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ABSTRACT 

This research studies the feasibility of devising a compression scheme for video 
sequences that is robust to fading errors in a spread spectrum environment 
Schemes like subband coding and pyramid coding are inherently well suited for 
SS-CDMA environment and thus, pyramid coding is the chosen spatial 
decomposition scheme. Interframe coding using the two tap short symmetric 
filters reduces the complexity of motion adaptation techniques used in the MPEG 
standards. The various temporal low bands are vector quantized using the 
frequency sensitive competitive learning algorithm. For the temporal high bands. 
a simple method of geometric vector quantization is implemented. The coded 
bands are tested for robustness over a multi-path-fading channel at a vehicle 
speed of 65 mph. The simulation of channel is done according to the 
specifications of North American Digital Cellular Standard IS-95. The 
reconstruction of the coded bands results in image frames with avemge PSNR of 
26 dB and average bit mte of0.25 bpp. The subjective quality of these images is 
found to be satisfactory. 
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1. INTRODUCTION 

The last decade has been a period of immense technological advancement, 
particularly in the areas of wireless and video communications. As the demand for 
multimedia communication services increases, mobility also becomes an important 
challenge for transmission of audio, data as well as visual information. As far as digital 
voice and data are concerned, there has been considerable progress in the past to 
identify major issues related to wireless and cellular radio environments. For instance, 
second-generation digital voice and data networks are developing rapidly and some are 
currently operational. However, despite its wide range of applications proven by a 
number of coding standards, video as a viable service for wireless multimedia 
communication has been relatively slow. 

Currently a major challenge for video transmission is how to protect this sensitive 
signal against hostile radio environments. This is necessary because unlike the 
traditional error free media for which current coding standards have been designed, 
wireless channels do not offer guaranteed transmission. These channels can be 
corrupted by burst errors caused by environmental noise and, in the case of mobile 
communications, by multipath fading and shadowing. 

The challenge of error-free transmission is further magnified because in order to 
comply with the low bit rate channel requirements, it is essential that video signal is 
compressed at very high compression ratio. Radio spectrum is a limited resource and is 
already congested due to existing wireless services. Compression methods can reduce 
the data rate in a digital video signal to a fraction of its original value by removing 
redundancy. But data compression makes the transmitted bit stream more vulnerable to 
channel errors. In an uncompressed digital video signal, an error in one bit might 
change the color or brightness of a pixel but there must be quite a few errors before 
they become noticeable to the eye. With compressed streams, however, a single bit 
error can cause much more noticeable image degradation since each bit encodes much 
more than a single point of the image. 

Thus it is apparent that powerful techniques for digital compression are required 
while still maintaining an acceptable visual quality of the low bit rate video signals 
through noisy channels. 
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Proposed Research 

Recent works on digital image transmission over wireless channels have 
investigated image transmission in the IS-54 environment and achieved compression 
rates varying from 0.125 bpp to 0.35 bpp with image quality varying from a very good 
coarser approximation to a near original quality image [1]-[2]. In the DECT 
environment two studies have been investigated with a transmission rate in the range 
of 0.69 -to- 0.4 bpp [3]-[4]. But little work has been done so far for image transmission 
by employing the well-known antimultipath spread spectrum technique. Since the 
CDMA technique is gaining popularity with the cellular industry giants such as 
QUALCOMM and Motorola, it presented an obvious choice for this research work. A 
very short summary and a primary result for the proposed algorithm can be found in 
[5]. 

The exploitation of spread spectrum scheme elegantly resolves the two basic 
technical challenges of terrestrial digital cellular networks: multiple user interference 
and multipath propagation [6]. The first issue is resolved because each user's signal 
appears as benign white noise to all other users, which can be eliminated by digital 
demodulation and error-correcting decoding processes. The fading resulting from 
multipath propagation is mitigated due to the frequency diversity inherent in wide­
band systems. The multipath reflections are received as replicas of original signal, with 
different delays. The delayed signals can be separated, individually demodulated, and 
recombined constructively using RAKE receiver's [7], so that multipath can actually be 
exploited to improve performance ofthe CDMA system. 

