
A machine learning-based optimization approach for pre-copy live
virtual machine migration

Raseena M. Haris1 • Khaled M. Khan1 • Armstrong Nhlabatsi1 • Mahmoud Barhamgi1

Received: 4 February 2023 / Revised: 4 March 2023 / Accepted: 30 March 2023
� The Author(s) 2023

Abstract
Organizations widely use cloud computing to outsource their computing needs. One crucial issue of cloud computing is

that services must be available to clients at all times. However, the cloud services may be temporarily unavailable due to

maintenance of the cloud infrastructure, load balancing of services, defense against cyber attacks, power management,

proactive fault tolerance, or resource usage. The unavailability of cloud services impacts negatively on the business model

of cloud providers. One solution to tackle the service unavailability is Live Virtual Machine Migration (LVM), that is,

moving virtual machines (VMs) from the source host machine to the destination host without disrupting the running

application. Pre-copy memory migration is a common LVM approach used in most networked systems such as the cloud.

The main difficulty with this approach is the high rate of frequently updating memory pages, referred to as ‘‘dirty pages.

Transferring these updated or dirty pages during the pre-copy migration approach prolongs the total migration time. After a

predefined iteration, the pre-copy approach enters the stop-and-copy phase and transfers the remaining memory pages. If

the remaining pages are huge, the downtime or service unavailability will be very high -resulting in a negative impact on

the availability of the running services. To minimize such service downtime, it is critical to find an optimal time to migrate

a virtual machine in the pre-copy approach. To address the issue, this paper proposes a machine learning-based method to

optimize pre-copy migration. It has mainly three stages (i) Feature selection (ii) Model generation and (iii) Application of

the proposed model in pre-copy migration. The experiment results show that our proposed model outperforms other

machine learning models in terms of prediction accuracy and it significantly reduces downtime or service unavailability

during the migration process.
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1 Introduction

Virtualization [1, 2] enables cloud computing to create and

run multiple virtual machines (VMs) on the same physical

server at the same time. Virtual Machines (VMs) are the

virtualization of the computing layer of data center

resources, allowing physical servers, CPU, cache, memory,

and other hardware to be shared by several VMs. Virtual-

ization is one of the most cost-effective hardware and

energy-saving approaches deployed by cloud providers.

Due to the high demand for cloud computing, services

must be available without interruption. From time to time,

cloud services need routine or emergency system mainte-

nance that involves temporarily suspending or taking ser-

vices offline. An absence of continuous services may have
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a negative impact on clients. Live virtual machine migra-

tion; virtual machines are migrated or relocated from one

physical host to another without impacting the running

applications [3, 4]. The purpose of the live machine

migration is to address issues related to fault tolerance,

load balancing, maintenance, tackling cyber-attacks, etc.

There are mainly three types of live virtual machine

migration: pre-copy, post-copy, and hybrid. At the initial

stage of the pre-copy migration, the complete memory

content is copied from the source to the destination. The

updated or dirty memory pages from the previous iteration

are then transferred to the destination host in the subse-

quent iteration until a predefined stopping condition is

satisfied. The VM from the source is stopped when the

stopping condition is met, and the remaining memory

pages and CPU states are copied to the destination host.

Then the VM resumes execution at the destination host. In

contrast to pre-copy, post-copy [5] suspends VM activity

on the source host and transfers the minimum required

processor states to the destination, which are required to

run the VM. After the memory pages are copied from

source to destination via page requests, active pushing, or

pre-paging after the VM is executed at the destination. This

process is repeated until the destination machine has

received all of the pages. Hybrid [6] as the combination of

pre-copy and post-copy approaches. To reduce the number

of page faults/network faults, it initially copies memory

data with a minimum number of iterations in a pre-copy

manner. Then the migration process transfers the VM

execution to the destination server, and the remaining

pages will be copied in a post-copy manner.

In this paper, we primarily focus on the optimization of

pre-copy migration. Unless there are stop criteria, the

iterative pre-copy stage can continue indefinitely. As a

result, defining stop conditions is crucial to completing this

step on schedule and efficiently. These requirements vary

depending on the hypervisor and the live migration sub-

system design. But they are generally intended to limit the

amount of data moved between physical hosts while min-

imizing VM downtime. For example, in the Xen pre-copy

migration [3, 7–9] the stopping conditions are: (i) During

the last pre-copy iteration, less than 50 pages were dirty;

(ii) There have been 29 pre-copy iterations; and (iii) The

total amount of RAM allocated to the VM has been copied

to the destination host more than three times. The first

condition ensures minimal downtime because only a few

pages need to be transferred. On the other hand, the other

two conditions force migration into the stop-and-copy

phase, which may still require numerous updated pages to

be moved across, resulting in significant downtime. These

predefined stopping conditions significantly impact

migration performance and may result in non-linear trends

in overall migration time and VM downtime.

The other parameters that influence the performance of

pre-copy migration are VM size, network bandwidth,

working set size, and dirty page rate [3, 7, 10–13]. The

migration may take too long or even fail in some cases due

to a high dirty page rate and a low network transmission

rate. So the key obstacles to minimizing downtime and

total migration time during the pre-copy migration are the

varying rates of dirty pages in each iteration, memory page

size, different workloads running on the VM, size of the

VM, available bandwidth, and the predefined stopping

condition.

Some analytical models such as in [10, 14, 15], and

probabilistic models in [7, 16, 17] have already been pro-

posed for predicting the downtime and total migration time

of the pre-copy algorithm using several parameters. How-

ever, these models do not achieve good prediction accuracy

due to the many parameters used in the models. To over-

come the problems in analytical and probabilistic models,

some machine learning-based models have been proposed

for predicting the performance parameters of different

migration algorithms [18–20]. To forecast the performance

parameters of different migration algorithms, this research

selected many input features without considering the most

relevant features for the migration algorithm to compute.

Input feature selection is essential in machine learning

because it affects the model’s prediction accuracy. Build-

ing a model with fewer features can also reduce the com-

plexity in terms of space and time. Therefore it is crucial to

find out a machine-learning model with relevant features to

determine the optimal downtime for live virtual machine

migration. The main objective of our paper is to develop a

machine learning-based pre-copy optimization method

with a set of significantly fewer input features.

The main contributions of the paper are:

• A feature selection algorithm: We developed an

algorithm to identify the set of relevant features that

influence migration performance, thereby reducing

computational overhead and enhancing learning

accuracy.

• A KNN-based model to predict the optimal time for live

migration: We developed a machine-learning model

using identified features to predict the optimal time for

pre-copy migration, with high accuracy and

adaptability.

• Validation through a case study: We evaluated the

proposed model’s prediction accuracy using a case

study, obtained results show an error rate of less than

5%.

