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Abstract
The need to limit anthropogenic  CO2 emissions and lower the atmospheric  CO2 concentration makes  CO2 conversion an 
imminent requirement. Availability of suitable facilities and prior understanding how electro and thermal catalysis work 
renders them as appealing platforms for conversion of  CO2. Catalysts play a crucial part in the conversion of  CO2 to chemicals 
in both processes. Catalysis is a process initiated by the interaction of reactants, intermediates, and products produced on 
the catalyst’s surface. Generally, higher temperatures in thermo-catalytic process or electrical potentials in electrocatalytic 
process are used to increase the reaction rate to get the desired results and to overcome the kinetic barrier. Several studies 
have been reported in both the processes with a desire to decrease the atmospheric  CO2 concentration by stopping  CO2 emis-
sions at the site of generation itself. The viability of catalytic performance in both situations for the large-scale conversion 
of  CO2 is still up for debate. In this review, we intend to focus on recent developments in  CO2 conversion aided by diverse 
catalysts by analyzing and comparing proof-of-principle investigations on applied conditions, catalyst activity and stability 
for thermocatalytic and electrocatalytic  CO2 conversions. The most common catalyst synthesis techniques employed in both 
experiments were analyzed. Primary goal of this review is to draw connections between the two fields in order to generate 
fresh insights that will lead to a more efficient and integrated  CO2 conversion process.
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1  Introduction

The atmospheric  CO2 emissions after the industrial revo-
lution and the rapid expansion of fossil fuel based sys-
tem made it a prominent cause of global warming [1, 2]. 
Currently, the majority of energy utilized worldwide is 
produced by burning hydrocarbon fuels, which have low 
energy conversion efficiency and produce a lot of  CO2 emis-
sions [3, 4]. The reliance on fossil fuels has economic and 

geopolitical implications. Simultaneously, alternative, sus-
tainable sources of energy cannot meet the fast increasing 
demand. However, predicting the precise future implica-
tions of anthropogenic climate change is challenging, the 
scientific community agrees that limiting  CO2 emissions is 
very desirable [5]. We emphasize that using  CO2 to make 
fuels and chemicals does not remove any net  CO2 from the 
atmosphere, but it can replace the use of fossil fuels and 
could potentially lower net  CO2 emissions. The carbon 
that is used to create chemicals and fuels can be thought of 
as coming from  CO2, which is the eco-friendliest source. 
Between 1 and 4.2 gigatons of  CO2 could potentially be 
used as fuels each year, according to estimates [6]. With 
the rising demand for fossil fuels and chemicals made from 
fossil feedstock’s,  CO2 capture and utilization could there-
fore be important for assisting in meeting global emission 
targets. Currently, most  CO2 chemical conversion research 
is focused on thermocatalytic [7, 8] and electrocatalytic 
reactions [9, 10].  CO2 electrocatalytic conversions are most 
frequently carried out on a smaller scale, which is preferable 
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for the limited  CO2 conversion to fine compounds. Whereas 
thermocatalytic conversions are more viable for large scale 
applicability due of its simple process equipment, minimal 
expense and ease of industrial expansion [11]. Since using 
captured  CO2 to create synthetic chemicals and fuels is an 
appealing way to cut  CO2 emissions, numerous research 
groups throughout the world are interested in this subject 
[12]. Figure 1 shows the possible products that could be 
generated through the conversion of  CO2 via electrocatalysis 
and thermocatalysis. Carbon dioxide  (CO2) is electrochemi-
cally converted into a wide range of products, such as for-
mic acid (HCOOH), methanol  (CH3OH), carbonmonoxide 
(CO), and methane  (CH4), in aqueous conditions by the 
use of  H2O as an  H2 source has been the subject of exten-
sive investigation [13–17]. This strategy seems appealing 
because it simply requires water,  CO2 and electricity as an 
energy source. However, the  CO2 conversion process via 
electrochemistry uses electricity inefficiently [18]. Low  CO2 
solubility in water and significant diffusion constraints place 
restrictions on this process [19]. Thermocatalytic conversion 
is an alternate strategy that combines a heterogeneous cata-
lyst and high temperatures together to provide quick reac-
tion rates and, as a result, enable high volume production 
[20, 21]. But it was found from the study that in order to 
obtain the requisite kinetics and thermodynamics for ther-
mocatalytic  CO2 conversion on conventional catalysts, high 
temperatures are needed, which has a substantial impact on 
equipment and operating expenses [22]. For the thermocata-
lytic process, a  H2 source is required for the  CO2 conversion 
into fuels and chemicals.11 Methane-dry-reforming (MDR), 
reverse-water–gas-shift (RWGS),  CO2 methanation, and  CO2 

