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ABSTRACT 

Suppose that X 
1
, X

2
, ... , Xn is a random sample of failure times from a Burr type II (B2) distribution 

with parameter e. Let x = (x 
1
, x

2
, ..... , xr) with x 1 ~ x2 ~ x3 ~ ........ ~ Xr be the observed failure censored 

sample of the first r-failure times from the sample of size n, where 1 ~ r ~ n . 

We derive serveral Bayes estimators of e assuming two priors for e namely, quasi-prior and 

conjugate prior, and considering two types of loss functions. 
The loss functions used are squared error and LINEX error loss functions. Comparison between the 

estimators was carried through computation of their Bayes risks. 
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1. INTRODUCTION 

The Burr distribution was first introduced in the literature 

by Burr [I]. Inference on the parameters of Burr disributions 

has been the subject of investigation by many authors 

including Evans and Rajab [2], and Al-Marzoug and Ahmad 
[3]. 

Prediction intervals for future observations or statistics 

on future observations of Burr distributions are available in 

the literature. For example, Evans and Ragab [2] gave the 

prediction bounds for the k-th order statistic in a sample 

from Burr XII (BI2)-distribution in the case of censored 
sample. 

Nigm [4] gave the prediction interval for the k-th order 

statistic in a future sample from BI2-distribution baed on a 

type II censored observed sample from the same 
distribution. 

Sartawi and Abu-Salih [5] obtained the Bayesian 

prediction intervals for the order statistics in the two sample 

and one sample case when samples are from the 

one-parameter Burr type X distribution. Abu-Salih and 

Sartawi [6], obtained the Bayesian prediction bounds for the 

Burr type III model. Our interest is to find estimators of q of 

B2 distribution and study their properties. The probability 
density function (p.d.f) of B2 is given by 

f(xiO) = Oe-x (l+e-x) -(S+l)y, -oo <X <oo, 0 > 0 (1.1) 

We shall derive the Bayes estimators of 0 with respect to 

two loss functions using different priors of 0 in case of type 
II censoring. 

In Bayesian estimation the loss function and prior 

distribution play important roles. The symmetric loss 

function viz, squared error loss function has been used 

widely. Varian [7] introduced a class of asymetric functions 
defined by 

L (Ll) = b [ ea~ - ail -I ] , a :t:. O,b > 0, 

where Ll = 0 - 0 ' 

denotes the scalar estimation error in using 0 to estimate 

0 , a and b are constants. This class is known as a class of 

2 

linear exponential (LINEX) loss functions, and it may be 

recommended to use such class when the use of symmetric 
loss function is not appropriate, Zellner [8]. 

2. Bayes Estimators of 0 with respect to Squared error 
loss function 

Let X be a random variable (r.v.) from Burr distribution 

of type II with p.d.f (l.I). Consider a random sample X
1
, 

X2, .... , Xn of n items whose life times have the 
distribution given in (1.1). 

let K = (x 1, x2, .... xr) with x1 ::;; x2 ::;; x3 ::;; .•... ::;; xr be the 

observed failure censored sample of the first r-failure times 
from the sample of size n where I ::;; r ::;; n. 

Let Yi =In (l+ ex\ It is seen that the p.d.f. of Yi is 

g (yiO) = Oe - ey , 0 > 0, y ~ 0 (2.1) 

We shall derive the Bayes estimators of 0 w.r.t. squared 

error loss function under several priors. In case of no 

information about 0 , we sugget to use the non informative 
prior, given by : 

I 
rr 1 (O) = - , o > o, d ~ o 

ed 

Notice that this is a quasi-prior. 

(2.2) 

Using (2. I), we find the likelihood function of 0 given X as 

n! 
L(Oit,yr) = (n-r) ! 

r 

where T = I. Y. 
i =I I 

ore- et e -(n-r)9Yr, 0 > 0 (2.3) 

The posterior distribution of 0 in case of I1
1 

(0) prior 
and censored sample is : 

ur-d+l 0 r-d e -eu * rr1 (Oit,y r) = , 0 > O,d < r+l (2.4) r (r- d + I) 

where U = T + (n - r) Yr 

The Bayes estimator 0 of 0 under squared error loss 
function is the posterior mean of e' given by 

r- d +I 
Osd= --U--,d<r+ I (2.5) 
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Now let the prior of 8 be the natural conjugate, i.e. the 

gamma density 

~ a 9 a-1 e -013 rr2 (9) = , a , ~ > o, 9 > o (2.6) 
r(a) 

The posterior distribution of 8 under prior II2 (9) and 

censored sample is : 

* (u+~) r+a 9 r+a-1 e -O(u+j3) 
Ilz (9lt,yr) = '9 > 0 (2.7) 

r (r +a) 

The Bayes estimator of q under rr2 (9) w.r.t squared 

error loss function is the posterior-mean of e, given by 

r+a 
9 sa= ---

U+~ 
(2.8) 

We shall discuss the properties of these estimators in 

section 4. 