• Application of the model in pre-copy migration: We

proposed a machine learning-based method for opti-

mizing pre-copy migration, reducing downtime by 36%

compared to existing algorithms.
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The remainder of this paper is organized as follows: Sect. 2

discusses the background and related works. Section 3

describes the overview of the approach. Section 3.1

describes feature selection. Section 4 describes a machine

learning model to determine the optimal time for VM

migration. Evaluation of the proposed model is outlined in

Sect. 5. Section 7 concludes this paper with some pointers

to further research.

2 Background and related work

This section explains the preliminaries of the topics and

approaches related to live virtual machine migration pre-

sented in this paper.

2.1 Live virtual machine migration

Virtual Machine (VM) Migration is the process of moving

a running virtual machine [21] from a physical host to other

physical machines without disconnecting the client or the

application. The virtual machine’s memory, storage, and

network connectivity are transferred from the source

machine to the destination machine. The simplest way to

migrate a virtual machine is to shut down the source

computer and move the whole state from the source to the

destination machine. After completing a successful

migration, the VM resumes at the destination machine. But

this stop-and-copy technique interrupts client activity and

cloud services for a long time and is impractical for all

application environments. This is not a good option for

cloud providers from a business perspective. To minimize

downtime, the most commonly used approach is migrating

VMs while they are running [3, 4, 22, 23].

In pre-copy migration, the total migration time and

downtime are two important metrics that are often used to

evaluate the effectiveness of the migration process. These

are the following:

• Total migration time (TMT): Total migration time [24]

refers to the elapsed time between the initiation of the

migration process and the final switch over of the VM

to the destination server. This metric is crucial because

it determines the length of time during which the VM is

unavailable to its users. The longer the total migration

time, the more likely it is that users will experience

disruptions or delays in their work, which can lead to

dissatisfaction, lost productivity, and even financial

losses. Therefore, minimizing total migration time is a

key goal of any pre-copy migration strategy.

• Downtime (DT): Downtime [3] refers to the period of

time during which the VM is completely unavailable to

its users, either because it is still running on the source

server or because it has not yet fully started up on the

destination server. Downtime is a particularly important

metric in live environments where VMs must remain

operational to support mission-critical applications or

services. Any disruption to the VM’s availability during

the migration process can cause serious problems, such

as data loss, service interruption, or system crashes. By

monitoring and minimizing downtime during pre-copy

migration, businesses can ensure that the migration

process does not negatively impact their operations or

customer experience. As a result, minimizing downtime

is a primary objective in precopy migration.

Overall, both total migration time and downtime are

important metrics to monitor during pre-copy migration, as

they provide valuable insights into the efficiency and

effectiveness of the migration process, as well as its impact

on business operations.

2.2 Machine learning algorithms

In the last few years, machine learning [18, 19, 25–27]

Patel 2016 machine, Jo 2017 machine) has been widely

used for accurately predicting the performance parameters

of different migration algorithms. In the research reported

in this paper, we use some machine learning algorithms to

find the optimal time for migration. These are briefly

introduced in this section.

Regression is a standard statistical approach for finding

out the relationship between one or more input variables to

the output variable. Simple regression contains only one

input variable, whereas multiple regression has two or

more input variables. The regression function can be linear

or non-linear. Linear regression [19, 28, 29] is a simple

regression approach that uses a straight line to fit the given

data with the least amount of error. If the dataset and the

output value have a clear linear relationship, then linear

regression is a good option.

In non-linear regression, observational data are repre-

sented by a function that is a nonlinear combination of

model parameters and is dependent on one or more inde-

pendent variables. Support Vector Regression (SVR)

[30, 31] is a non-linear regression technique for predicting

a target value from input features. To improve the model

performance, parameter tuning is an effective approach in

machine learning algorithms. The important tuning

parameters in SVR are ’kernel’, ’gamma’, and ’C’. Kernel

parameters are ’rbf’, ’poly’, ’sigmoid’, and ’linear. Bag-

ging, also known as Bootstrap Aggregation, creates

numerous submodels from a portion of the whole dataset

and then overfits the model to the dataset. The average

prediction of all submodels is utilized as the final value

after submodel training.
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The use of labeled datasets to train algorithms for

accurately identifying data or predicting outcomes is

known as supervised learning [32]. K-Nearest Neighbors

(KNN) [19, 33–35] is a supervised learning. It is simple,

more popular, and can be used both in regression and

classification. It was first proposed by Fix et al. [36]. KNN

algorithm’s working is based on finding the K(K=1,2,3,4,..

n) nearest neighbors in input training data of n examples

for a specific query instance. Different distance metrics

have been utilized to compute the nearest neighbors in the

KNN method. Euclidean distance, Manhattan distance,

Minkowski distance, and Hamming distance are the pop-

ular distance metrics used in the KNN algorithm. Selecting

a specific distance metric and number of neighbors for

training data can be achieved by optimizing the hyperpa-

rameter of the KNN algorithm using the input training data.

The main steps for the KNN algorithm are: (i) For a test

example i, compute the distance from i to all the training

examples; (ii) Find the k-nearest training examples of i;

(iii) Compute the mean of the numerical target (value) of

k-nearest neighbors to determine the numerical target of

test example i.

Artificial Neural Networks (ANN) [37] are made up of

layers of neurons. These neurons are the core processing

units of the network. Each of these consists of an input

layer that takes the input to the model, an output layer for

predicting the final output, and in between, there are hidden

layers that perform most of the computation required by the

network. Neurons in one layer communicate with neurons

in the other layer via channels. A weight value is assigned

to each channel. The inputs are multiplied by the weight

value assigned to them, and the result is the hidden layer’s

input value. The activation function is the sum of the

hidden values associated with each neuron in the hidden

layer, which is added to the preceding sum value of the

input layer neurons. It determines whether or not a specific

neuron is active. This activated neuron transmits data

across the channel to the next neuron in the hidden layer is

called forward propagation. Data is propagated over the

network and higher-valued neurons in the hidden layer fire

to the output neuron. Then the predicted output is com-

pared with the actual value to find out the error. If the error

is high, then this information is sent backward to the

neurons; this is called back-propagation. Based on this

information, the weights are adjusted. This process con-

tinues until the neurons predict the value more accurately.

The expected output is then compared to the actual result to

determine the degree of inaccuracy. If the error is high, the

information is sent back to the neurons, a process known as

backward propagation. The weights are adjusted based on

this information. This process is repeated until the neurons

can more precisely forecast the value.

2.3 Related work

Several research works have been reported on live migra-

tion and optimization of this. Some key research works are

discussed in this subsection. Sherif Akoush et al. [7] pro-

posed two simulation models: AVG (average page dirty

rate) and HIST (history-based page dirty rate) for predict-

ing the performance (total migration and downtime) of pre-

copy migration to within 90% accuracy in both synthetic

and real-world benchmarks. The AVG model is used to

predict the migration performance of a VM with a constant

memory dirtying rate. In contrast, the HIST model is used

to predict the migration performance of a VM with iden-

tical memory characteristics across different workloads.