hydrogenation are a few thermocatalytic techniques that 
can be used to convert  CO2.8 Syngas (predominantly  H2 
and CO in combination) is produced when methane  (CH4) 
reacts with  CO2 in the process of methane-dry -reform-
ing (MDR) [23–25]. The reverse-water–gas-shift-process 
(RWGS) [26–29], a potential path for  CO2 hydrogenation, 
is another method of producing syngas. Syngas is a valu-
able feedstock for chemicals that can be employed in Fis-
cher–Tropsch synthesis (FTS) to further convert to fuels 
[30, 31].  CO2 hydrogenation is a method for transforming 
 CO2 to methanol and other hydrocarbons like lower olefins, 
aromatics, gasoline, and petroleum gas [32–34]. Another 
method for converting  CO2 into  CH4 with the help of hydro-
gen  (H2) is  CO2 methanation [35–37]. The thermocatalytic 
method for producing dimethyl carbonate (DMC) from  CO2 
and methanol with a novel designed catalyst is an effective 
way to reduce  CO2 emissions [1]. There are a number of 
benefits to electrocatalytic  CO2 conversion, including the 
ability to create desired reaction products. By modifying 
the catalyst's structure and applied voltage, Hori et al. were 
able to report around twelve products from electrochemical 
 CO2 reduction on copper-based catalyst [38]. But in the case 
of copper catalyst, the system becomes complex due to the 
synthesis of numerous products. However, researchers were 
able to successfully produce selective product synthesis of 
ethylene (gas) and ethanol (liquid) on copper catalyst by 
considering the additional factors such as electrolyte pH, 
membrane, electrochemical reactor, catalyst design, and 
environment [39]. Numerous investigations have shown the 
making of a single HCOOH product through electrochemical 
 CO2 reduction, utilizing suitable catalysts such as zinc (Zn), 

Fig. 1  Products of  CO2 conver-
sion via Thermocatalysis and 
Electrocatalysis
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tin (Sn), and lead (Pb) [40–42]. The prospective technique is 
the production of HCOOH as the sole product of  CO2 elec-
troreduction because the heavy demand in pulp, paper, and 
pharmaceutical industries [43]. We can produce any of the 
above products of our interest in the case of electrocatalysis, 
however, there are advantages and disadvantages to both 
thermocatalysis and electrocatalysis for  CO2 conversion. 
In order to make connections between the two fields and 
produce new ideas that will result in a more effective  CO2 
conversion process, we will have to compare and contrast the 
benefits and drawbacks of thermocatalysis and electrocataly-
sis for a  CO2 conversion, which is explored in this review 
along with a discussion on the reactors design in both the 
catalytic systems.

2  Thermocatalysis and electrocatalysis 
of  CO2 conversion

In a practical situation, catalysts decrease the energy 
required for conversion of an unreactive  CO2 into a suitable 
product by chemically activating it. The process of changing 
the rate of a chemical reaction by introducing a catalyst is 
called catalysis. The two most useful catalytic  CO2 conver-
sion processes are electrocatalysis, which involves the  CO2 
dissolved in electrolytes reacts on a surface of electrode at 
ambient conditions and applied voltage, and thermocataly-
sis, which involves passing gases  (CO2 and other gases) over 
a catalyst at adequate pressures and temperatures [44]. In 
Fig. 2, we outline the salient features of the electrocatalytic 

and thermocatalytic  CO2 conversion technologies, highlight-
ing the variations in the reaction pathways, end products, 
advantages, and disadvantages of each approach.

When  CO2 is converted via electrocatalysis, the elec-
trode (catalyst) is subjected to an applied voltage that gen-
erates electrons & ions, which are considered as reactants 
in the electrochemical reaction alongside  CO2 [45]. The 
electrochemical system needs an electrolyte to move ions, 
conductors to move electrons. To achieve a high yield and 
desired product selectivity, the catalyst selection, voltage, 
and electrolyte are all essential. In electrocatalysis, the reac-
tion occurs at the catalyst-electrolyte interface of two differ-
ent electrode surfaces; initially, oxidation takes place at the 
anode-catalyst surface, and then ions are transferred from 
the anode to the cathode surface, where a second reaction 
occurs that produces the desired products [46, 47]. In ther-
mocatalytic conversions, high temperatures are required for 
the reaction and there are multiple approaches for the  CO2 
conversion with high product outputs considered as a best 
conversion technique when compared with electrocatalytic 
process [44]. However, the process has drawbacks such as 
excessive energy consumption, poor selectivity, instability, 
and coke production [48]. The variety of possible products, 
some of which may be thermodynamically favorable but 
exhibit slow kinetics, such as the Sabatier reaction (metha-
nation) or the production of methanol and dimethyl ether 
(DME), or thermodynamically not favorable for partial 
reduction to CO, makes thermocatalytic  CO2 reduction 
very challenging. In general, high reaction temperatures are 
required for a high  CO2 activation barrier, whereas high  H2 