3. Bayes Estimators of 9 w.r. t. LINEX loss function 

Using both the non informative and the conjugate priors 

of e ' we shall consider estimation of 9 when the loss 

function is the LINEX loss function 

A -
where ~ = e -e denotes the error if we estimate 9 by 9 . 

Zellner [8] gave the unique hayes estimator of 9 using 

LINEX loss function as : 

A -J 
SL =- In [E (e -aS IY)] (3.1) 

a 

where expectation is taken w.r.t. the posterior p.d.f. of e, 
provided that the expectation is finite. From (2.4) and (3.1 ), 

the hayes estimator of 9 w.r.t LINEX loss function and 

noninformative prior is 

- r-d+l a+U 
9Ld = In ( -- ) , whenever a > 0 

a U 
(3.2) 

When a < 0, E [ e - ae IY} does not exist, when u > - a, 

and in such a case we use the following estimator of 9 . 

3 

r-d+l In ( a+U) ,U>-a 
a a 

r- d + 1 

u 
,U$;-a 

(3.3) 

Notice that 9t0 is not a Bayes estimator, when U $; -a. In 

this case we _:hose 9td = e sd as given in 2.5 for simplicity 

and because 9 sd is admissible w.r.t. squared error loss when 

d = 3 and r > 2 (Lemma 2 below). 

Again, from (2.4) and (3.1 ), we get the Bayes estimator 

of 9 w.r.t. LINEX loss function and conjugate prior to be 

(n + a) 
1 

n Y + ~ + a 
0 n , a> (3.4) 

a nY +~ 

When a < 0, E [ e - aS IY ] is not finite except when 

u+~ + a > 0. Since u ~ 0, it is sufficient to assume that ~ + a ~ 

0. Therefore, whenever a < 0, we retrict our consideration to 

the conjugate prior with ~ >- a, and getS LG as given in (3.4). 

4. Properties of the Estimators 

In the following we shall disuss some properties of the 

estimators given in sections 2 and 3 . 

Lemmal: 

When d = 3, the estimator 98ct given in (2.5) becomes 

r-2 ~ = , r > 2, and has minimum mean squared error 
u 

. 1 
among all esttmators of the form c. U , c constant. 

Proof is straightforward. 

Results: 

1 - Any estimator 
c 

u 
squared error loss. 

, c '¢ r- 2 is inadmissible w.r.t 

2- Bayes estimators of 9 w.r.t squared error loss and quasi 

priors with d '¢ 3 are inadmissible. 
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Lemma2: 

s:: * r- 2 2 · d · 'bl d 1 u 1 = --, r > , IS a miSS! e w.r.t square error oss. u 

The proof of this lemma appears in Blyth and Roberts [9]. 

Lemma3: 

(i) S50 = ~is admissible w.r.t squared error loss for all 
U+~ 

a, ~>0. 

( .. ) e- r- a l ( n La=-- n 
a 

a+ ~ + U ) is admissible w.r.t 
~+U 

LINEX error loss for all a , ~ > when a > 0, but when 

a< 0 we have to take~>- a. 

Proof by lemma 8.7.1 (c.fZacks [10] p.343). 

We remark that the question of admissibility of 

SLd = r - d + 
1 

ln ( a + U ) cannot be established 
a U 

by lemma 8.7.1 (c.f Zacks [1 0] p.343). since 

1 
TI 1 (8) = -- is a quasi-prior. 

ed 

5. Bayes risks of the estimators 

In the following we shall give the formulas for Bayes 
risks of the estimators. 

Let r5(.) and rL (.) denote the Bayes risks under 

conjugate prior w.r.t. squared error loss and LINEX loss 

functions, respectively, then : 

rs cesd) = 
a (a + 1) r + d2 - 6d + 7 

(r- 1) ~2 
(5.1) 

(r- 2) 

'L (ii,d) = h[ r (r +a) ur-I ( r-2 ) 
~a J -e-

e u du 
r (a) 0 (u+~+a)r+a 

a a 
- I ] + (5.2) 

~ (r- 1) 

Putting d = 3 in (5.1 ), and (5.2) we get: 

(5.3) 

(5.4) 

-
( r-ad+l) 

pa ao Ur-I 
rs (9Ld) = --r-(r_)_ -- r(r +a) I 

r(a) 0 (u + p)r+a 

2(r-d+l) r(r+a+l) pa 

ar(r) r(a) 

j ur-I In (a+u) du + a(a+l) 
0 (u+P)r+a+l u p2 

,when a> 0 (5.5) 

a 
• p -• ur-J r(r+a) 

r (9Ld) = I du 
s r(a)r(r) o (u+Pr+a 

2pa -• ur-2 r(r+a+l) 
I du 

r(r)r(a) o (u+Pr+a+J 

+ pa r(r +a+ 2) 7 Ur-I du 
r(a)r(r) o (u+P)r+a+2 

( r-:+1) 
oo r-1 

+ pa r(r+a) I u ln2 du 
r(r) r(a) -a (u + p)r+a 

_ 2(r-d+l) r(r+a+l) pa 00 ur-I 

ar(r) r(a) -~ (u+pr+a+J 

In (a+u)du + a(a+l) 
u p2 

, when a< 0 (5.6) 

rt(SLd)=b{ pa r(r+a) 
r(a) r(r) 

