A NOTE ON PRE-J-GROUP RINGS

By

W. B. VASANTHA
Department of Mathematics, Indian Institute of Technology Madras - 600 036, India.

Abstract

Given an associative ring R satisfying $a^{m b}=\mathbf{B a}^{m}$ for any pair a and b of its elements, is being a positive integer, and a group G satisfying $x^{m-1}=y^{m-1}$, we give a sufficient and necessary condition on the group ring GR so that its elements satisfy the same condition assigned to R. A similar result can be obtained if the group G is replaced by a semigroup.

In this note we obtain a necessary and sufficient condition for a group ring RG to be a pre J-ring. We call group rings which are pre-J-rings as pre-J-group rings. The author in [1] calls an associative and commutative ring R to be a pre-J-ring if there exists a positive integer m such that $x^{m} y=x^{m}$ for every x and $y \in R$.

Theorem 1. Let G be a commutative group in which $x^{m-1}=y^{m-1}$ for every x and y in G and R a pre-J-ring with $x^{m} y=x y^{m}$ for every x, y in R, where m is an integer >0 Then the group ring RG is a pre-J-ring if and only if for every α and β with formal representations $\alpha=\sum_{i=1}^{s, t} \alpha_{i} g_{i}$ and $\beta=\sum_{j=1}^{s, t} \beta_{i} h_{j}$ in RG we have
$\alpha^{\mathrm{m}} \beta-\left(\sum_{\mathrm{i}=1}^{\mathrm{s}} \alpha_{\mathrm{i}}^{\mathrm{m}} \mathrm{g}_{\mathrm{i}}^{\mathrm{m}}\right) \beta=\alpha \beta^{\mathrm{m}}-\alpha\left(\sum_{\mathrm{j}=1}^{\mathrm{t}} \beta_{\mathrm{j}}^{\mathrm{m}} \mathbf{h}_{\mathrm{j}}^{\mathrm{m}}\right)$.
Proof. Given R is a pre-J-ring in which $x^{m}=x^{m} y$ for every x and y in R and m a positive integer and G is commutative group in which $x^{m-1}=y^{m-1}$ for every x, y in G. Given RG is a pre-J-group ring to prove

$$
\begin{aligned}
& \left(\sum_{i=1}^{s} \alpha_{i} g_{i}\right)^{m} \sum_{j=1}^{t} \beta_{j} h_{j}-\sum_{i=1}^{s} \alpha_{i}^{m} g_{i}^{m}\left(\sum_{j=1}^{t} \beta_{j} h_{j}\right) \\
& =\sum_{i=1}^{s} \alpha_{i} g_{i}\left(\sum_{j=1}^{t} \beta_{j} h_{j}\right)^{m}-\sum_{i=1}^{s} \alpha_{i} g_{i}\left(\sum_{j=1}^{t} \beta_{j}^{m h_{j}^{m}}\right)
\end{aligned}
$$

holds in RG for every α, β in RG where $\alpha=\sum_{i=1}^{s} \alpha_{i} g_{i}$ and $\beta=\sum_{j=1}^{t} \beta_{j} h_{j}$ with $\beta_{j}, \alpha_{i} \in R$
and $g_{i}, h_{j} \in G$ for $j=1,2, \ldots, t$ and $i=1,2, \ldots$, s. Since $\alpha^{m} \beta=\alpha \beta^{m} \cdot$ we have $\left(\sum_{i=1}^{s} \alpha_{i} g_{i}\right)^{m} \sum_{j=1}^{t} \beta_{j} h_{j}=\sum_{i=1}^{s} \alpha_{i} g_{i}\left(\sum_{j=1}^{t} \beta_{j} h_{j}\right)^{m}$
expanding both sides of the above equation we get
$\left(\sum_{i=1}^{s} \alpha_{i}^{m} g_{i}^{m}\right) \sum_{j=1}^{t} \beta_{j} h_{j}+\left(\sum\left(\right.\right.$ terms of the form $\left.\alpha_{i} \cdot \alpha_{j} \ldots \alpha_{k}, g_{i} \cdot g_{j} \ldots g_{k}\right)$
$\times \sum_{j=1}^{t} \alpha_{j} h_{j}=\left(\sum_{i=1}^{s} \alpha_{i} g_{i}\right)\left(\sum_{j=1}^{t} \beta_{j}{ }^{m} h_{j}^{m}\right)+\left(\sum_{i=1}^{s} \alpha_{i} g_{i}\right) \times\left(\sum\left(\right.\right.$ terms of the form $\beta_{j} \cdot \beta_{k}$,
$\left.\ldots, \beta_{1}, h_{j} \cdot h_{k} \ldots h_{1}\right)$.
Now since R is a pre-J-ring we have $x^{m} y=x y^{m}$ for all x, y in R and since G is commutative with $g^{m-1}=h^{m-1}$ we have $h^{m-1} g=h^{m} g=g^{m} h$. Hence