Another advantage of IS-95 standard resulting from the code division multiple 
access (CDMA) technique is the universal reuse of the entire allocated frequency band 
by every user of every cell. This improves efficiency as well as increases capacity per 
cell. Significantly, it also avoids the burdensome requirement for frequency planning, 
even when new cells are added in response to additional traffic needs. 

The research aim in this paper is to achieve bit rates of 0.25 bpp for video 
transmission, to be tested in the spread-spectrum environment. It has been shown that 
multiresolution techniques like sub-band coding and pyramid coding are well suited 
for SS-CDMA [8]. The quantized pyramid levels of the decomposed image form 
multiple parallel data streams, each of which is multiplied by its unique spreading 
code. All the product signals are then transmitted at the same time in the same radio 
channel. Each received :;ignal is independently recovered at the decoder by 
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multiplying it with its spreading code and all the recovered subbands are then 
reassembled into a close reproduction of the original image. Thus, the proposed 
algorithm in this paper uses pyramid coding for spatial decomposition. Temporal 
decomposition is accomplished by the use of Short Symmetric-Kernel Filters [9], 
which offer the advantage of computational simplicity over the more complex 
methods, involved in any Motion-Compensation technique. The decomposed bands are 
coded using vector quantization (VQ). A neural network algorithm for vector 
quantization has been implemented. These algorithms are much faster than the 
classical ones as they process data in parallel. Another vector quantization scheme 
used is the geometric VQ [10], which is fast, simple and has a global codebook. The 
coded image sequence is tested in spread spectrum environment and analyzed for 
results. The wireless channel to be simulated for image transmission is chosen to be the 
COMA-based North American digital cellular standard IS-95A. 

The paper is organized as follows. We begin with a general overview of the 3-D 
decomposition of the image sequence in section two. Then, we describe the vector 
quantization design by using the neural network and its implementation for image 
coding in section 3. The vector quantization design for the low frequency bands and 
the high frequency bands are discussed in section four. The performance ofthe 
proposed algorithm is compared with the performance of MPEG standard algorithm in 
section five. The COMA wireless channel is presented in section six. This simulation 
is conducted on Cadence's signal processing software SPW. In section seven, the 
overall compression algorithm is tested on video sequences with different activates. 
The simulation is done at 0.25 bpp at two vehicle speeds (0 mph and 65 mph). The 
conclusion of this work is presented in section eight. 

2. 3-D DECOMPOSITION OF THE IMAGE SEQUENCE 

Extending spatial filtering to three dimensions can make use of the temporal 
redundancy existing between the subsequent frames of a video sequence. Temporal 
filtering is achieved by applying the two-tap Haar filter, resulting in a temporal high 
band which contains sparse information, consisting of most of the high frequency 
motion components, and a highly correlated temporal low band. 

The temporal low band is further filtered by applying the spatial 24-tap FIR filter 
given in [II]. Since this filter allows a decimation factor of four, greater compression 
ratio is possible here. But due to the sparse nature of information in the temporal high 

140 



Transmission of Compressed Video Signals through a Spread ....• 

band, this filter does not work very well with it. The 5-tap Gaussian filter is used to 
decompose the temporal high band. The whole decomposition process is shown in 
Figure 1. In this decomposition process, most of the signal energy resides in the lower 
spatial frequency bands, namely bands 1 and 2. Subband 4, which corresponds to the 
high temporal/low spatial frequencies, carries most ofthe motion information and acts 
as a motion detector. Thus, by accurate coding of low spatio-temporal bands, the 
spatial details of the original image are conserved, and by careful encoding of band 3, 
most of the motion information will be preserved. 

Once the original image has been decomposed and the redundancy in the data 
removed, next step in the image compression problem is to code the constituent bands. 
Vector quantization schemes have been found to be more effective here as compared to 
scalar quantization according to Shannon's rate distortion theory. In the next sections 
we discuss the two steps required during the quantization process: design of the 
codebook and matching the input vectors to the best possible code vector from the 
codebook. 

3. VECTOR QUANTIZATION DESIGN USING NEURAL 
NETWORK 

Different techniques involving vector or scalar quantization can be used to encode 
the decomposed pyramid levels. From Shannon's rate distortion theory, it can be 
shown that vector quantization can achieve better compression performance than any 
other conventional coding technique which is based on encoding of scalar quantities. 
However, practical application of VQ techniques has been limited because ofthe 
prohibitive amount of computational complexity and time involved with the classical 
encoding algorithms such as the Linde-Buzo-Gray (LBG) algorithm [12]. 