00 d-2 ( )r-d+l ( d l) 
I u a+ u d aa r - + r( )Ra u+-- r+ap 
0 (a+u+P)r+a P r(r)r(a) 

fin (a+ u) u<r-l) du - 1} 
0 u (u+P)r+a 

, when a< 0 (5.7) 

4 
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(
r+a)2 

- -a- pa 00 2 (a+P+u) 
rs(9to) -- r(r+a) Jln 

= r(r) f(a) 0 P+u 
rL(eiA) = b {[~a r(r +a) 7 e ~ ur-I du + 

r(a) r(r) 0 (a+~+ u)r+a 

+ f ud-2 (a+ u)r-d+l du]- ~a f(r +a) [7 ur-2 d 
-a (a+u+~)r+a r(r)f(a) 0 (u+~)r+a 

ur-I 
----du
(u+J3)r+a f(r) 

oo r-1 ( A ) 

f(r+a+l) pa 
f(a) 

-(r-d+1) f1n(a+u) r-1 du]+ 2: -2)' 
0 u (u+~)r+a 

,when a< 0 (5.8) 

( ) 
(r:ar pa oo ur-I 

rs S5o = f(r +a) J du r (r) f(a) 0 (u + p)r+a+2 

2 (r+a) pa f(r+a) j ur-1 1 du 

r f(a) f(r) 0 u+P (u+P)r+a 

+ a( a+ 1) (5_9) 
~2 

( r+a) 

{ 

a oo 
8 u+~ r-1 

rt(Sso) = b p f(r +a) J e u du + 
f(a) f(r) 0 (u + p + a)r+a 

(5.1 0) 

J u ln a+..,+ u du + a( a+ 1) 
0 (u+P)r+a+1 P+u ~2 

r fa ) = b {pa f(r+a) ooJ ur-1 du 
L\; LG f(r)f(a) 0 (P+u}r+a 

f(r+a)pa f(r+a) 

f(a)f(r) 

Jl 
a+..,+u u d aa 

1 n u+--oo ( A ) r-1 } 

0 P+u (u+P)r+a p 

(5.11) 

(5.12) 

We remark that formulas (5.1), and (5.12), are valid 

whenever a > 0, but if a < 0 then they are valid provided ~ > -a. 

6. Comparison between the estimators 

Since many of the formulas for Bayes risks of the 

estimators are not given in closed form, we used 

Mathematica, Welfram [11] to evaluate the integrals 

involved. Assuming d = 3, a = 2, ~ = 3, a = 2 and without 

loss of generality b= 1, we calculated the Bayes risks of the 

estimators .for different sample sizes and values of r. The 

results are given in Table 1. 

Table 1 

Bayes risk of the estimators when d = 3, a = 2, ~ = and a = 2 

- - A A - - - -
n r rs (9Ld) rL (9Ld) rs cesd) rL (9sd) rs cesa> rL (9sa) rs (9Lo) rL (9Lo) 

20 15 0.0476 0.0800 0.0468 0.0836 0.0370 0.0744 0.0400 0.0679 

30 20 0.0351 0.6217 0.0346 0,0638 0.0290 0.0583 0.0309 0.0541 

35 25 0.0278 0.0504 0.0274 0.0515 0.0238 0.0479 0.0252 0.0449 

40 30 0.0230 0.0420 0.0227 0.0432 0.0202 0.0407 0.0213 0.0384 

By studying Table 1, we notice the following : 

5 
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1. 

2. 

3. 

rs(asG) < rs(9La)< rs(asd) <rs(aLd) 

rL (9LG) < rL (asG) < rL (9Ld) < rL (asd) 

rs(asG) < rL(asG) 

rs (9LG) < rL (9LG) 

rs(aLd) < rL(aLd) 

rs(asd) < rL(asd) 

(I) and (2) are natural ordering of Bayes risks where it is 

expected that the Bayes risks in the case of infonnative prior 

is smaller than that of the non-infonnative one . 

(3) shows that for the same estimator the Bayes risk 

under squared error loss is always smaller than that in the 

case of LINEX error loss. 

These result suggest that except when the symmetric 

quadratic loss is completely inappropriate, it is preferred to 

the LINEX loss function. Also natural inappropriate 

conjugate priors lead to smaller Bayes risks than 

non-informative ones. Table I shows that 9
5
a is the 

preferred estimator. 
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