The work also classified the parameters as static (i.e.,

memory size, VM resumption time) and dynamic (band-

width, dirty page rate) based on their impact on migration

performance. However, they did not consider some critical

features, such as working set size, that impact migration

performance. This prediction model is also only applicable

to the LAN environment.

Nathan et al. [10] proposed an analytic model to predict

the total migration time, the downtime, and the total traffic

of a live migration after analyzing the problems in different

existing analytical models [7, 38–44]. Due to the large

number of factors that need to be considered, extending

these analytic models to different methodologies or metrics

is impracticable.

Hundreds of servers are used in modern data centers to

service millions of clients worldwide. Computers in a data

center create a large amount of data from VM performance

logs and hardware sensors. This expands the scope of data

center management solutions. Machine learning is a pow-

erful tool to automatically generate models for various

metrics and live migration techniques using data collected

from data centers. Using 200,000 training samples col-

lected over two years in Google data centers, Ferdaus et al.

[45] proposed a machine learning model to forecast the

power usage effectiveness of data centers. The model takes

into account 43 different input factors. Creating an ana-

lytical model with that many parameters would be impos-

sible. An analytical study of the performance of live

migration based on different states of the virtual machine

and the underlying physical host is less suitable. If there are

n live virtual machine migration algorithms and m perfor-

mance metrics, creating n � m models with each set of

parameters is difficult for the analytical model. This

structure also makes it simple to add new algorithms or

measurements.

Several studies have addressed the challenge of VM live

migration in a data center. Machine learning is a sophis-

ticated tool for solving complex issues in real-world
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scenarios using data. Because the intricacy of the site’s

operation and the volume of available monitoring data are

both great, it’s a well-suited solution for the data center

environment. Scientists have recently deployed machine

learning-based models to handle challenges in the live

migration process [19, 20, 46–49].

The work in [50] proposed a Working Set Prediction

using Machine Learning approaches (WSPML) to reduce

the total migration time during the migration process.

Experimentally, they showed that the M5 model tree (M5P)

provides a more accurate result than linear regression for

different workload types and varying network bandwidth.

They concluded that WSPML reduces overall migration

time more than the traditional pre-copy approach. The

critical disadvantage of this prediction model is that it only

predicts memory pages that will be required in the near

future as a working set rather than frequently updated

memory pages during the migration process. In addition,

they only consider the input features of page dirty rate and

transmission rate. Furthermore, this approach is ineffective

in predicting the working set when the workload changes.

Nehra et al. [51] proposed a Support Vector Regression

(SVR) based methodology to predict host utilization in the

cloud environment with input features such as CPU,

memory, and bandwidth usage. They proposed a radial

basis function and a polynomial kernel function for accu-

rate prediction. The numerical findings indicate that the

proposed model’s accuracy is better than other models.

This model is applicable only for predicting host utiliza-

tion, not live migration performance.

To predict CPU utilization and network bandwidth

usage for live virtual machine migration, Duggan et al. [52]

used an artificial neural network (ANN) and proposed a

multi-time-ahead prediction model. The model aims to

improve the performance of the data center by minimizing

bandwidth utilization. Experimentally, they showed that

the proposed methodology reduces bandwidth utilization

during critical times and improves the data center’s overall

efficiency. This model is applicable for predicting the CPU

utilization and network bandwidth for live virtual machine

migration, but not for predicting performance parameters

such as total migration time and downtime for the pre-copy

approach.

An ML-based technique has been suggested in the paper

[18] to automatically generate reliable models that can

predict essential performance parameters of VM live

migration under various resource restrictions and work-

loads for all generally accessible migration algorithms.

They examined various supervised techniques for modeling

an adaptive process in order to determine the best policies

for migrating virtual machines (VMs) between hosts while

meeting service level agreement (SLA) requirements. The

results of their experiments revealed a considerable

improvement in migration performance. They have shown

that the suggested model outperforms existing work by a

factor of 2-5 when compared to the state-of-the-art. How-

ever, without considering the critical features of each

migration algorithm, they used all the input features

included in the dataset to predict the performance metrics

of all five live migration algorithms. Alrajeh et al. [53]

employed three supervised learning algorithms to develop

prediction models for VM live migration decision-making

to determine which VMs could be migrated or not. The

techniques used were stochastic gradient boosted, random

forest, and bagging tree. The results of this analysis show

that some VMs can be relocated in a short amount of time,

while others can be migrated over a long period, and some

cannot be transferred while the workload is running.

However, to build this model, they do not consider the

different job scheduling algorithms with other workloads to

identify which job types are running.

Arif et al. [25] proposed a machine learning-based

downtime optimization (MLDO) approach to reduce

downtime during live migration over wide area networks

based on predictive mechanisms for standard workloads.

They compared the proposed technique with existing

strategies and observed improvements of up to 15%. This

prediction model is only applicable for migration over the

WAN environment. Hassan et al. [54] proposed a two-step

model based on local regression to predict SLA violation.

For migration decisions, different classification algorithms

such as support vector machine (SVM) and K-nearest

neighbors (KNN) are suggested considering the input fea-

tures of CPU usage, inter-VM bandwidth usage, and

memory usage. In comparison to SVM and KNN, the

obtained results demonstrated the importance of regression

trees in terms of accuracy. This approach is primarily

intended for applications with strict SLA requirements.

Motaki1 et al. [19] proposed an ML model for predicting

six livemigration performancemetrics for each livemigration

algorithm. They proved that the proposed model reduces the

service level agreement violation rate by 31% and 60% and

considers CPU time requirements. The input features that

affect the particular migration must be considered while

building a machine learning model for a different migration

algorithm. Apart from selecting the critical features for each

migration algorithm, they considered some common features

for building the model. It reduces the model’s forecast accu-

racy. Althahat et al. [20] proposed a neural network-based

machine learningmodel to predict the performance parameter

in the pre-copy and post-copy approaches. For building the

model, they used the dataset and all features mentioned in the

paper [18]. Compared to the result in the paper [18], they only

got better performance in the downtime model for the pre-

copy approach. The input feature dirty rate and working set

size mainly impact the pre-copy approach’s performance;
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they do not affect the performance issue of the post-copy

approach. Rather than considering input features separately

for pre-copy and post-copy migration, they used all features

mentioned in the dataset, lowering the prediction accuracy.

Table 1 summarizes the comparison of related work.

In general, VM live migration modeling based onmachine

learning has been a significant research focus in recent years.