Recently a number of studies have proposed the use of artificial neural network 
(ANNs) as a powerful technique for implementing VQ [13]-[15]. Neural network 
approaches appear to be more promising for intelligent information processing as a 
result of their massively parallel computing structures and self-organizing learning 
schemes. These algorithms are much faster than the classical ones as they process data 
in parallel. They have been found to be less sensitive to initial conditions, have fast 
convergence properties, and have the ability to produce a lower mean distortion 
codebook. Moreover, when the ANNs are implemented in hardware, vector 

141 



AI-Asmari and Kwatra 

quantization can be done in real time since the networks have highly parallel structure 
[16). 

Temporal low 
band 

: Interpolation by M 
followed by filtering 

: Decimation by M 
followed by filtering 

H : 24-tap analysis filter 

G : 24-tap synthesis filter 

h : 5-tap Gaussian filter 

Fig. 1. Three dimensional decomposition of video sequence 
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The architecture of ANNs basically consists of an input layer and an output layer. 
The layers are dense interconnections of simple processors, or neurons, which operate 

in parallel. Each interconnection is associated with a weight factor wk. These weights 

are usually trained on one or more images so that they develop an internal 
representation corresponding, not to the image, but rather to the relevant features of 
a class of images. 

One ofthe important purposes of neural VQ is to create an ordered mapping from a 
high-dimensional input space to a low-dimensional output space, and to extract 
meaningful features from the input data. Kohonen's self-organizing maps (SOFMs) 
have been regarded as one of the most powerful network in that sense. The work of 
Nasrabadi and Feng [13] has shown SOFM to give better results than the traditional 
LBG algorithm in the sense of the mean expected distortion. Kohonen's SOFM also 
addresses the problem of underutilized neural units faced by many other neural 
network algorithms. In many of the learning methods, the frequency of use of entries in 
the codebook can be quite uneven, leaving some codewords as underutilized. 
Kohonen's SOFM ensures that all codewords are doing their fair share in representing 
the input data by associating with each neural unit, a neighborhood of other neural 
units. During the training process, the winning neural unit as well as the neural units in 
the neighborhood of the winner are updated. Thus, by the use of neighborhoods, the 
SOFM network overcomes the problem of underutilized nodes, but at the expense of 
additional computation involved during training. This additional computation arises 
from both the calculation of the neighborhood of the winning unit, as well as from the 
updating of all members of the neighborhood. 

Implementation of the FSCL Neural Network 

This research uses the frequency-sensitive competitive learning (FSCL) network 
[14]. One of the motivations for this is that it overcomes the limitations of 
underutilized networks while retaining the computational advantages of its neural 
structure. In the FSCL network, each neural unit incorporates a count of the number of 
times it has been the winner. This information is used to ensure that, during the course 
of the training process, all neural units are modified an approximately equal number of 
times. This is done by modifying the distortion measure used to determine the winner. 
The distortion measure is weighted by an increasing function of the number of wins for 
each unit. In this way, units that have had many wins, i.e. which are over utilized, are 
less likely to be chosen for modification, giving other units with a lower count value a 
chance to win the competition. 
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Specifically, let d(x, w;(n)) be the distortion measure that is to be minimized 

during the quantization process, and let u;(n) be the total number of times that a 

neural unit i has been the winner during training. Then a modified distortion measure 
for the training process is defined as: 

The winning unit at each step of the training process is the one with the minimum d* . 
If a given neural unit wins the competition frequently, its count and consequently d* 
increases. This reduces the likelihood that this unit will be the winner. 

The FSCL network architecture consists of three layers: 

• an input layer that distributes the input vector from the training set to the second 
layer 

• a second layer of units, where each unit computes the modified distortion d* 
between its weight vector (code vector) and the input vector 

• an output layer based on the minimum distance criteria that determines the winning 
neural unit from the distortions computed by the second layer units. 

Thus there are N neural units in the input layer, and M units in the middle and output 
layers, where N is the dimension ofthe input vector, and M is the size of the codebook, 
i.e. the number of codevectors in the codebook. 