$$
\left(\sum_{1=1}^{s} \alpha_{i}^{m} g_{i}^{m}\right)\left(\sum_{j=1}^{t} \beta_{j} h_{j}\right)-\left(\sum_{i=1}^{s} \alpha_{i} g_{i}\right)\left(\sum_{j=1}^{s, t} \beta_{j}{ }^{m} h_{j}^{m}\right)
$$

Thus the identity

$$
\begin{aligned}
& \left(\sum_{i=1}^{s} \alpha_{i} g_{i}\right)^{m}\left(\sum_{j=1}^{t} \beta_{j} h_{j}\right)\left(\sum_{i=1}^{s} \alpha_{i}^{m} g_{i}^{m}\right)\left(\sum_{j=1}^{s} \beta_{j}^{m} h_{j}^{m}\right) . \\
& =\left(\sum_{i=1}^{s} \alpha_{i} g_{i}\right)\left(\sum_{j=1}^{t} \beta_{j} h_{j}\right)^{m}-\left(\sum_{i=1}^{s} \alpha_{i} g_{i}\right) \sum_{j=1} \beta_{j}{ }^{m} h_{j}^{m}
\end{aligned}
$$

holds in RG for every α, β in RG. Conversely suppose in RG we have the identity

$$
\begin{aligned}
& \left(\sum_{i=1}^{s} \alpha_{i} g_{i}\right)^{m} \sum_{j=1}^{t} \beta_{j} h_{j}-\left(\sum_{i=1}^{s} \alpha_{i}^{m} g_{i}^{m}\right)\left(\sum_{j=1}^{s, t} \beta_{j} h_{j}\right) \\
& =\left(\sum_{i=1}^{s} \alpha_{i} g_{i}\right)\left(\sum_{j=1}^{t} \beta_{j} h_{j}\right)^{m}-\left(\sum_{i=1}^{s} \alpha_{i} g_{i}\right)\left(\sum_{j=1} \beta_{j}{ }^{m} h_{j}^{m}\right)
\end{aligned}
$$

To show that RG is a pre-J-ring. i.e. to show $\alpha^{\mathrm{m}} \beta=\alpha \beta^{\mathrm{m}}$ for every α, β in RG.
Since R is a pre-J-ring and G is a commutative group such that $x^{m-1}=y^{m-1}$ for every x, y in G we have $\alpha_{i}^{m} \beta_{j}=\alpha_{i} \beta_{j}^{m}$ for all α_{i}, β_{j} in R.

W. B. VASANTHA

Let $\alpha=\sum_{i=1}^{s} \alpha_{i} g_{i}$ and $\beta=\sum_{j=1}^{t} \beta_{j} h_{j}\left(\alpha_{i}, \beta_{j} \in R\right.$ and $\left.g_{i}, h_{j} \in G\right)$. Using the given identity