Each model described in the literature has its own goal,

migration algorithms, relevant resources, and impacting

parameters. The main focus of these papers [18–20] is pre-

dicting the performance parameter of live virtual machine

migration. To build a different model for each migration

algorithm, they selected some common features instead of

considering the parameters affecting the performance of each

live migration approach. So in their work, selecting the rele-

vant features for each migration algorithm is missing. Com-

pared to their work, our primary focus is to find the best ML

model for predicting the performance parameter, i.e., down-

time and total migration time in the pre-copy approach with a

minimum number of relevant features. Our methodology for

selecting the bestMLmodel to determine the optimal time for

a pre-copy migration is discussed in Sect. 3.

3 Overview of the approach

We propose a three-stage approach to determine the opti-

mal time for a pre-copy migration, as depicted in Fig. 1.

These are namely feature selection, generate ML model,

and apply model in pre-copy migration.

The proposed approach involves three stages: two off-

line stages and one online stage. The offline stages consist

of activities that do not require real-time interaction, such

as feature selection, data pre-processing, model training,

optimization, and validation. The online stage, on the other

hand, involves real-time interaction. The model generated

during the offline stage is leveraged to enhance the per-

formance of the model applied during the online phase.

Therefore, the online and offline phases are related, and

they work together to achieve the desired outcome.

Input feature selection is a crucial stage for generating a

better ML model. It needs domain knowledge to select a set

of relevant and important features from the available fea-

tures. After selecting the input features, we simulate a pre-

copy migration to identify the impact of each feature in the

output metrics. Section 3.1 discusses the feature selection

process in more detail. The output of the feature selection

stage is fed to generate a model. This phase generates

various ML models with the identified features and verifies

their accuracy using different metrics. This process is

repeated until a better ML model with a minimum number

of features is obtained. These processes are further

explained in section 4. After the model generation, in the

final stage, we apply this model in pre-copy migration to

determine the optimal time for migrating the VM from

source to destination with minimal impact on downtime or

service delay. The final stage is explained in section 6.

Table 1 Comparison of related work

Study Methodology Input features Prediction targets Key findings

[7] AVG and HIST simulation

models

Memory size, VM

resumption time,

bandwidth, dirty page

rate

Total migration and

downtime

Predict performance with high accuracy. Does

not consider working set size and is only

applicable to LAN

[10] Analytic model Large number of factors Total migration time,

downtime, and

total traffic

Due to a large number of input factors it is

impractical to extend to new metrics

[50] Working Set Prediction using

Machine Learning

approaches (WSPML)

Bandwidth, workloads Total migration time Reduces overall migration time compared to

pre-copy. Only predicts memory pages

required in near future

[52] Artificial neural network Large number of factors CPU utilization, and

bandwidth usage

Improves data center efficiency. Not applicable

for predicting pre-copy migration performance

metrics

[51] Support Vector Regression CPU, memory, bandwidth Host utilization Higher accuracy than other models.Only

applicable for predicting host utilization, not

migration performance

[25] Machine learning-based

downtime optimization

(MLDOM)

CPU, memory, and

network utilization

Downtime Improvements in reducing downtime. Only

applicable for migration over the WAN

environment
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3.1 A systematic approach to select features
using simulation

Feature selection [55–57] is the process of obtaining a set

of relevant features of the data set according to a feature

selection criteria. Effective feature selection can enhance

learning accuracy, minimize learning time, minimize

computational overhead (time and space complexity), and

simplify learning outcomes.

The main goal of feature selection is to improve the

model’s performance by reducing overfitting, decreasing

the computational cost, and increasing the interpretability

of the model. The main criteria for feature selection depend

on the specific machine learning problem, high input and

output correlation, and the nature of the data. Generating a

model for predicting the performance of pre-copy migra-

tion requires domain expertise as well as a thorough

examination of which input features are most relevant to

the predicted output parameters. The entire memory of the

VM from a host is copied to another host during the

migration. As a result, the total migration time and

downtime are dependent on the size of the VM’s memory

and bandwidth available for migration. Several studies

[52, 58–63] were conducted for analyzing the correlation

between bandwidth and performance parameters. Those

studies have highlighted that the total migration time is

reduced when high-bandwidth resources are available.

In the pre-copy method, each iteration copies the

updated or dirty memory pages from source to destination.

If the dirty page rate in each iteration is high, the total data

transfer time will increase in each iteration, as will the

amount of remaining updated memory pages in the stop

and copy phase. It may cause an increase in downtime. So

the VM page dirty rate and the VM’s working set (it is a

collection of recently referenced segments or memory

pages) size [7, 10, 12, 12, 64–71] are relevant parameters

for the pre-copy migration. To select these features are the

critical parameters for the pre-copy migration, we have

developed a feature selection algorithm and it is shown in

Algorithm 1.

Fig. 1 Overview of the

approach
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Algorithm 1 Feature Selection is a feature selection

method to identify the most significant features from a

given set of features X. The input is a set of features X, and

the algorithm works by iteratively selecting each feature xi
and comparing its performance against a subset of the

remaining data points, xc. The algorithm simulates pre-

copy migration of each feature xi in combination with the

other features xc in X to compute the performance metrics

TMT and DT and stores them along with the feature xi in

an array called PerformanceMetrics. The detail of the pre-

copy migration will be explained in the following para-

graph. The algorithm then plots the performance metrics

TMT and DT against each data point xi in Perfor-

manceMetrics and checks if a function f ðDxiÞ is true for

either DTMT or DDT . If an input feature xi is found to have
a significant impact on the performance metrics, it is added

to the final set of selected features xS. The algorithm

repeats this process until all input features xi in X have

been processed and returns the final set of selected features

xS as output. In summary, this algorithm selects the most

relevant features by evaluating their impact on perfor-

mance metrics and selecting the ones that have the most

significant impact.

To validate the impact of selected features for predicting

the performance parameter in the pre-copy approach, we

have conducted simulation experiments using CloudSim

simulator [72–74]. We used CloudSim simulation to ana-

lyze the relationship between VM size, dirty rate, and

bandwidth for downtime, as well as the overall migration

time for the pre-copy method. To transfer dirty pages in the

iterative phases, we use historical bitmap data. It is a two-

dimensional bitmap array with n number of pages and

iterations. In this array, bit 1 indicates that the page is

dirtied in the corresponding iteration.

In the first iteration, we transfer all memory pages to the

destination machine. In the following iterations, we trans-

mit either updated or dirty pages. To avoid repeatedly

sending the frequently produced dirty pages in this itera-

tion, we categorize the memory pages into two classes:

frequently dirty pages and less frequently dirty pages,

based on a calculated threshold value. We use an equation

available from [74] to find the threshold value.