The code vectors of the winning neuron are updated according to the one iteration 
learning rule described below: 

• The codevectors W i and the winning frequency associated with each codevector, 

F i are all initialized for each distortion computing neuron in the second layer. 

wi (o) = R(i) i = 1,2, .... ,M 

Here R(i) are the initial codevectors, taken from a random vector-number generating 
function. 
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• The distortion D i (t) between an input vector X(t) and all the code vectors W i (t ) 
is calculated as : 

where t is the training iteration index 

• The distortion computing neuron with the smallest distortion is designated as the 
winning neuron and its output is: W i (t+ 1) = W i (t) + C(t) * out i (t) * [X(t) -

Wi(t)]where C(t) = - 1
-, ifl::;Fi(t)::;FthrandO , otherwise. Here, 

Fi(t) 

C(t) is the frequency sensitive learning rate and F thr is the upper threshold 

frequency. In this research, an upper threshold of250 is found to be adequate to 
allow training of the code book. 

• The above steps are repeated for all the training vectors X(t). The final codebook 
obtained is an optimal codebook. 

4. DESIGNING THE CODE BOOKS FOR VECTOR 
QUANTIZATION 

The neural network algorithm FSCL (Frequency Selective Competitive Learning) 
discussed in the previous section is used for the design of the code book for vector 
quantization. Our research involves design of two separate codebooks, one for the 
high frequency edge vector patterns, and one for the approximately stationary vector 
patterns. The reason for designing two separate code books is that while most of the 
vectors in the baseband (band 1) have low variance and are almost stationary, the 
vectors found in band 2 and 3 are mostly edge patterns and show high variances. So to 
have a good representation for both kind of input vectors, separate training sets have 
been used to simulate each codebook. Several different images are used for the purpose 
of the training set: the images are filtered into their low pass and high pass components 
and then used to simulate the neural network clustering technique. Once the codebooks 
are formed, the actual quantization occurs as follows. 
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Vector Quantization of Bands 1, 2 and 3 

Since most of the ,energy of the decomposed image is concentrated in the lowest 
spatio-temporal frequency band, also called the baseband (band I), the dimension of 
the stationary codebook is kept quite small and is chosen as 4. Also, since the baseband 
contains only the slowly varying information content, its 4-dimension vectors do not 
exhibit widely varying geometric patterns. Thus, a small-sized codebook is sufficient 
to represent all the vectors in this band. A code book of size 64 was chosen for this 
work. 

The second level in the pyramid has the high-frequency content of the 
decomposed temporal low band and requires a separate codebook for its coding. This 
codebook has been trained on data that has a highly varying edge content so that it can 
faithfully code data of similar nature. The size of this codebook is 256 and dimension 
4. 

The first difference level (band 3) in the pyramid has the minimum information 
most of which is concentrated around the edges. This information can be coded by 
applying an edge detector to find the location of pixels that are perceptually important 
and then transmitting only these coded pixels. But this would also require the 
transmission of the position of these coded locations to the receiver in order to 
reconstruct this band. To avoid this, a scheme of predicting the edges ofband 3 from 
band 1 and 2 is used. This is shown in Figure 2. 

Before coding, the baseband is interpolated to the second level and added to band 2. 
This is further interpolated to the size of the original image. Edge-detection is applied 
to this up-sampled version and the corresponding pixels from the first difference level 
are formed into vectors and quantized. At the receiver, similar process is repeated by 
upsampling the quantized baseband, adding it to the quantized second level, and then 
upsampling it to the original image size. This partially reconstructed version of the 
original image is used for edge-detection which gives the location of the vectors of the 
band 3 that are coded. Once the locations are known, the coded vectors are suitably 
placed to form band 3. Thus, using this approach, no side information needs to be sent 
for the coded areas of the first difference image level and an average of only 4 % to 
5% of this level needs to be coded. Thus, more compression is achieved by edge­
detection instead of coding the band as it is. 
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1---i~ Coding the pixels at 
the edge-locations 

Fig. 2. Coding of edge location in band 3 using band 1 and 2. 