$$
\alpha^{\mathrm{m}} \beta=\left(\sum_{\mathrm{i}=1}^{\mathbf{s}} \alpha_{\mathrm{i}}^{\mathrm{m}} \mathrm{~g}_{\mathrm{i}}^{\mathrm{m}}\right) \beta=\alpha \beta^{\mathrm{m}}-\alpha\left(\sum_{\mathrm{j}=1}^{\mathbf{t}} \beta_{\mathrm{j}}^{\mathrm{m}} \mathbf{h}_{\mathrm{j}}^{\mathrm{m}}\right)
$$

to prove RG is a pre-J-group ring it is sufficient if we prove

$$
\left(\sum_{i=1}^{S} \alpha_{i}^{m} g_{i}^{m}\right) \beta=\alpha\left(\sum_{j=1} \beta_{j}{ }^{m} h_{j}^{m}\right)
$$

Consider the left hand side

$$
\begin{aligned}
& \left(\sum_{i=1}^{s} \alpha_{i}^{m} g_{i}^{m}\right) \beta=\sum_{i=1}^{s} \alpha_{i}^{m} g_{i}^{m}\left(\beta_{1} h_{l}+\ldots+\beta_{t} h_{t}\right) \\
& =\sum_{i=1}^{s} \alpha_{i}^{m} \beta_{1} g_{i}^{m} h_{l}+\ldots+\sum_{i=1}^{s, t} \alpha_{i}^{m} \beta_{t} g_{i}^{m} h_{t} \\
& =\sum_{i=1}^{s} \alpha_{i} \beta_{1}^{m} g_{i} h_{l}^{m}+\ldots+\sum_{i=1}^{s, t} \alpha_{i} \beta_{t}^{m} g_{i} h_{t}^{m} \\
& =\sum_{i=1}^{s} \alpha_{i} g_{i}\left(\beta_{1}^{m} h_{l}^{m}+\ldots+\beta_{t}^{m} h_{t}^{m}\right) \\
& =\alpha \sum_{j=1}^{t} \beta_{j}^{m} h_{j}^{m}
\end{aligned}
$$

which is nothing but the right hand side of the above equality. Hence we have $\alpha^{m} \beta$ $=\alpha \beta^{\mathrm{m}}$ for all α, β in RG.

Remark 2. If S is a commutative semi-group in which $x^{m} y=x y^{\mathrm{m}}$ for every x and y in S and R a pre J -ring, then the semi-group ring RS is a pre J -semi-group ring if and only if it satisfies the following identity for every α and β in RS

$$
\alpha^{\mathrm{m}} \beta-\left(\sum_{\mathrm{i}=1}^{\mathrm{s}} \alpha_{\mathrm{i}}^{\mathrm{m}} \mathrm{~s}_{\mathrm{i}}^{\mathrm{m}}\right) \beta=\alpha \beta^{\mathrm{m}}-\alpha\left(\sum_{\mathrm{j}=1}^{\mathrm{t}} \beta_{\mathrm{j}}^{\mathrm{m}} \mathrm{~h}_{\mathrm{j}}^{\mathrm{m}}\right)
$$

where $\alpha=\sum_{i=1}^{s} \alpha_{i} s_{i}$ and $\beta=\sum_{j=1}^{t} \beta_{j} h_{j}$ with α_{i}, β_{j} in R and h_{j}, s_{i} in S for $i=1,2, \ldots, s$ and $\mathrm{j}=1,2, \ldots, \mathrm{t}$. Proof as in the case of Theorem 1.

REFERENCE

[1] Lah Jiang, 1962.On the structure of pre-J-rings. Hung-Chong Chow 65th anniversary, volume pp. 47-52, Math. Res. Center, Nat. Taiwan University, Taipei.

عائلـــة من حلقـــات الزمــــر

و . ب . فاســـانتـ

لتكن R حلقة توزيعية إبداليـة و m عدداً صحيحـاً موجبـاً بحيث تتحقق العـلاقة :
 R كي يتحقق الشرط الذي تحققه الحلقـة RG كازماً وكافياً على حلقة الزمرة وذلك بإعطاء علاقة تربط أي ممثلين في حلة الزمرة RG . كما يعطي المؤلف نتيجة مشابهة إذا استبدلت الزمرة G بشبه زمرة S