T1 ¼b½ðmax[page modification rate]

þmin[page modification rate]Þ � 2�c

This threshold value is calculated in each iteration using

the information in the bitmap array. If the page dirty rate of

a memory page is higher than the calculated threshold

value, these memory pages are saved in a separate array for

transfer only in the stop-and-copy phase. It helps to reduce
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the repeated transfer of the frequently produced dirty pages

in each iteration. This iterative phase will continue until the

stop condition is reached, i.e., 29 iterations. We repeated

the simulation with different VM sizes, page dirty rates,

and bandwidth. We record the downtime and total migra-

tion for each condition.

We set the number of iterations to 29 based on the

default stopping condition of the Xen pre-copy approach

[7]. Accordingly, the page size is set to 4 KB, the page

dirty rate is 0.63, and the number of pages is 1000. We then

use varied bandwidth and measure total migration and

downtime to see how the bandwidth impacts these two

parameters. Based on the obtained values, we plot a graph

which is depicted in Fig. 2a.

Figure 2a shows a linear relationship between downtime

and total migration time for bandwidth. The entire migra-

tion time and downtime are significantly reduced when the

bandwidth is very high. This indicates that if adequate

bandwidth is available throughout the migration process,

the total migration time and downtime might be reduced.

We repeat the simulation in 29 iterations with a 4KB

page size and 200 MBit/s bandwidth. In this case, the page

dirty rate varied with the page size. We also change the

number of pages from 20 to 1000 and measure total

migration time and downtime with a fixed bandwidth size.

we plot graphs using the observed values and it is shown in

Fig. 2b–d.

Figure 2b–d show the downtime and total migration

time increased when the number of pages, page dirty rate

per iteration, and working set size increased. The number

of pages in the virtual machine’s memory determines the

amount of data that needs to be transferred during pre-copy

live migration. The larger the number of pages, the longer

it takes to migrate the virtual machine. In addition, if the

virtual machine is actively using all its memory pages, pre-

copy live migration may not be practical as the copying

process can never complete. Therefore, it’s important to

consider the number of pages in the virtual machine’s

memory when planning a pre-copy live migration. If the

number of pages increases, the dirty pages per iteration will

increase and the higher the dirty page rate indicate that the

virtual machine is highly active and more memory pages

need to be transferred during pre-copy live migration. This

can increase the time it takes to complete the migration and

may result in some pages being transferred multiple times.

Higher numbers of pages and dirty page rates can increase

Fig. 2 Simulation Results
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migration time, while lower numbers may result in faster

migrations.

The working set size represents the subset of the VM’s

memory that is actively being used. If the working set size

is small, pre-copy live migration can be very efficient. This

is because only a small subset of the VM’s memory needs

to be transferred during each iteration. However, if the

working set size is large, pre-copy live migration may be

less efficient, as more pages will need to be transferred

during each iteration. In summary, the number of pages,

bandwidth, dirty page rate, and working set size can all

affect the efficiency and effectiveness of pre-copy live

migration. If these factors are carefully considered, pre-

copy live migration can be a very effective way to migrate

a running VM from one physical host to another.

We also noticed from this experiment that if we can

predict downtime or total migration time during the itera-

tive phase using the above-mentioned parameters, we can

set the stopping condition dynamically rather than using a

predefined value. It will reduce the overall total migration

time and downtime of the pre-copy approach. This simu-

lation experiment motivates us to develop a stronger

machine-learning prediction model to address the perfor-

mance issue of the pre-copy approach.

Based on the feature selection Algorithm 1, we selected

four relevant input features: (Virtual Machine size

(VM Size), Page Dirty Rate (PDR), Working Set Size

(WSS), Page Transfer Rate (PTR) or bandwidth) to

develop a better ML model for predicting Downtime (DT)

and Total Migration Time (TMT) in pre-copy approach.

Reducing the number of features can be beneficial for

optimizing migration because it can simplify the process

and reduce computational complexity. In addition, having a

smaller set of features can make it easier to interpret and

understand the results.

3.1.1 Feature selection using known techniques

This section discusses different feature selection tech-

niques [56, 75] that are commonly available for selecting

the best features for generating a machine learning model.

We have selected 14 features from the dataset [18] and

have done a Chi-square Test [76] and ANOVA test [77] in

python with scikit-learn for the feature selection. We

selected four features based on the test result and they are

given in Table 2.

Comparison of selected features using proposed Algo-

rithm 1 and known feature selection techniques are dis-

cussed in the section 5.

4 Generate a machine learning model
to determine the optimal time for VM
migration

The main steps for generating a model are Data Prepara-

tion, Feature Extraction, Data Splitting, Training, and

Testing. These steps are shown in Fig. 3.

4.1 Data preparation

In our experiment, the data set we used for building and

evaluating a model is provided by a research team at the

National University of Seoul [18]. The dataset contains

40,000 records of various types of virtual machine migra-

tions (i.e. pre-copy migrations, post-copy migrations, and

modifications to pre-copy migrations, such as processor

throttling (THR), delta compression (DLTC), and data

compression (DTC)) collected over a period of several

months in the CSAP lab cluster. The hardware setup they

used for constructing the cluster is four identical servers

with quad-core processors with a varying clock rate and

8-32GB of memory, three dedicated 1Gbit networks con-

nected the machines for shared storage, public networking,

and migration traffic with installed Ubuntu server 14.04

LTS on host PCs and the virtual machines. The perfor-

mance of the live migration algorithm strongly depends on

the workload running inside the VM [78, 79]. To examine

the characteristics and performance metrics of several live

migration strategies, 37 unique applications, and bench-

mark workloads were executed. The important workloads

included are: SPECWeb to emulate a web server for

e-commerce and banking services, OLTPBench [80] as a

database applied to process online transactions, Mplayer

that constitutes a multimedia workload, Memcached,

Dacapo, parsec, Gzip, and idle. We filtered 8000 records

from this data set based on migration type pre-copy

migration and resized the distribution of values using

StandardScaler.

4.2 Feature extraction

The data set containing the input features are VM size,

page dirty rate, working set size, working set entropy,

modified words per page, instructions per second, page

transfer rate, CPU utilization of VM, network utilization of

VM, CPU utilization on the host, CPU utilization on the

destination, memory utilization on the host, and memory

utilization on the destination. From these features, we

selected four i.e. VM size, dirty page rate, working set size,

and bandwidth for building a new ML model for predicting

performance metrics i.e. downtime, and the total migration

time in the pre-copy approach. The feature selection is
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explained in Sect. 3.1. The description of the selected four

features for creating the model is shown in Table 3.

In Table 3, the feature is described in the first two col-

umns, and the third column is used to show where the

parameter is analyzed. VM. Size in the first row refers to

the amount of memory that has been allocated to the VM,

not the maximum memory size that has been assigned. The

relationship between page dirty rate (PDR) and working set

size (WSS) [10, 81] is that WSS is the total number of

pages dirtied during the entire period, whereas the dirty

rate is the number of pages dirtied a given time.

