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ABSTRACT 

Resonance of the motion of two fluids inside a cylinder that spins about 
its axis and rotates (cones) about an axis that passes through its center of 
mass is known to occur for low-viscosity fluids (high Reynolds number 
flows) at critical geometric parameters and coning frequencies. In this 
paper the motion of two inviscid fluids inside a spinning and coning 
cylinder is analyzed by the method of separation of variables for small 
coning frequencies and/or coning angles. The analytical solution of the 
inviscid flow equations provides a criterion in the form of a 
transcendental equation that governs the behavior of the parameters that 
cause resonance. The transcendental equation was solved numerically by 
Newton-Raphson's iteration and the results are in good agreement with 
those obtained for two viscous fluids. 

INTRODUCTION 

Spin-stabilized liquid-filled projectiles are known to experience severe 
dynamical instabilities owing to the motion of their liquid payload. For 
cylinders completely filled with a single fluid we know two types of 
instabilities that are excited by the coning motion of the projectile about its 
flight trajectory. 

One of the instabilities is caused by resonance with inertial waves at 
critical coning frequencies (ratio of the coning rate n to the spin rate ro) and 
is most pronounced for fluids of low viscosity, i.e. high Reynolds numbers. 
We define the Reynolds number as Re=roa2/v, where a is the radius of the 
cylinder and v is the kinematic viscosity of the liquid. This instability is 
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known to strongly depend on the cylinder aspect ratio (ratio of the length 2c 
of the cylinder to its diameter 2a). For stable designs, the aspect ratio is 
properly chosen to avoid resonance for a given coning frequency. The 
Stewartson-Wedemeyer theory is appropriate for this task. While Stewartson 
(1959) has solved for the critical coning frequencies, Wedemeyer (1966) has 
added the boundary layer theory to actually estimate the moments exerted by 
the fluid inside the cylinder. 

The other instability is due to viscous stresses applied on the walls of 
the payload container and is most pronounced for fluids of high viscosity, 
i.e. low to medium Reynolds numbers, for a wide range of aspect ratios and 
coning frequencies. The moments exerted by the fluid inside the cylinder can 
be calculated by the methods of Herbert & Li (1990), Hall et al. (1990), and 
Selmi et al. (1992). Accurate calculations of the moments are needed for 
flight simulation at a wide range of Reynolds number. 

While the instability due to resonance with inertial waves is easily 
avoided by proper design, the viscous instability is hard to eliminate. It was 
suggested (Miller 1991) that a low-viscosity additive might lessen the viscous 
stresses applied on the walls of the cylinder. To find out if this is the case, 
the motion of two immiscible viscous fluids has been analyzed by Selmi and 
Herbert (see Selmi (1991) and Selmi et al. (1993)). While it was discovered 
that a low viscosity additive can eliminate the viscous instability under 
certain conditions, it was found out that under other conditions the motion is 
susceptible to resonance. For a core fluid that is very viscous and additive 
that is low in viscosity, resonance can occur at very low density ratios. We 
define the density ratio as the ratio of the density of the core fluid to the 
density of the additive. Resonance in this case is similar to that in partially 
filled cylinders and has been analyzed by Selmi & Herbert (1992). For two 
low-viscosity fluids resonance, can occur at a wide range of parameters and 
this paper is concerned with the finding of these parameters. 

GOVERNING EQUATIONS 

We consider the steady flow of two immiscible-inviscid fluids of 
different densities inside a cylinder of radius a and length 2c. The cylinder is 
rotating about its axis at the spin rate ro and rotating about an axis that passes 
through its center of mass at the coning rate n, and is completely filled with 
both fluids at a specific fill ratio. We define the fill ratio as the ratio of the 
volume of the heavier fluid V1 to the total volume of the cylinder V. Under 
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the influence of centrifugal forces the heavy fluid, having density p" 
accumulates at the side walls while the lighter fluid, having density p

0 
< p" 

surrounds the cylinder axis. The shape of the interface of the two fluids 
when the cylinder is spinning about its axis is an axisymmetric surface of 
radius ao. This radius is an alternative measure to the fill ratio and we will 
refer to it as the fill radius. When the cylinder spins and cones 
simultaneously, the fill radius is no longer constant, but varies with the axial 
and azimuthal directions, and we denote this quantity by ar. When the spin 
rate ro is much larger than the coning rate n, as in practical applications 
(Miller 1991), the deviation of ar from a0 is small. In this paper it is assumed 
that this is the case. 