Fig. 2  Characteristics of the thermo- and electrocatalytic  CO2 conversion technologies
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pressures are necessary for a  H2 activation; both of these 
factors reduce energy efficiency. Additional difficulties 
with material design include: The co-existence of enough 
active sites for each reactant is necessary for  CO2 reduction 
because it necessitates molecular hydrogen breakdown into 
H* adatoms close to an activated COx species [49]. The 
advantages of the electrocatalytic method are the ability to 
conduct at ambient temperature, high yield, and selectivity 
while requiring less initial investment. The drawbacks of this 
method include limited  CO2 adsorption, strong hydrogen 
evolution with significant over potential, and the generation 
of numerous products [6]. In the electrocatalytic  CO2 con-
version process, it is challenging to activate  CO2 molecule, 
which is a chemically inert molecule with linear chemical 
linkages. It is difficult to electrocatalytically transform  CO2 
into desirable products. High over potential, low selectiv-
ity, and unable to endure intense catalytic activity for an 
extended period of time are common issues with electro-
catalytic  CO2 conversion. Additionally, it is necessary to 
stop the hydrogen evolution reaction (HER), a side reaction. 
Despite being a tremendously important energy source, in 
order to exploit the production of energy-demanding carbon-
based fuels, the applied potential energy for the reaction 
must be used for a  CO2 conversion reaction rather than for 
 H2 evolution reaction. To increase the selectivity, stability 
and decrease over potential, it is crucial to use the right elec-
trocatalysts [50]. Selectivity is a constant problem in both 
processes, and a number of methods have been developed 
to address these issues by changing the catalytic system's 
intrinsic or extrinsic characteristics in order to control reac-
tion activity and selectivity. For example, changes to the 
electrocatalysts surface structure, particle size, roughness 
factor, and composition are all part of the intrinsic properties 
of the catalysts that are being monitored [4–6]. Similar to 
this, the scientific community has determined extrinsic fac-
tors that affect the reactions activity and selectivity. These 
variables include the electrolyte cation, molecular additives, 
electrode voltage, and pH in case of electrocatalytic process 
and temperature, reactants concentration, flowrate, pressure 
in thermocatalytic process [6]. Separation is a big problem 
in the electrocatalytic process since some catalysts generate 
several products. However, researchers have started working 
on single product yields on specific catalysts, such as Sn, Pb, 
and Zn catalysts, in an attempt to tackle the problem [16, 
41–43]. Because a mixture of hydrocarbons and oxygenates 
is generated depending on the catalyst, the Fischer–Tropsch 
synthesis of hydrocarbons from  CO2 suffers from very poor 
yields of any one product. Here, separation is a problem that 
is resolved by choosing a certain catalyst for high product 
selectivity and to limit the other side reactions [6]. Numer-
ous research has focused on the yield of electrocatalytic 
reaction of a targeted product, although efforts are underway 
to scale up the process [9, 10, 51].

2.1  Various catalysts synthesis techniques 
in thermocatalytic  CO2 conversion

In thermocatalytic conversion, supported catalysts are essen-
tial. When making catalysts for the thermocatalytic path-
way, the preparation process is a crucial factor to take into 
account. The crystal structure, metal dispersion, catalytic 
activity, and allowed metal loading can all be impacted by 
the methods utilized to combine metal with its support. 
Catalysts for thermocatalytic  CO2 conversion processes 
were made using a various synthetic approaches [52]. The 
following is a list of some of the methods for synthesizing 
catalysts. In our discussions, some selected metals (e.g., Cu 
and Zn) are frequently used to represent the active sites; 
similarly, specific oxides (e.g.,  Al2O3 and  SiO2) are used 
as support powders, however the methods can be treated as 
general and extend to synthesize other metals/oxide systems 
as well.

3  Precipitation method

Nitrate salts of active metals (e.g. copper (Cu) and zinc (Zn)) 
are dissolved in deionized water and mixed vigorously with 
support (e.g.,  Al2O3 and  SiO2) powders in the precipitation 
process [53, 54], the NaOH-containing aqueous solution is 
added drop by drop. The pH was maintained at a typical level 
of 9.0 throughout the precipitation. Finally, the product is 
aged at room temperature, while being stirred; then filtered, 
followed by washing with deionized water, and thereafter the 
filter-cakes are being dried overnight. The obtained catalysts 
are subjected to a calcination process before to catalytic runs 
[53]. A general synthesis of metal catalyst by a precipitation 
method is schematically show in Fig. 3a.

4  Impregnation method

The impregnation method is one of the most frequently used 
method to produce heterogeneous catalysts. Because of its 
inexpensive instrumentation requirements, simple to follow 
technical steps, and minimal waste, this preparation method 
has been applied for a diverse set of catalytic systems [55]. 
Figure 3b illustrates the impregnation method procedure for 
making metal catalysts. The Cu and Zn cation containing 
salt solution is added to the  Al2O3 and  SiO2 supports dur-
ing the impregnation method, then the mix is vigorously 
stirred for hours at room temperature. After that, water is 
evaporated using a rotating evaporator with low pressure. 
The prepared catalysts are sent for a calcination prior to per-
forming catalytic reaction [53].
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5  Micro‑emulsion method

The micro emulsion method has been regarded as the best 
way to create very thermally stable organic and inorganic 
nanomaterial catalysts [56]. The catalyst produced using 
this technique has been reported to enhance  CO2 methana-
tion by incorporating a large surface area and extremely 
high metal phase dispersion [57]. This approach involves 
the use of liquid solutions that are isotropic and com-
prise oil, water, and a combination of co- and surfactants. 
Metal salts and other substances make up the majority 
of the aqueous phase, the oil is mainly a blend of olefins 
& hydrocarbons. Both water-in-oil and oil-in-water micro 
emulsions come into one of two categories, with the solute 
coming under the first category and the solvent/dispersion 
medium coming under the second [52]. As an example, 
highly dispersed aggregate of magnesium and palladium 
in silica are reported to act as a catalyst was prepared by 
means of a reverse micro emulsion synthesis [58]. Cata-
lyst synthesis using the Microemulsion method is shown 
schematically in Fig. 4a.