Coding the decomposed temporal high band 

Bands 4 and 5 form the pyramid levels of the decomposed temporal high band. The 
subbands whose energy falls below an empirically derived threshold value are 
discarded without causing severe degradation to the reconstructed image. Band 5 has 
extremely low energy content and the sparse information carried in it is not significant 
in the final image reconstruction, thus it can be safely discarded. The coding process 
for band 4 is discussed below. 

This is the nondominant subband that contains a small amount of the total signal 
energy yet data that is perceptually very significant as it contains most of the sharp 
edge and contour information as well as the fast motion aspects. The neural vector 
quantization approach used for the decomposed temporal low band does not work very 
well for this. Instead, a perceptually efficient image coding scheme is required that can 
preserve the underlying edge geometries in the high frequency signals at low coding 
rates. A geometric vector quantization (GVQ) scheme proposed in [10] is adapted in 
this paper where the codevectors are derived from a small set of local geometric 
patterns found in the high-frequency subbands. This method takes advantage of the 
human eye's sensitivity to sustained intensity changes as found in an edge. 
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In general, the GVQ method provides an optimum /-level scalar quantizer for each 
data vector for a given error metric. In this paper, a two level GVQ based on the 
minimum mean square error (MMSE) criterion is used. Unlike traditional VQ, GVQ 
does not require a training set for its codebook design. Instead, it makes use of the fact 
that the high-frequency bands have a lot of edges that can be represented by typical 
geometric shapes. Thus a codebook of simple geometric shapes like strips or strip 
combinations of various orientations and thickness is sufficient to represent this data. 
The codevectors for two-level GVQ are binary valued blocks reflecting these basic 
shapes. Each coded block is accompanied by two locally adapted intensity values, 
representing the binary values of the block. The dimension of the codevectors is 
chosen to be 3x3 blocks, so an exhaustive binary codebook of all possible shapes can 

be formed by 2 9-
1 = 256 code vectors. The other 256 code vectors are just the 

complements of the first 256 code vectors. The latter codebook gives better results as 
compared to a codebook of elementary shapes. 

The image is divided into 3x3 non-overlapping subblocks of input vectors. For a 
given input vector, an adaptive procedure modulates the two intensities of each code 
vector, and the code vector with the best match is used to reproduce the input image 
block. The transmitted information includes the index kbest of the chosen code vector 

as well as its chosen intensity levels ~ and Lz . The index kbest is given by 8 bits and 

each of the intensity values ~ and Lz is represented by a uniform 5-bit scalar 
quantizer. 

5. PERFORMANCE EVALUATION OF THE COMPRESSION 
ALGORITHM 

The performance of the proposed algorithm is compared with the performance of 
MPEG standard algorithm. The MPEG standard does not give detailed rules of how a 
sequence should be coded. The standard is like a protocol for the decoding procedure. 
The broad guidelines for achieving good compression are mentioned but many choices 
are left for the user to decide. Thus the comparison made here with MPEG is more 
analytical than experimental. 
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Qualitative Evaluation 

The visual quality of the reconstructed sequence is excellent in both algorithms. 
The reconstructed sequence is almost indiscernible from the original sequence. 

Quantitative evaluation 

The performance of the two algorithms is compared based on the signal to noise 
ratio, and the bit rate (bpp) requirements. The average PSNR of the reconstructed Miss 
America sequence using MPEG is approximately similar to the PSNR that can be 
achieved with the algorithm presented in this paper. The algorithm introduced presents 
a major advantage over MPEG here, by supporting the possibility of progressive 
transmission of the video signal. The bits per pixel {bpp) requirements for both 
algorithms are very similar. 

6. SIMULATING THE WIRELESS CHANNEL 

The transmission and reception of the compressed bands through a COMA wireless 
channel is depicted below in Figure 3. The actual simulation has been done using 
Cadence's signal processing software SPW. The simulation files used have been 
shown in Appendix A. Although COMA technology allows transmission of all the 
coded bands at the same time unlike the TOMA technique, to avoid complexity of 
diagram, the transmission of only one band is shown in the Figure 3. But in the actual 
simulation of the channel, two coded bands have been transmitted simultaneously. 
Walsh codes 1 to 4 have been used to separate data of one band from the other band. 