For convenience, we adopt the notion of an inner region (characterized 
by the index 0) that contains the inner fluid and an outer region 
(characterized by the index 1) that contains the outer fluid. We use Cartesian 
coordinates x, y, z, where z is the spin axis and xis normal to z and coplanar 
with both the spin axis and the coning axis Z. The angle between spin axis 
and coning axis is denoted by 8 as shown in figure 1. When written with 
respect to the coning system (x, y, z), that rotates about the Z-axis of the 
inertial system (X, Y, Z) at the coning rate n, the governing equations take 
the form 

z 

Figure 1: Description of geometry 
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V · V = 0, (la) 

p [~t (V) + 2!1k x V + !1k x (!1k x r)] = -VP, (lb) 

where V and P denote the velocity and pressure respectively, p is the 
density, k is a unit vector in the Z direction, and r is the position vector. The 
density p takes the value p0 when in the inner region and the value p1 when 
in the outer region. 

The flow quantities are made dimensionless by using p to scale mass, a 
to scale length, and c:o to scale time. Hence from here on all quantities are 
dimensionless and the problem depends on the aspect ratio ll =ale, the 
coning frequency 't = 0./c:o, the coning angle e, the dimensionless fill radius 
r

0 
= aofa (or the fill ratio f = V/V), and the density ratio p0/p 1• For 

convenience, the flow variables are expressed in cylindrical coordinates (r,<l> 
,z), where r is in the radial direction, <I> is in the azimuthal direction, and z is 
along the axis of the cylinder. Also for convenience, the velocity and 
pressure are split according to 

V = v" + V' p = --}(1 + 'tz)2 'o2 + p" + pd' (2) 

where vS is the velocity due to solid body rotation, 't z = 't cose, and ps is 
chosen so that the forcing terms in the governing equations reduce to only 
one term present in the z-momentum equation, 

P• = .l[r2 (1 + -r )2 + r2-r 2 + z2e2
- 2rz-r 't J 2 z <1> z r ' 

where 't r= - E cos<!> , 't <I> = E sin<j>, and E = 't sinS. We represent the 

velocity deviation from solid-body rotation by 

the perturbation pressure by 

d _ {pg if 0 s r s If , 
p - d "f 1 p1 1 rr s r s , 

and the density by 
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a 
rr = _r = '0 + ~(~,z) 

a 

(5) 

(6) 

is the dimensionless radial distance from the center of the cylinder to the 

interface and ~ is the deviation of rr from r
0

• 

The equations governing the velocity components vr, V.p, vz and the 

perturbation pressure pd take the form 

where 

1 a 1 av.p avz 
--(rv )+--+-=0 r ar r r a~ az ' 

I VrV.p 1 apd 
D v + - + 2(1 + -r )v - 2 -r v = ---

4> r z r rz ra~· 

a d 

D'v +2-r v -2-r v =-_l!___-2r-r 
z r 4> <P r az r' 

D'=_!}_+j_+v ~+ V.pj_+v ~ 
at a~ r ar r a<j> z az . 

(7a) 

(7b) 

(7c) 

(7d) 

These equations are supplemented by the no-penetration conditions at the end 
walls (z = ±11) and at the side wall (r = 1), 

v~ = v~ = 0 at z = ±11, (8a) 

v! = 0 at r = l. (8b) 
They are also supplemented with t~e condition of continuity of normal stress 
(pressure) across the interface. For small interface deviation from the 
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axisymmetric surface r = r0 , this condition is applied at r = r0 and takes the 

form 

Po[-p: --t{(2r0(;)(1+'tz)
2 

+2r0Z'tzecos<!>}] 