6  Sol–gel method

Numerous nanostructures, in particular metal oxide nano-
particles, have been produced using the sol–gel method 
[59]. Figure 4b illustrates the Sol–gel method procedure 
for making metal catalysts. This method entails the dis-
solving of molecular precursor (metal alkoxide) in water/
ROH, heated, and stirred until it gels [60]. Due to the gel’s 
wet/moist nature produced during the hydrolysis or alcoho-
lolysis process, it must be dried correctly based on the gel's 
intended use and desired properties. Further, the produced 
gels are crushed and then calcined [60].

7  Combustion method

The solution combustion method (SCM) has been widely used 
to prepare nanocrystalline materials and catalysts because of 
being an easy, cost-effective technology [61]. The combus-
tion approach has been applied to produce an array of metal/
metal oxide (Ni/ZrO2) catalysts with metal loading and various 

Fig. 3  Schematic representation 
of catalyst synthesis by a) Pre-
cipitation Method b) Impregna-
tion Method
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Fig. 4  Schematic representation of catalyst synthesis by a) Microemulsion Method b) Sol–gel Method c) Combustion Method
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combustion methods, including glycerol, urea, ethanol, glycol, 
and n-propanol [62]. Metal ion nitrate salts in combination 
with a deionized water are combined and agitated for half an 
hour at room temperature, the mixture thereafter placed in a 
quartz tank. Later, the mix is heated to 550 °C in a tube furnace 
and kept there for 4 h before being cooled to room temperature 
to get a Ni/ZrO2 catalysts [62]. Schematic of Metal catalyst 
synthesis using a combustion method was shown in Fig. 4c.

7.1  Various catalysts synthesis techniques 
in electrocatalytic  CO2 conversion

A significant and crucial part of electrocatalytic  CO2 conver-
sion is played by catalysts acting as electrodes. There are a 
many number of metallic catalysts that can catalyze the  CO2 
conversion reaction [63]. Different methods of synthesis 
have been applied for producing catalysts for electrocatalytic 
 CO2 conversion systems. Some of the methods employed to 
synthesize the catalysts are listed below.

8  Electrodeposition method

By allowing catalysts to grow directly on conductive sub-
strates, numerous techniques have been used for making 
electrodes to date. For widespread application, electrodepo-
sition stands out among them as being inexpensive and envi-
ronmentally friendly [64]. An externally applied potential 
forces current to flow as a result of the movement of ions 
(positive & negative) in the electrolyte solution, and a coat-
ing film is formed on the electrode by the redox reaction 
of electron gain. This process is known as electrochemi-
cal deposition [16]. Figure 5a illustrates the electrodeposi-
tion method procedure for the metal catalysts synthesis. In 
this process, the anode metal can be oxidized to generate 
a metal ion in the solution, and a metal coating layer on 
the cathode may result from the reduction of metal ions. 
The metal ion reacts with the electron that is produced via 
oxidation to cause the deposition on the cathode. The cur-
rent flowing through the electrodes will balance the overall 
charge [42, 65]. Numerous studies have been published on 
the electrodeposition method of producing catalysts for elec-
trocatalytic  CO2 conversion [16, 65, 66]. Replacing the solar 
energy with electrical energy for the catalyst synthesis, it 
has been reported to synthesize Sn-based catalysts using the 
solar electrodeposition approach in order to convert  CO2 to 
HCOOH electrocatalytically [67].

9  Sputtering method

Sputtering is the process of high-energy plasma or gas par-
ticles striking solid surfaces. Sputtering is believed to be a 
successful method for creating thin nanomaterial films [68]. 

Sputtering commonly takes place in an evacuated cham-
ber that has been injected with sputtering gas as shown in 
Fig. 5b. Gas ions are generated when gas and free electrons 
collide while being exposed to a high-voltage cathode. The 
cathode target is continuously struck by the strongly accel-
erating ions in an electric field that are positively charged, 
causing the atoms to be ejected from the surface of the target 
[69]. To convert  CO2 electrocatalytically, Cu and Cu-C, two 
distinct Cu-based cathode catalysts have been reported to be 
prepared by means of a sputtering method [70].