Once the image has been compressed by the image coder, it is error-protected by 
using a convolutional code (2, 1, 5), n = 2; k = 1; m = 5. Further, to combat the burst 
errors associated with a fading channel, the error-protected data is interleaved. 
Interleaving spreads out the data in time so that burst errors are spread out to appear 
independently making a bursty channel similar to an A WGN channel. The interleaved 
data is modulated using a QPSK modulator and the in-phase and quadrature 
components of the output are spread by PN sequences. The 1-channel PN generator 
function is '0121641' and the Q-channel PN generator function is '0116171'. The 
spreading factor is 128 as specified by the IS-95A standard with a bit rate of 9600 bps 
and chip rate of 1.2288 Mcps. Walsh functions from 1 to 4 are used for the four bands. 
A square root raised cosine filter with a roll-off factor of0.35 is used for pulse shaping 

149 



AI-Asmari and Kwatra 

and the data is fed through a frequency selective multipath fading channel. White noise 
corresponding to 18 dB channel SNR is added to the output of the fading channel. At 
the receiver end, the data is again filtered by the same filter used for pulse shaping. 
Despreading takes place and the despread data is demodulated. The deinterleaver is 
used to record the data back to its original sequence. After passing through a 
convolutional decoder, the data is sent to the image decoder for reconstruction of an 
approximation ofthe original frames. 

Convolutional 
Encoder (2.1.5) 

PN sequence 
generator and 
Walsh Code 

Convolutional 
Decoder (2.1.5) Deinterleaver 

pi/4 shift 
QPSK 
Modulator 

pi/4 shift 
QPSK 
Demodulator 

CDMA 
Despread 

Frequency 
Selective 
Multi path 
Fading 
Channel 

Pulse 
Shaping 

Fig. 3. IS-95A Standard specification for transmission and reception across a 
wireless channel. 
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Appendix A Simulation file 
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7. SIMULATION RESULTS 

The compression algorithm is tested on two sequences, one with slow motion and 
static background, the Miss America sequence, and the other with faster motion and 
noisier background, the Salesman sequence. Both are gray-scale sequences having 288 
x 360 pixels per frame at the rate of 30 frames Is. 

This research is aimed at compressing video sequences at 0.25 bpp at vehicle speed 
of 65 mph. The bit rate calculations of 0.25 bpp or less for the Miss America sequence 
is shown in Table 1 for two frames, frame 5 and frame 6. Simulation results have been 
obtained for two frames each from both these sequences. Quantitative evaluation 
involving the calculation of the peak-signal-to-noise ratio (PSNR) as well as 
qualitative analysis is performed to judge the quality of the image sequences. 

Table 1 Bit rates and PSNR for miss america sequence. 

Band Bit rate PSNR Average Bit rate 

Band4 1.01 33.97 1.0114 = 0.25 bpp 

Band3 0.08 32.31 0.08 bpp 

Band2 2.0 34.56 2/16 = 0.125 bpp 

Band 1 1.5 38.64 1.5/256 = 0.03 bpp 

0.245 bpp 

The first tests were performed on the Miss America sequence. Two frames with 
distinct motion in the eyes and lips area are chosen as data for channel simulation. The 
original frames, frame 4 and frame 5, are shown in Figure 4 for comparison. Figure 5 
shows the reconstructed frames in the absence of channel errors; the only information 
loss is due to the compression involved. It is seen that the coding scheme produces 
results comparable to the original data with very slight deterioration around the edges 
and in the motion information. The PSNR of these frames are 36.51 dB and 36.52 dB 
respectively. 
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Frame4 FrameS 
Fig. 4. Two original consecutive frames of miss america sequence. 

Frame4 FrameS 

Fig. S. Reconstructed frames of miss america sequence at 0.2S bpp. 
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Figure 6 shows the reconstructed frames after passing through the IS-95 channel at 
a vehicle speed of 0.1 mph and a channel SNR of 18 dB. The PSNR of these frames 
are 34.65 dB and 34.68 dB respectively. It can be seen that the coding scheme is very 
robust to channel noise in the absence of fading. Fading errors are introduced in the 
channel by increasing the vehicle speed to 65 mph, which is a typical highway speed, 
and with a channel SNR of 18 dB. The corrupted frames are reconstructed and shown 
in Figure 7. The PSNR after introduction of fading errors reduces to 27.26 dB and 
27.21 dB. The major contributor to the overall degradation in the reconstructed frames 
is the baseband. Any burst errors in the lower levels of the pyramid have less effect on 
the picture quality. 