4.3 Data splitting and generate machine
learning model

To create the training and test data, we used 10-fold cross

validation [82]: divided the data set into ten equal-sized

subsets. Then, independently, 10 regression tests are run,

with each of the ten sub-sets serving as testing data and the

remaining nine as training data. This process is performed

ten times, with the final evaluation result being the average

of the results. The training data consists of the selected four

features (discussed in the previous section) and two per-

formance metrics for generating the model, whereas the

test data is the input for predicting the model. The scikit-

learn v0.17 [83] toolbox is used to train and evaluate the

models for the prediction metrics.

Supervised machine learning techniques are used to

generate machine learning models for predicting downtime

and total migration time in the pre-copy migration. The

different techniques we used for generating the model are

linear regression, support vector regression (SVR) with

linear kernels, SVR with bootstrap aggregation, ANN, and

KNN.

Hyperparameter tuning or optimization [84] is important

in the machine learning model. The process of selecting a

set of optimal hyper-parameters for a learning algorithm is

known as hyper-parameter tuning or optimization. A

hyper-parameter is a value for a parameter that is used to

influence the learning process. We used the optimal tuning

parameters for SVR are C=100, gamma=.1, and kernel=-

linear, which we found out using the grid search technique

[85]. The penalty parameter, C, represents the difference in

predicted and actual values. All input features are also

standardized using the standard scalar method.

We used a grid search technique with the input features

twenty, fourteen, and four and the output values downtime

and total migration time to find out the best K values in the

KNN approach. The value that we used in each model is

shown in Table 4.

Table 2 Features selected using known techniques

Feature selection technique Selected features

ANOVA Working set entropy, Page dirty rate, Virtual machine size, and Working set size

Chi-square Page dirty rate, Network utilization of VM, Working set size, Modified words per page

Fig. 3 Steps for generating a

model

Table 3 The input features for creating proposed model

Feature Description Source

Virtual Machine size (VM_Size) Number of memory pages allocated in VM Virtual Machine Monitor (VMM)

Page Dirty Rate (PDR) Average number of memory pages updated per second VMM

Working Set Size (WSS) Number of memory pages changed during VM initialization period VMM

Page Transfer Rate (PTR) Network bandwidth reserved for live migration Source Host
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We tested with numerous parameters to develop the

optimal model using ANN, including two hidden layers

with densities 32 and the number of neurons 16 or 32, batch

sizes 5 or 25, epochs: 100, 200, or 300, and three hidden

layers with densities 32 and the number of neurons 16 or

32. We create a distinct model for each of the twenty,

fourteen, and four features using all of these factors and

choose the best one. The best model comprises three hid-

den layers, each with 32 densities, 32 neurons, batch size 5,

and 300 epochs. The performance of the generated models

are discussed in Sect. 5.

5 Evaluation of the proposed machine
learning model using a case study

After generating a model, the next step is to evaluate the

performance of the model. For this, we conducted a case

study using twenty features, fourteen features, and four

features to show that the four features selected using fea-

ture selection Algorithm 1 are relevant to generate a better

model to forecast the performance parameter of the pre-

copy approach. To compare the performance of the model

with different features, we used the performance metrics

such as geometric Mean Absolute Error (gMAE) and

geometric Mean Relative Error (gMRE) because these

metrics are used to evaluate the model performance in the

literature [18, 20], and we need to compare our results with

theirs. The details about these are explained in this section.

5.1 Evaluation metrics

To compare the prediction accuracy of different machine

learning models the following performance metrics are

used.

geometric Mean Absolute Error (gMAE) geometric

Mean absolute error is the geometric mean (nth root of

multiplication of n values) of the absolute difference

between the predicted value and the actual value. The

gMAE tells us how big of an error we can expect from the

forecast. The equation is shown below

gMAE ¼
Y

i ¼ 1njy i� x ij
� �1

n

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jy 1� x 1j � jy 2� x 2 � �j � � � jy n� x njn

p

ð1Þ

where yi means the predicted value; xi means the actual

value in testing data set; Between the test data and the

predicted score, n is the number of prediction pairs.

geometric Mean Relative Error (gMRE)

The difference between the actual value and the pre-

dicted value of data is called absolute error. The ratio of the

absolute error of a predicted value and the actual value of

the data is known as a relative error. gMRE is the geo-

metric mean of the average relative error of the prediction.

gMRE ¼
Y

i ¼ 1n
jy i� x ij

x i

� �1
n

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jy 1� x 1j

x 1
� jy 2� x 2j

x 2
� � � � jy n� x nj

x n

n

r

ð2Þ

5.2 Results and discussion

To validate the accuracy of the proposed ML model with

the four identified influential features, we build a model

with 14 features and 20 features (14 input features ?

composed features) and compare each model in terms of

gMAE, and gMRE.

5.2.1 Model with 20 features

We selected 14 input features from the dataset and used six

combined features from the paper [18] to build the model

with twenty features. The twenty input features are listed in

Table 5.

Using these twenty features we generate a different

model for predicting total migration time and downtime

using linear regression, SVR, ANN, and KNN. The pre-

diction accuracy of each model is shown in Table 6.

The linear regression result shown in Table 6 does not

reach adequate accuracy because the average prediction

error for the model exceeds 10%. The complicated corre-

lation of the features is the primary cause of the high

inaccuracy. A simplistic method fails to grasp the com-

plexities and fails to successfully train the model. When

comparing the accuracy of the linear and SVR models, the

ANN and KNN models show a substantial improvement. In

the total migration model, ANN provides better accuracy

with a 4% error, whereas KNN provides better accuracy for

the downtime model with a 10% error. Neural networks

can contain a large number of free parameters (weights and

Table 4 K value for KNN

Number of features Downtime Total migration time

20 5 7

14 6 8

4 6 2
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biases across interconnected units), and they can fit highly

intricate data that conventional models cannot.

5.2.2 Model with fourteen features

Then, in the dataset [18], we explored again with fourteen

features excluded six combined features that are listed in

Table 5 to see how the impact of fewer characteristics

relative to more features differed. The model result of

fourteen features is shown in Table 7.

When compared to the accuracy of other models such as

Linear, SVR, and KNN, the results presented in Table 8

show that ANN performs quite well for both total migra-

tion and downtime models, with less error.