10  Hydrothermal synthesis

The hydrothermal synthesis is a good method for producing 
large amounts of catalyst with high purity [71]. The metal 
salt is initially dissolved in an aqueous water/ethylene glycol 
solution while stirring continuously at higher temperatures 
for a longer period of time to produce a metal salt solution 
[72]. Then the molar concentration of precursor is prepared 
under vigorous stirring. By adding the precursor solution 
drop by drop to the metal salt solution while stirring continu-
ously for an extended period to obtain a transparent solu-
tion. After that, the mixture is placed into an autoclave and 
maintained for at a higher temperature, and the powder is 
further separated from the solution by centrifugation. The 
product is dried in a vacuum oven to generate the required 
metal catalyst [71, 72]. Figure 5c illustrates the catalysts 
synthesis by a hydrothermal method. The authors reported 
the hydrothermal synthesis of copper-based catalysts for the 
electrocatalytic conversion of  CO2 into CO and  CH4 prod-
ucts [71, 73].

11  Comparison of several  CO2 
conversion catalysts through thermo‑ 
and electrocatalysis

Catalysts play a significant part in the thermocatalytic and 
electrocatalytic conversion reactions. Several catalysts 
have been employed to convert  CO2 via thermocatalytic 
and electrocatalytic processes has been reported in a num-
ber of studies [6, 46, 52]. Certain catalysts for  CO2 con-
version have been discovered to be effective in both ther-
mocatalysis and electrocatalysis [6]. In order to convert 
 CO2 to  CH3OH, copper is generally regarded as the best 
electrocatalyst and thermocatalyst. The  CO2 gives numer-
ous products on the copper catalyst with higher  CH3OH 
efficiency in the electrocatalytic process [74], whereas 
 CO2 hydrogenation in thermocatalysis yields  CH3OH as 
a primary product with high efficiency [75]. Similarly, in 
both catalysis processes, the Pd alloy catalyst is thought 
to be the most effective in converting  CO2 to HCOOH; 
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nevertheless, the thermocatalytic method exhibits better 
efficiency than the electrocatalytic approach [4, 76]. The 
production of CO was frequently achieved by the Au alloy 
in both catalysis process [6, 77]. The possibility of highly 
desirable methods for recycling  CO2 into various chemi-
cals is made possible by the thermocatalytic conversion of 
 CO2 to produce multiple products. Methane, carbon mon-
oxide, formic acid and methanol are just a few examples 

of the many products that can be formed based on the 
catalyst choice and the reaction conditions. The findings 
on many catalysts for thermocatalytic  CO2 conversion are 
shown in Table 1, and offer proof-of-concept support for 
the effectiveness of these catalysts in selectivity to vari-
ous products [6]. Numerous electrocatalysts for the elec-
trocatalytic  CO2 reduction process have been reported to 
make a range of products.

Fig. 5  Schematic representation of metal catalyst synthesis by an a) Electrodeposition Method b) Sputtering Method c) Hydrothermal Method
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The mechanism for the thermocatalytic hydrogenation of 
 CO2 to produce several products, such as  CH3OH, CO, and 
HCOOH on thermo catalyst, was illustrated in Fig. 6. The 
mechanism showed that formate route favors formation of 
products from the conversion of  CO2 [1, 8]. Adsorbed  CO2 
radical absorbs protons and transforms them into formate 
ions, which then absorb H + and create HCOOH or further 
splits into CO and OH ions, taking a proton to make CO 
and stripping away  H2O, and CO desorbs into gaseous form. 
or CO absorbs protons to create COH*, which then under-
goes hydrogenation to produce HCOH* and  H2COH*. The 
methoxy  (H2COH*) with proton generated  CH3OH in the 
form of gas. [8]. Further  CO2 can react with  CH3OH to form 
dimethyl carbonate [1].

A review of some of the most effective and selective 
electrocatalysts for a particular product may be found in 
Table 2. CO and HCOOH are produced electrochemically 
by the two-electron transfer reaction on diverse electro-
catalysts with remarkable faradaic efficiencies and low over 
potentials, whereas in the case of  CO2 conversion to meth-
ane, alcohols and ethylene exhibit significantly larger over 

potentials and lower selectivity’s [95]. Carbonates and 
bicarbonates of potassium & sodium are most frequently 
used liquid electrolytes in the reaction along with  K2SO4, 
Nafion, KBr and KCl respectively [4]. Most experiments 
show higher faradaic efficiencies and selectivity; hydro-
carbons were primarily detected in the presence of copper 
electrocatalyst [5]. Figure 7 showed the mechanism for 
the electrocatalytic reduction of  CO2 to yield a number of 
products, including  CH3OH, HCHO, and HCOOH, as well 
as  C2H5OH on copper catalyst [65]. The primary causes of 
the formation of different products from the electrocatalytic 
 CO2 conversion are the type of catalyst and addition of 
protons and electrons to the intermediate steps [42]. The 
reduction of  CO2 is shown by the mechanism, which begins 
with the acceptance of an electron from  Cu2O and adsorb-
ing on it to generate a  CO2 free radical. Next, a electron 
from  Cu2O is accepted and certain internal arrangements 
are made to form COads/CO. As a result, CO is released 
from the cathode's surface. By absorbing protons and elec-
trons from the anode, COads will further contribute to the 
process and create various products, primarily ethanol [65].