=P1 [-p~ -t{(2r0(;)(l+'tz)2 +2r0Z'tzecos<!>}], 

and from kinematics, we have 

Equations (9a) and (9b) are combined to eliminate (; from the interface 
condition (9a), 

a d 

P [- Po _ r, vo (1 + "t )2] _ 
0 a<j> Or z 

a d 

P [_A _ r, vt (1 + -r )2] 
1 a<j> 0 r z 

(9a) 

(9b) 

(9c) 

The only forcing of the flow quantities comes from the term 

- 2n r = 2e r cos 4> in the z-momentum equation and the term 

-(p
0 

- p
1
)r

0
z'tze sin <I> present in boundary condition (9c). When these 

terms vanish, e = 0, the governing equations admit the trivial solution 

v = 0, pd = 0, and (; = 0. Hence, the velocity deviation from solid body 
rotation and the deviation of the two-fluid interface from that corresponding 

to pure spinning are O(e). Moreover, if (v0 v<t>,vz,pd,(;) is the solution at 

(r,<j>,z), the solution at (r,<l> + 7t,-z) is (v0 v<1>,-vz,pd ,(;). 

In practical applications (Miller 1991), the parameter e is small, 

i.e.e ~ 0.05"1 tor 8 ~ 20°, 0 ~ 500rpm, and ro ;::: 3000 rpm. Since the 

flow quantities are O(e), then for sufficiently small e, it is well justified 
(Herbert 1985) to use e to linearize the governing equations. When this is 
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done, the continuity equation remains unchanged while the momentum 
equations for steady state conditions are written as 

avr 8pd 
-- 2(1 + -r )v = --

8<1> z <Jl ar ' 

avz = - 8pd - 2n . 
8<1> az r 

(lOa) 

(lOb) 

(lOc) 

These equations support the additional 

symmetries:v(r,<!> + n,z) = -v(r,<j>,z), pd(r,<i> + n,z) = --pd(r,<j>,z), and 

l;:(<!> + n,z) = -l:(<i>,z). 

SOLUTION PROCEDURE 

We represent the velocity field by the Fourier series 

00 

v.x(r,<!>,z) = :L,v:(r,z)em<~>, v: = (u:,v:,w:), (lla) 
n=-oo 

where a takes the value of 0 or 1 and i 2 = -1. Similarly we represent the 

interface deviation from the surface r = r0 by 

00 

l;:(<i>,z) = e :L,l:n (z)ein<ll, (llb) 
n=-oo 

and the perturbation pressure by 

00 

P! (r,<i>,z) = 2rezcos<l> + :L,p:(r,z)ein<~>. (llc) 
n=-oo 

Substituting Eqs. (11) into the linearized momentum equations (Eqs.(lO)) and 
the continuity equation (Eq.(7a)), and realizing that for linear analysis only 
the fundamental components are relevant, we obtain 

163 



M. Selmi 

(12a) 

2 1 apa. 
(1--r )v =--p --r --(1+-r )z ea. a. ea e• r r 

(12b) 

. apa. 
wa. = 1-, az 

(12c) 

a2 Pa. +.!. apa. - Pa. + (1- -r2) a2 Pa. = o 
8r2 r ar r2 e 8z2 ' 

(12d) 

where 

(u~,v~,w~,p~)=~(ua.,va.,wa.,Pa.) and 't8 =2(1+-rz). The boundary 
conditions associated with the pressure equations (Eqs.(12d)) at the end walls 

(z = ±11) follow from Eqs. (12c), and they are 

apo = apl = 0 at z = ±11. (13) 
az az 

While the boundary condition at the side wall (r= 1) is found from Eqs. 
(12a), 

't an 
~ P1 + -

8
r 1 = -(1 + -r8)z at r = 1, 

r r 
(14) 

and the conditions at the interface are 

~Po + apo - ~P1 - ap1 -- 0 
r ar r ar 

at r = r0 , (15a) 

and 

(15b) 

at r = r0 • 
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The pressure equations (Eqs. (12d)) are elliptic, homogeneous, and 
possess homogeneous boundary conditions in the axial direction. By means 
of separation of variables, it can be shown that they support solutions in the 

form of products of sine waves in z and Bessel functions ]
1 
and ~ in r . 