5.2.3 Model with four features selected using ANOVA
and Chi-test

After generating different ML models with fourteen and

twenty features, we generate an ML model with four fea-

tures that were selected using ANOVA, and Chi-test

Table 5 Twenty input features used for building our machine learning model

Feature Description Source

Virtual machine size (VM_Size) Number of memory pages allocated in VM Virtual Machine Monitor

(VMM)

Page dirty rate (PDR) Average number of memory pages modified per second VMM

Working set size (WSS) Number of memory pages changed during VM initialization

period

VMM

Page transfer rate (PTR) Network bandwidth reserved for live migration Source Host

Working set entropy (WSE) Working set memory entropy VMM

Non-working set entropy (NWSE) Non-working set memory entropy VMM

Modified words per page (MWPP) Number of altered words in updated pages VMM

Instructions per second (IPS) The number of instructions retired per second Source Host

CPU utilization of VM (CPU.UTIL) CPU usage of the VM process Source Host

Network utilization of VM (NET.UTIL) Network usage of the VM process Source Host

CPU utilization on host (SRC.DST.CPU) CPU core usage on the participated hosts Source þ destination host

Memory utilization on host

(SRC.DST.MEM)

Memory utilization on the engaged hosts Source þ destination host

Weighted relative page transfer rate

(R.PTR)

Weighted relative page transfer rate to page dirty rate Composed

Non-working set size (NWSS) Number of unmodified pages during the initiation period Composed

Benefit of delta compression (DLTC.BF) Anticipated pros of delta compression technique Composed

Benefit of CPU throttling (THR.BF) Anticipated advantage of CPU throttling technique Composed

Compressed size of WSS (E.WSS) The size of WSS expected after compression Composed

Compressed size of NWSS (E.NWSS) The size of NWSS expected after compression Composed

Table 6 Accuracy of the

different machine learning

algorithms with 20 features for

Pre-copy approach

Model Performance metric gMRE gMAE

Linear regression Total Migration Time (TMT)(ms) 3222 0.16

Downtime (ms) 185 0.32

SVR Total Migration Time (TMT)(ms) 1983 0.10

Downtime (ms) 78 0.13

SVR with bootstrap aggregation Total Migration Time (TMT)(ms) 3016 0.15

Downtime (ms) 119 0.21

ANN Total Migration Time (TMT) (ms) 818 0.04

Downtime (ms) 67 0.12

KNN Total Migration Time (TMT)(ms) 1376 0.07

Downtime (ms) 60 0.10
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explained in the subsection 3.1.1. The different model

results of these selected features are shown in Table 8 and

Table 9.

5.2.4 Proposed model with four features

Then we repeated the experiment using four relevant fea-

tures selected using the Algorithm 1, namely, VM size,

page dirty rate, working set size, and page transfer rate that

explained in Sect. 3.1 to ensure that the selected features

are sufficient to forecast pre-copy migration performance.

Table 10 shows the results of different models with four

relevant features selected using Algorithm 1.

Table 10 shows that SVR, KNN, and ANN do very well

with lower error rates when compared to ML models cre-

ated with twenty (Table 6), fourteen (Table 7), and four

features (Tables 8 and 9). Also, linear regression shows

better results with four features compared to fourteen fea-

tures. This indicates that the four features selected using

Algorithm 1 are sufficient to develop a better model for

predicting the performance parameter of the pre-copy

approach. In addition, when compared to other models, the

Table 7 Accuracy of the

different machine learning

algorithms for 14 features for

Pre-copy approach

Model Performance metric gMAE gMRE

Linear regression Total Migration Time (TMT)(ms) 3889 0.20

Downtime (ms) 480 0.85

SVR Total Migration Time (TMT) (ms) 2795 0.14

Downtime (ms) 313 0.56

SVR with bootstrap aggregation Total Migration Time (TMT) (ms) 312 0.55

Downtime (ms) 163 0.29

ANN Total Migration Time (TMT) (ms) 1390 0.07

Downtime (ms) 50 0.08

KNN Total Migration Time (TMT) (ms) 1607 0.08

Downtime (ms) 78 0.13

Table 8 Accuracy of the

different machine learning

algorithms for 4 features

selected using ANOVA test

Model Performance metric gMAE gMRE

Linear regression Total Migration Time (TMT)(ms) 3315 0.18

Downtime (ms) 531 1.01

SVR Total Migration Time (TMT)(ms) 3593 .19

Downtime (ms) 385 .68

SVR with bootstrap aggregation Total Migration Time (TMT)(ms) 3881 .20

Downtime (ms) 117 .21

ANN Total Migration Time (TMT)(ms) 3770 .19

Downtime (ms) 72 .13

KNN Total Migration Time (TMT)(ms) 3102 .16

Downtime (ms) 70 .12

Table 9 Accuracy of the

different machine learning

algorithms for 4 features

selected using Chi-Square test

Model Performance metric gMAE gMRE

Linear regression Total Migration Time (TMT)(ms) 5298 .29

Downtime (ms) 532 1.08

SVR Total Migration Time (TMT)(ms) 4238 .23

Downtime (ms) 327 .46

SVR with bootstrap aggregation Total Migration Time (TMT)(ms) 3903 0.20

Downtime (ms) 155 .27

ANN Total Migration Time (TMT)(ms) 5401 .29

Downtime (ms) 74 .13

KNN Total Migration Time (TMT)(ms) 3916 .21

Downtime (ms) 57 .10
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KNN model has a very good performance with less than

5% error.

To validate our selected four features, the results

demonstrate that they are more accurate and relevant to our

proposed model. We measured the coefficient of determi-

nation(R2) [86] for each model. The coefficient of deter-

mination (R2) reflects how well the forecast fits the

measured value; an (R2) of 1 implies that the prediction fits

the target value perfectly. This is shown in Table 11.

The R2 value in Table 11 shows that the selected four

features are more sufficient for predicting the performance

parameters of the pre-copy approach.

5.2.5 Performance evaluation

We next compared the performance of our proposed model

with other known outcomes to determine that our study

produced better results. This is shown in Table 12.

Comparing the accuracy of the proposed work with two

migration performance metrics, we selected other known

works that used the same dataset. In these papers [18, 20],

the authors selected fourteen features with four perfor-

mance metrics, and twenty features (fourteen features ? six

derived features) with six performance metrics to build

their models. So we have generated a machine learning

model for other performance metrics (the total amount of

transferred data, performance degradation, host CPU

utilization, and host memory utilization) with four features

and compared their results in Table 12. Table 12 suggests

that our proposed machine learning model with KNN

algorithms is more accurate than other known models with

an error rate of less than 5% with four features. Further-

more, the results and the comparison confirm that the four

identified features such as VM size, dirty page rate, band-

width, and working set size are sufficient for developing an

accurate model for predicting the total migration time and

downtime for the pre-copy approach. Also, these four

features are enough to determine other performance met-

rics mentioned in the paper [18].

In this study, regression, SVR, ANN, and KNN models

with four, fourteen, and twenty features are trained to

forecast the best time for live migration. With four features,

KNN outperforms the rest of the models. KNN is simple,

requires less training time, and is adaptable compared to

the other machine learning models applied in this paper.