Table 1  Summary of the results of various catalysts for Thermocatalytic  CO2 reduction

Thermocatalyst Preparation method Reactor Used Reaction Condition %Product Selectivity Ref

CeO2 and ZnO supported Pd CO-Precipitation High Pressure Batch 
Reactor

2 MPa HCOOH [76]

Pd0.4 -CuMgAlOx CO-Precipitation Parr Reactor 550 °C, 10 and 30 Bar HCOOH [78]
Ir-PN/SBA-15 Grafting approach Parr 4590 Reactor 60 °C,4 MPa HCOOH [79]
Co/γ-Mo2N Impregnation method Fixed Bed Reactor 773 °C, CO (98) [80]
Ru-silicalite-1 Hydrothermal Fixed Bed Reactor 500 °C, 1 MPa CO(79.8) [81]
Pt/CeO2 Commercial Purchase Stainless Steel Microreac-

tor
300 °C and 1 atm CO [82]

Ni/La2O3 incipient wetness, impreg-
nation

Fixed Bed Reactor 350 °C, 15 Bar CH4 (100) [83]

Ni/TiO2 deposition–precipitation Fixed Bed Reactor 260 °C, 1 Bar CH4 (99) [84]
Ni/ZrO2 Hydrogel Fixed Bed Reactor 280–300 °C, 5 Bar CH4 (92) [52]
Ru/CeO2 Hydrothermal Fixed Bed Reactor 100–325 °C CH4 [85]
VOX-Ni Co-impregnation method Fixed Bed Reactor 380 °C CH4 (87.3) [86]
Rh/γ-A12O Wet Impregnation method Fixed Bed Reactor 50–150 °C,

2 Bar
CH4 (100) [87]

d/ZnO-ZIF-8 Hydrothermal Fixed Bed Reactor 290 °C,4.5 MPa CH3OH(70) [88]
Cu-ZnOx/ZnO Impregnation method Fixed Bed Reactor 250 °C,3 MPa CH3OH [89]
PdCuZnO/SiC Impregnation method Tubular Quartz Reactor 200 °C,0.1 MPa CH3OH(80.9) [90]
NiGa/SiO2 Incipient wetness impreg-

nation
Fixed Bed Reactor 205 °C,0.1 MPa CH3OH(98.3) [91]

Cu/ZnO/Al2O3/Y2O3 CO-Precipitation Fixed Bed Reactor 230 °C,9 MPa CH3OH(89.7) [75]
Pd/Mo2C Wet Impregnation method Parr 5500 Reactor 135 °C CH3OH(95) [92]
Au/ZnO Deposition Precipitation SS Tube Micro Reactor 240 °C, 50 MPa CH3OH(70) [93]
CuZnO@UiO-bpy Solvothermal reaction Fixed Bed Reactor 250 °C, 4 MPa CH3OH(100) [94]
Gd@CeO3 Wet Impregnation method Flow reactor 120 °C, 3 MPa OC(OCH3)2(99%) [1]
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Fig. 6  Reaction mechanism for 
the thermocatalytic  CO2 conver-
sion to various products

Table 2  Summary of the 
results of various catalysts for 
Electrocatalytic  CO2 reduction

Electrocatalyst Electrolyte Applied voltage Main Products Faradaic 
Effi-
ciency(%)

Ref

Sn 0.5 M NaHCO3 -0.46 (vs. RHE) HCOOH 90 [96]
Bi 0.5 M KHCO3 -1.6 (vs. RHE) HCOOH 98 [97]
Ag/Sn 0.5 M NaHCO3 -0.8 (vs. RHE) HCOOH 80 [98]
Pb 0.1 M KHCO3 -1.7 vs.(Ag/AgCl) HCOOH 94.1 [99]
Pd/Sn KHCO3 -0.26 (vs. RHE) HCOOH 100 [100]
Cu-Sn 0.1 M KHCO3 -0.6 (vs. RHE) CO 90 [101]
In(OH)3-Ag 0.1 M KHCO3, Nafion -0.7 (vs. RHE) CO 93 [102]
Au 0.5 M KHCO3 -0.35 (vs. RHE) CO 94 [77]
Graphene 0.1 M KHCO3 -0.58 (vs. RHE) CO 85 [103]
Pd 1 M KHCO3 -0.7 (vs. RHE) CO 93 [104]
Nano twin Cu 0.1 M KHCO3 -1.2 (vs. RHE) CH4 86.1 [105]
Cu 0.1 M NaHCO3, Nafion -0.54 (vs. RHE) CH4 88 [106]
Cu Nano sheet 0.1 M K2SO4 -1.18 (vs. RHE) C2H4 83.2 [107]
Cu Halide 3 M KBr -2.11 (vs. RHE) C2H4 60.5–70.5 [108]
Cu 0.1 M KHCO3 -0.98(vs. RHE) C2H4 60 [109]
Cu2O(OL-MH)/Ppy 0.5 M KHCO3 -0.85(vs. RHE) CH3OH 93 [74]
FeS2/NiS 0.5 M KHCO3 -0.6(vs. RHE) CH3OH 64 [110]
Pd/SnO2 0.1 M NaHCO3 -0.24(vs. RHE) CH3OH 54.8 [111]
BP Nano Particles 1 M NH3 -0.5(vs. RHE) CH3OH 92 [112]
Co(CO3)0.5(OH)
·0.11H2O