Hence, their general solutions can be written as 

00 

Pa. = L:[A:J~a\r)+ I("~(Pkr)]sin(ykz), (16a) 
k=O 

where 

yk = (2k + 1)~. pk = yk~'t~ -1. 
211 

(16b) 

The expansion coefficients B~ must all be zero for the inner solution p
0 

to 

be finite as r ~ 0 . However, the expansion coefficients A~, A~, and B~ are 
determined by satisfying the boundary conditions at the side walls (14) and at 
the interface (15). Most importantly, they provide us with a criterion for the 
onset of resonance. 

CRITERION FOR RESONANCE 

The no-penetration condition at the side wall requires 

~{A~[E110 (Pk) + Ezlz(Pk)] }~ . __ 
~ 1 sm(y kz)- E1z, 
k=O +J\[EJ"fo{Pk) + EzJ;{Pk)] 2 

(17a) 

where E1 = (1 + 19 ), E 2 = (18 -1), and 10 , 12 , "fa, and J; are Bessel 

functions. While the condition of continuity of the pressure across the 
interface gives 

(17b) 

where 
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2 1 3 2 E7 = (1- 'te)Po +-('te- 'ta)(Po- Pt), 
4 . 

and the condition of continuity of radial velocity across the interface 

provides 

(17c) 

(18a) 

(18b) 

(18c) 

Consequently the motion becomes resonant if the determinant of the above 
system vanishes, 
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[Ello(f3k) + E2J2(f3k)][E1Yo(f3kro) + E2J;(f3kro)][E6lo(f3k1Q) + E7J2(f3kro)] 

-[Ello(f3k) + E2J2(f3k)][Eolo(f3kro)- Eo12(f3k1Q)J[Ello(f3k'O) + E2J2(f3kro)l 

-[El Yo (f3k) + E2J; (f3k)][E1Jo (f3kro) + E2J2 (f3k'O )][Eslo (f3k1Q) + E9J2 (f3kro)l 

= 0, (19) 
where 

E8 = E6 - E0 , and E9 = E7 + E0 • 

This equation is quite complicated since it depends on 't' e, 11, k,and 

Po/P1 • Given 't, 8, Po/P1 , and k, the solution to equation (19) provides 

the pairs ( r0 , 11) that lead to resonance. These pairs constitute continuous 

functions 11 = 11(r0 ), and for a given interval, 11min ::;; 11::;; 11max• there may be 
more than one function and the number of functions increases with k. Plots 
of these functions are shown in figures 2 through 7 for k = 0, 1, 2, 3, 4, 
and 5 respectively. 
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0.6 
Q 

~ 

0.4 

0.2 1-

0.0 I _l _l I I 

2 3 4 5 6 
Aspect ratio 7) 

Figure 2: Plot of the roots of Eq. (19) for k = 0, 't = 0.008, e = 1°, 
and pofp1 = 0.2. 
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Figure 3: Plot of the roots of Eq. (t9) fork = t, -c = 0.008, e = to, 
and p0/p1 = 0.2. 
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Figure 4: Plot of the roots of Eq. (t9) fork = 2, -c = 0.008, e = t 0 , 

and p0/p1 = 0.2. 
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Figure 5: Plot of the roots of Eq. (19) fork = 3, 't = 0.008, e = 10, 
and p0/p1 = 0.2. 
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Figure 6: Plot of the roots of Eq. (19) fork = 4, 't = 0.008, e = 1o, 
and p0/p1 = 0.2. 
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Figure 7: Plot of the roots of Eq. (19) fork = S, 't = 0.008, 8 = 1°, 
and p0/p1 = 0.2 . 