Frame 4 Frame 5 
Fig. 6. Reconstructed frames at 0.1 mph and channel snr 18 db. 

Frame 4 Frame 5 
Fig. 7. Reconstructed Frames At 65 Mph And Channel Snr 18 dB. 
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Similar results for the Salesman sequence (frame 16 and frame 17) are shown in 
Figures 8 through 11. The Salesman sequence has faster motion and has noisier 
background and foreground as compared to the Miss America sequence. Despite the 
increase in activity, ;the compression scheme produces near original results in the 
absence of channel etrors at a bit rate of 0.25 bpp. Table 2 compiles channel simulation 
results for both sequences for comparison. 

Frame 16 Frame 17 
Fig. 8. Two original consecutive frames 9f salesman sequerre. 

Frame 16 Frame 17 
Fig. 9. Reconstructed frames of salesman sequence at 0.25 bpp. 
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Frame 16 Frame 17 
Fig. 10. Reconstructed frames at 0.1 mph and channel snr 18 db. 

Frame 16 Frame 17 
Fig. 11. Reconstructed frames at 65 mph and channel snr 18 db. 
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Table 2. Simulation results for miss America sequence and salesman sequence. 

PSNR for Miss America PSNR for Salesman 
sequence at 0.25 bpp sequence at 0.25 bpp 

Reconstructed 
Frames 

frame 5 (dB) frame 2 (dB) frame 16 (dB) frame 17 
(dB) 

No fading errors, no 
36.51 36.51 33.43 33.41 

channel errors 

0.1 mph vehicle speed, 
35.15 35.18 31.83 31.89 

18 dB channel SNR 

65 mph vehicle speed, 
27.26 27.21 25.07 25.10 

18 dB channel SNR 

For a more subjective evaluation of the results presented above, the mean opinion 
score (MOS) is used as a basis to reflect the quality of the image. A number of viewer 
rate the image according to how appealing it is visually, and the mean of these ratings 
gives the MOS. The results presented before were compared side by side with the 
original images by ten viewers. The MOS scales for the two test frames of Miss 
America sequence and the Salesman sequence are given in Table 3 (a) and (b). 
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Table Ja. MOS Results for the miss America sequence. 

Channel SNR and Vehicle Speed MOS 

0 dB SNR, 0 mph 4.75 

18 dB SNR, 0.1 mph 4.50 

18 dB SNR, 65 mph 3.25 

Table Jb. MOS Results for the salesman sequence. 

Channel SNR and Vehicle Speed MOS 

0 dB SNR, 0 mph 4.60 

18 dB SNR, 0.1 mph 4.25 

18 dB SNR, 65 mph 3.50 

8. CONCLUSION 

In this paper, a novel compression scheme for video sequences that is robust for 
fading error in a spread spectrum environment is presented. A 3-D coder has been 
designed in which the sequence is decomposed into spatio-temporal sub-bands. The 
proposed algorithm involves the design of two separate code books, one for the high 
frequency edge vector patterns and one for the approximately stationary vector 
patterns. 

The encoded bands are sent through a channel based on IS-95A (North American 
digital cellular standard) specifications and the bands are later combined to recover the 
original sequence at the im~ge decoder. 

The Miss America compressed sequence can be transmitted at a rate of 715 Kbps 
and the Salesman sequence requires 793 Kbps. Vehicle speeds of0.01 mph and 65 
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mph are considered which represent two extreme channel conditions: stationary and 
rapidly time-varying, at channel SNR 18 dB. The PSNR of the frames in the presence 
of fading errors was found to vary between 25 dB to 28 dB. Most of the degradation in 
performance is attributed to errors in the baseband. Errors in the lower levels do not 
significantly affect the image quality. Performance can be improved by increasing the 
channel SNR to be more than 18 dB (22 dB for example). Moreover, the baseband can 
be transmitted without any compression. This would augment the bit rate by 0.03 bpp 
but will make the transmitted images more robust to channel errors. 
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