0.1 M NaHCO3  − 0.34 (vs. RHE) CH3OH 97 [113]

Cu/C 0.1 M KHCO3  − 0.7 (vs. RHE) C2H5OH 91 [114]
Cu/CNS 0.1 M KHCO3  − 1.2 (vs. RHE) C2H5OH 63 [115]
MC-CNT/Co 0.5 M KHCO3  − 0.32(vs. RHE) C2H5OH 60 [116]
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12  Comparison of catalyst deactivation 
and mitigation in thermocatalytic 
and electrocatalytic  CO2 conversion

The commercialization of a catalytic process depends heav-
ily on catalyst longevity, and which affects overall sus-
tainability, process design, reactors choice, and economic 
viability [49]. Though theoretically catalysts in their reac-
tion environment are not expected to change, however, over 
some intervals of time, catalyst deactivation always becomes 
apparent, frequently preventing commercial viability [117].

12.1  Catalyst deactivation and mitigation 
in thermocatalytic  CO2 conversion

Deterioration of the metallic constituent due to sintering/
coking/poisoning and/or oxidation, as well as physical & 
chemical alterations in the supporting materials are the most 
frequent causes of thermocatalytic reaction deactivation [49, 
118]. For catalytic applications, the tiny metal catalysts are 
typically loaded on carbon/metal oxide supports. The con-
gregation of the metals in these applications can also exhibit 
some degree of motilities, which is commonly referred to 
as the sintering of small metals in thermocatalysis [119]. 

Overall, sintering refers to the process of metal particle 
growth in a reactive environment, which can happen by par-
ticle migration or agglomeration [49]. Decreasing the cata-
lytic reaction temperature slows down the formation kinet-
ics of nano metals by lowering their diffusion coefficient of 
metallic components, which is a strategy for preventing sin-
tering [120]. Another reason for deactivation in thermoca-
talysis involving carbon-containing reactants is coking, in 
which the tightly bonded carbon poisons the metal's sur-
face. Low temperature operation, pore hierarchy, and oxy-
gen/steam introduction can significantly reduce coking. In 
some cases, the high catalyst activity made from crystalline 
frameworks allows for lower temperature  CO2 reduction, 
which could lessen coking [49]. Impurities in feeds have 
historically been linked to poisoning, and common instances 
include the sulfur/carbon-monoxide poisoning of metals 
[117]. Controlling the poisoning of metals by intermedi-
ates, reversibly bound reactants, or products is challeng-
ing. Developing multifunction thermocatalyst that combine 
catalytic sites for  CO2 reduction with the selective binding 
and molecular sieving properties of crystalline frameworks 
for eliminating SOx and NOx poisons can be an effective 
strategy [49]. Another deactivation issue in thermocataly-
sis is oxidation, where the oxidation of a metal might even 

Fig. 7  Reaction mechanism for the electrocatalytic  CO2 conversion to various products
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completely oxidize the nanoparticle, changing its structure 
and efficiency. The optimal reaction temperature must be 
chosen for the best possible combination of catalyst activ-
ity and stability, since thermocatalysis uses higher tempera-
tures, which promotes rapid oxidation [119].118 The ongoing 
involvement of the catalysts for metal organic frameworks 
in a thermocatalytic reaction modifies the physical–chemi-
cal features of a catalyst elements [49]. Catalysts deactivate 
as a result of such modifications to their characteristics. 
Higher reaction temperatures impact a catalyst's physical 
and chemical characteristics, which affects the activity and 
selectivity of the catalyst [120]. A careful selection of suit-
able metal catalysts with a high melting point is necessary 
for greater activity and stability. The creation of an exterior, 
metal oxide-based ''shell,'' which shields the particle from 
the harsh environment, is another technique reported for sta-
bilizing metal nanoparticles [118].

12.2  Catalyst deactivation and mitigation 
in electrocatalytic  CO2 conversion

It is well-known that during electrochemical  CO2 reduction, 
the catalyst deactivates [121]. Impurities in the input stream 
or electrolyte are the primary reasons for catalyst deacti-
vation. Electrochemical cell performance is influenced by 
the electrode, electrolyte,  CO2 concentration, and operating 
conditions [16]. However, the catalyst utilized in the reac-
tion significantly influences the selectivity and activity [6]. 
The onset reduction potential and the Faradaic efficiency are 
typically taken into account when evaluating catalytic activ-
ity, while changes in performance of catalyst with increasing 
electrolysis time are typically used to evaluate catalyst sta-
bility [122]. Regarding the catalyst’s stability, the problem 
of deactivation has frequently been discussed; the primary 
causes are the development of harmful intermediates and 
the accumulation of inert constituents on electrode’s surface 
[123]. Hori et al. suggested a number of potential causes 
for catalyst deactivation, which are linked with heavy metal 
impurities found in reagent used for electrolyte solution, 
the organic compounds that may be present in water, and 
adsorption of intermediate poisoning species/products cre-
ated during  CO2 conversion on electrodes [124]. In addition 
to this, the mode and circumstance of electrolysis can impact 
catalyst stability [122, 125]. However, the appearance of the 
catalyst surface following electrochemical reaction is not 
common, which implies that deactivation also depends on 
the experimental strategy utilized by the various research 
groups and not necessarily entirely on the intermediates 
or products generated during the reaction [124]. Several 
studies reported that catalyst is poisoned by the deposition 
of contaminants that were initially present in the solution. 
However, in some cases, a pre-electrolysis of electrolyte 
solution before the electrochemical reaction prevents such 