. If we plot the same results in one figure, it would be filled with small 
circles indicating resonance of some value k. However, not every critical 

pair (f0 , fJ) leads to the most amplifications in the roll moment. For a given 

region in the r0 -f] plane some are more critical than others. We could 

choose to plot the critical values associated .with the lowest values of k as in 
figure 8 or plot only the critical values leading to the most amplification in 
the moments as in figure 9. We prefer the latter approach, and we obtained 
plots or diagrams of this sort for different values of the density ratio. Some 
of these results are shown in figures 10 and 11. We note from these figures 

that as Po ~ p1 we retrieve the results for a cylinder completely filled with a 

single fluid (Selmi et al. 1992). However, some critical values become 
degenerate since they would cancel out with terms in the numerators of the 

expansion coefficients in the limit as p0 ~ p1 . Degenerate modes are also 

found in the limit as r0 ~ 0 and as p0 jp1 ~ 0. In this latter case, some of 

the most critical values approach those for partially filled cylinders (Selmi & 
Herbert 1992), while others are degenerate. We recommend that the 
appropriate equations for the limiting configuration be used to compute the 
critical values. 
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Figure 8: Plot of the most critical roots of Eq. (t9) for 't = 0.008, 
9 = t 0 , and p0/p1 = 0.2. 

1.0 

0.8 

0.6 
0 

!--

0.4 

0.2 
k=O 

0.0 

Figure 9: 

k=1 k=2 k=3 

2 3 4 5 6 

Aspect ratio TJ 

Dimensionless fill radius versus aspect ratio causing 
primary (most dangerous) resonance in cylinders containing 
two immiscible fluids at 't = 0.008, 9 = t 0 , and p0/p 1 = 
0.2. 
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Figure 11: 

Dimensionless fill radius versus aspect ratio causing 
primary (most dangerous) resonance in cylinders 
containing two immiscible fluids at 't = 0.008, 9 = 1 o, 
and p0/p1 = 0.4. 
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Dimensionless fill radius versus aspect ratio causing 
primary (most dangerous) resonance in cylinders 
containing two immiscible fluids at 't = 0.008, 9 = 1o, 
and p0/p1 = 0.98. 
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In figures 12 and 13 we show comparisons of our results with those 
obtained by Selmi (1991) and Selmi et a/. (1993) for two viscous fluids. 
Figure 12 shows plots of the dimensionless roll moment versus the 
dimensionless fill radius for different inner-fluid Reynolds number Re0 = 
roa 2/v 0 and outer-fluid Reynolds number Re1 = roa 2/v 1 , where V 0 and v 1 

denote the kinematic viscosity of inner and outer fluid respectively. Figure 
13 shows similar plots for the dimensionless yaw moment versus the 
dimensionless fill radius. In both figure 12 and figure 13 the inviscid results 
are shown by vertical dashed lines indicating the critical dimensionless fill 
radii at which resonance occur. We see clearly that as the Reynolds numbers 
increase, the critical dimensionless fill radii given by the viscous analysis 
approach those given by the inviscid analysis presented in this paper. 

Cl:l 
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1.0 

.~ 0.8 
VJ 

,----.... 
> 
Q 0.6 

'----" 
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0 c 0.4 
'--' 
'-....,.. 
2_N 0.2 

Figure 12: 

----- Re 0 =Re 1= 50 

------- Re0 =Re 1= 1000 

________ Re
0
=Re

1
= 3125 

0.2 0.4 0.6 0.8 

Dimensionless roll moment versus dimensionless fill 
radius for cylinders containing two immiscible fluids at 
T = 0.008, e = 1°, and pofp1 = 0.2. Comparison of the 
inviscid results (vertical dashed lines) and the viscous 
results of Selmi (1991). 
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Figure 13: 

0.2 0.4 0.6 0.8 

Dimensionless pitch moment versus dimensionless fill 
radius for cylinders containing two immiscible fluids at 
-r = 0.008, 0 = 1°, and p0/p1 

SUMMARY 

We have pr~sented a method for solving the equations governing two 
inviscid fluids inside a spinning and coning cylinder for small coning angles 
and/or coning frequencies. The equations governing the fundamental 
components of the velocity and pressure in each region were reduced to a 
second order equation governing the pressure. The two equations governing 
the pressure in both inner and outer regions have homogenous boundary 
conditions at the end walls. This enabled us to use separation of variables to 
solve both equations analytically. Satisfying the no-penetration conditions at 
the side wall and the continuity of pressure across the interface provided a 
criterion in the form of a transcendental equation that can be solved 
numerically for the parameters that cause resonance. We have presented 
some of these parameters by solving the transcendental equation by Newton­
Raphson's method. 
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