the simulation compared to sotorasib and
other hit compounds (Fig. 6C,D), indicating that the mu-
tant complexes were more tightly condensed and had higher
binding efficiency. The stability of a complex depends on
the hydrogen bonds formed between the protein and lig-
ands [65–67]. Detailed information about receptor-ligand
interactions can be obtained by evaluating intermediate in-
termolecular H-bonds. The G12C complex revealed that
all three inhibitors had more H-bonds (5–6) than sotorasib
(1–2) (Supplementary Fig. 4C), while the G12D complex
with four inhibitors demonstrated an average number of H-
bonds (~1–4) (Supplementary Fig. 4D). Trajectories were
used to examine the PCA of all nine complexes to better
understand collective structural movements. G12C’s os-
imertinib exhibited less motion separation than other com-
plexes (Fig. 7A), while in G12D, fluphenazine, hydrox-
yzine, and zuclopenthixol had a lower conformation sub-
space compared to other complexes (Fig. 7B). The Gibbs
FEL 3D maps revealed that the G12C-osimertinib com-
plex had the smallest basin compared to other inhibitors
(Supplementary Fig. 5) and sotorasib, while the FEL
plot of G12D-Fluphenazine and zuclopenthixol revealed a
minimum basin compared to other inhibitors and sotorasib
(Supplementary Fig. 6).

5. Conclusions
We identified potential drugs for mutant K-Ras mod-

els (G12C and G12D) using E-pharmacophore-based vir-
tual screening. We have developed two E-pharmacophore
models for the mutants, with five attributes for G12C and
three for G12D. Our computational approaches, including
QiKProp, XP docking, and simulations, have led to the dis-
covery of hits for G12C (afatinib, osimertinib, and hydrox-
ychloroquine) and G12D (hydroxyzine, fluphenazine, zu-
clopenthixol, and doxapram) models. The ADME descrip-
tors from QikProp showed an adequate range for the se-
lected inhibitor molecules. By examining how the hit com-
pounds interact with the mutants, we demonstrated their ef-
fective binding to the H95 groove of G12 mutants, inhibit-
ing their function. The simulation trajectories showed that
the mutants formed stable complexes with the inhibitors.
These complexes could be used in in vivo and in vitro
studies to develop a promising drug that could be an al-
ternative to sotorasib. Additionally, experimental studies
on the G12C-osimertinib, G12D-fluphenazine, and G12D-
zuclopenthixol complexes might be a good first step toward
creating an inhibitor molecule with high activity and low
toxicity.
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