The main reasons for this result are: (i) there is no need to

tune several parameters to generate a better model; (ii) it is

a non-parameterized algorithm that uses information

acquired from the observed data to anticipate the amount of

predicted variable in real-time without establishing a pre-

defined parametric relationship between the predictor and

the predicted variables. The fundamental advantage of

KNN is that every variable is considered when determining

whether or not an instance is a neighbor. It doesn’t require

any unique data distribution characteristics, and it can

handle enormous data sets efficiently. Compared to KNN,

neural networks require a significant amount of training

data and many hyperparameter adjustments to reach

appropriate accuracy. The critical issue in KNN is deter-

mining the ideal K value, which we overcame via hyper-

parameter tuning and selected a reasonable K value for

greater performance.

Table 10 Accuracy of the

different machine learning

algorithms for 4 features

selected using Algorithm 1 for

Pre-copy approach

Model Performance metric gMAE gMRE

Linear regression Total Migration Time (TMT)(ms) 3479 0.18

Downtime (ms) 317 0.56

SVR Total Migration Time (TMT)(ms) 1914 0.10

Downtime (ms) 111 0.19

SVR with bootstrap aggregation Total Migration Time (TMT)(ms) 2416 0.12

Downtime (ms) 102 0.18

ANN Total Migration Time (TMT)(ms) 1122 0.05

Downtime (ms) 48 0.08

KNN Total Migration Time (TMT)(ms) 476 0.02

Downtime (ms) 33 0.05

Table 11 R2 value for input features

ML model TMT DT

Linear Regression 0.87 0.83

SVR 0.87 0.83

SVR Bagging .72 .90

ANN .95 .98

KNN .95 .98
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6 Applying proposed model to pre-copy
migration

After the model generation, the next step is to apply the

model in the iterative phase of the pre-copy migration and

find out the optimal time for migrating VMs from one place

to another. For this, we set up a simulation environment

using CloudSim. The entire memory is transferred from

source to destination during the initial stage of pre-copy

migration. The updated or dirty pages are transferred from

source to destination in a subsequent iteration. To apply

our proposed model in the iterative phase to determine the

stopping condition, first we set a predefined threshold

value, which is downtime. We assume the downtime is

zero or will be less than 100 ms. For the simulation

experiment, we assume the VM size is 1024 MBit/s and the

bandwidth is 200 MB. As per phase 1 of pre-copy migra-

tion, we transferred all the pages from the source to the

destination. Then, in the iterative phase, we forecast the

downtime in each phase with our proposed machine-

learning model. Then we compared the obtained downtime

with the previously defined threshold value. If the predicted

downtime is less than the stopping condition (SC), we stop

the iteration and enter the final stage, where we stop and

copy the remaining pages, and activate the VM at the new

destination. We repeated the experiment with different VM

sizes and bandwidths as shown in Table 13 to monitor the

performance of live migration. Finally, we compared the

outcomes of our experiments and proved that the proposed

method performs better than the existing pre-copy

approach [74]. This is shown in Table 13.

The Table 13 values show that our proposed machine

learning-based method to optimize pre-copy migration

reduces 36%downtime in the case of page size 512 (KB)

and BW 200 MBits/s, 9.5 % downtime in the case of page

size 1024 (KB) and BW 200 Mbits/s compared to the

existing pre-copy approach [74].

In practice, live virtual migration using machine learn-

ing models can be injected into cloud platforms to improve

resource utilization, reduce downtime, and minimize costs.

For example, a cloud provider can use machine learning

models to predict the best time to migrate a VM based on

the current load on the physical host, network traffic, and

other factors.

To exploit this solution, cloud providers will need to

modify their existing infrastructure to incorporate machine

learning models. This will involve collecting and pro-

cessing data from various sources, including VMs, physical

hosts, network devices, and other monitoring tools.The

cloud provider will also need to train machine learning

models using historical data to predict the optimal time and

destination for VM migration. The trained models can then

be deployed in the cloud platform to automatically migrate

VMs based on real-time data.

From the cloud provider side, the expected benefits of

live virtual migration using machine learning models

include:

• Improved resource utilization Machine learning models

can help identify underutilized physical hosts and

migrate VMs to these hosts, improving overall resource

utilization.

Table 12 Performance comparison of proposed model with other known works

Model Number of features Performance Metric gMAE gMRE

Proposed Model 4 Total Migration Time (TMT)(ms) 476 0.02

Downtime(ms) 33 0.05

Total amount of data transferred (MB) 36.13 0.01

Performance (%) 0.03 0.04

Host CPU utilization (%) 3 0.68

Host memory utilization (%) 15 1.71

SVR with Bagging [18] 20 Total Migration Time (TMT)(ms) 1053 0.06

Downtime (ms) 96 0.23

Total amount of data transferred(MB) 70.7 0.04

Performance(%) 3.0 0.03

Host CPU utilization(%) 2.7 4.8

Host memory utilization(%) 16.4 1.79

ANN [20] 14 Total Migration Time (TMT)(ms) 3279 Not mentioned

Downtime (ms) 114 Not mentioned
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• Reduced downtime Live virtual migration can help

minimize service disruption by allowing VMs to be

migrated without disrupting the service being provided.

• Cost savings By optimizing resource utilization and

reducing downtime, cloud providers can reduce costs

associated with running and maintaining their

infrastructure.

In summary, live virtual migration using machine learning

models can be a valuable tool for cloud providers looking

to improve resource utilization, reduce downtime, and

minimize costs. However, implementing this solution will

require modifications to the existing infrastructure and a

significant investment in data collection, processing, and

model training.

7 Conclusion and future work

LVM is crucial in virtualized environments for migrating a

virtual machine from one host to another with minimum

service interruption. One of the most prevalent and reliable

LVM approaches is pre-copy. However, the key obstacles

to this strategy are the high dirty page rate in each iteration

and the predefined stopping conditions. This could result in

a longer overall migration time, downtime, or system

unavailability. In this paper, to overcome the problem, we

have proposed an optimal time prediction model with a

smaller set of significant features. To select the model’s

input feature, we conducted a simulation experiment using

CloudSim. When compared to the state of the art, our

model has better prediction accuracy with less than 5%

error.

The outcomes of this research show that we can use the

machine learning method to predict downtime and total

migration time for a pre-copy live migration approach.

However, there are different types of live virtual migration,

and various performance metrics need to be considered to

select the best live migration algorithm. In our future work,

we plan to extend this research work with feature selection

for building different types of migration algorithms and

performance metrics. Moreover, we plan to develop a

framework for implementing an efficient pre-copy

approach using this proposed model and conduct a real-

time experiment to test the framework in a cloud

environment.
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