deactivation in  CO2 reduction [124, 126]. Consequently, the 
important factors need to be considered in order to mitigate 
the deterioration of catalyst stability/activity are the influ-
ence of catalyst type, structure, composition, and operating 
conditions [122].

13  Integrating thermo‑ and electrocatalysis 
for effective  CO2 conversion

It is difficult to distinguish between reactions that are trig-
gered by high temperatures or electric potential because 
certain materials used as catalysts behave differently in 
thermo- and electrocatalytic conditions. Although there are 
instances when knowledge is shared between the two plat-
forms, the individual scientific endeavors largely function 
independently. In electrocatalytic processes, the electro-
metal-solution interface may modify the reaction conditions 
affecting the reaction kinetics and that usually is not well 
understood in the case in thermo-catalytic reactions [22]. 
Nonetheless, with the advent of advanced tools like in-situ 
TEM and near ambient pressure XPS, it is anticipated that 
the local conditions near catalyst surface-reactant interface 
vary considerably during the course of reaction resulting 
in change in catalyst surface along with near-surface envi-
ronment. Various Cu–Zn based catalysts have been studied 
for the  CO2 conversion in both thermal  CO2 hydrogenation 
and electrochemical  CO2 reduction reactions [127–130]. 
Cu-Zr  based  composites employed in the synthesis of 
 CH3OH in the hydrogenation reaction and HCOOH in the 
electrochemical reaction [131, 132]. The electrocatalytic 
approach that creates HCOOH and the hydrogenation pro-
cess that produces CO are studied using Bi-In based catalysts 
[133, 134]. Because the aforementioned catalysts exhibit 
distinct product distributions in both reaction settings, it 
is challenging to directly compare the two approaches. For 
instance, even though multiple common catalysts have been 
used but at least one different supported catalyst (CuZn/C, 
CuZnO/Al2O3) was used in both processes [130, 135]. Inves-
tigations using identical reaction conditions and a common 
catalyst material can provide useful information for reveal-
ing commonalities and contrasts about the two systems reac-
tion kinetics and mechanism. Koshy et al. examined the 
Ni-C based catalyst in both reaction techniques, although 
different reactors and applied conditions were utilized, it was 
observed that the catalyst is effective for the CO generation 
in both the techniques, whereas a higher CO formation rate 
was noticed in electrocatalytic method than the thermocata-
lytic method [22]. A systematic study utilizing similar cata-
lysts in both the catalytic methods (thermal and electro) can 
provide deeper insights for quantitative comparison of the 
two reaction settings.
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14  Summary and perspective

This review provides a thorough summary of decades of 
history and current trends in the catalysis of  CO2 reduc-
tion to aid in the study and advancement of  CO2 thermo-
electroreduction. Thermo- or electrocatalysis can offer 
an appealing and sustainable solution to the challenge of 
combating climate change associated with  CO2 emissions 
by converting it to various chemicals and fuels. Although 
slow kinetics or thermal equilibrium can restrict cer-
tain reactions, the thermocatalytic method can easily be 
applied at a larger scale to achieve industrially significant 
results. In comparison, the electrocatalytic method of  CO2 
reduction is far less developed but has certain benefits, 
including low temperature and pressure, the use of water 
as a hydrogen source. A thorough study has been con-
ducted on catalysts, impact of reactor setup, and other 
applied conditions for  CO2 thermo-electroreduction. The 
generation of various products by  CO2 reduction has often 
seen thermocatalytic methods advance more than electro-
catalytic methods. Although many developed catalysts 
have been utilized to accelerate the production of various 
products and achieve high selectivity, it is difficult to meet 
the demands of commercial applications due to high over 
potential, low current density, low stability in electroca-
talysis, modifications in the crystalline structure during 
reaction, sintering, coking, poisoning, oxidation and low-
stability in thermocatalysis. Various catalysts explored and 
reported in the thermocatalytic and electrocatalytic  CO2 
conversion studies are summarized. To make it easier for 
readers to get the information they need for the catalyst 
synthesis, the most commonly used catalyst synthesis 
methods from both the studies have been summarized and 
presented in schematic forms. Furthermore, we presented 
the reaction conditions, selectivity, products and reactors 
employed together with the results of several catalysts for 
thermo- and electrocatalytic  CO2 reduction in tables. In 
both studies, a summary of the various catalyst deactiva-
tion causes and methods to mitigate the deactivation along 
with studies on integrating the two approaches for efficient 
 CO2 conversion are also provided.
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