ON EXISTENCE OF TWO REAL PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS OF RICCATI TYPE

By
H. S. HASSAN
Department of Mathematics, Faculty of Science
University of Qatar

Key words : Riccati Equations.

Abstract

In this paper we consider the two equations $$
\begin{align*} & i=z^{2}+p(t) z+r_{0}(t), \tag{*}\\ & i=z^{2}+p(t) z+r_{1}(t), \tag{**} \end{align*}
$$ where $z \in C, p, r_{1}$ and r_{0} are real, continuous and periodic with period T. It was shown in[2] that if $\left({ }^{*}\right)$ has two T-periodic solutions and if $r_{1}(t) \leqslant r_{0}(t)$ for all $t \in[\mathrm{O}, \mathrm{T}]$, then (${ }^{* *}$) has two T -periodic solutions. In this note we extend this result by showing that if, moreover, the two T-periodic solutions of (${ }^{*}$) are real then so are the T-periodic solutions of (${ }^{* *}$).

1. Preliminaries

This paper is concerned with the class H of differential equations

$$
\begin{equation*}
\dot{z}=z^{2}+P(t) z+r(t) \quad(z \in C, t \in R), \tag{1}
\end{equation*}
$$

where p and $\mathrm{r} \in \mathbb{P}$ and \mathbb{P} is the class of all continuous real-valued functions of period T (T being fixed throughout). The equation (1) is denoted by P and we regard H as the set $\boldsymbol{P} \times \mathbb{P}$ with norm

$$
|\mathbf{P}|=\max \{|\mathrm{p}(\mathrm{t})|,|\mathrm{r}(\mathrm{t})| ; \mathrm{O} \leqslant \mathrm{t} \leqslant \mathrm{~T}\} ;
$$

then $(H,||$.$) is a Banach Space.$
The solution of P satisfying $z\left(t_{0}\right)=z_{o}$ is written $z_{P}\left(t ; t_{0}, z_{o}\right)$ and the periodic
solutions of P are determined by the zeros of

$$
q_{P}: c \longrightarrow z_{p}(T ; O, c)-c .
$$

The function q_{P} is defined on an open subset Q_{P} of C.
To assist the reader we give precis of those definitions and results from [2], [3], and [4] which we shall need. The multiplicity of a periodic solution ϕ of P is defined as the multiplicity of $\phi(O)$ as a zero of q_{P}. It is shown in [4] that H has the following subsets
$B=\{P \in H ; P$ has a real solution which is unbounded both as t increases and as t decreases and is defined for at-interval of length less than $T\}$,
$H_{1}=\{P \in H ; P$ has two real T-periodic solutions and no other periodic solutions $\}$.
$H_{2}=\{P \in H ; P$ has two T-periodic solutions, complex conjugate, and no other periodic solutions \} .

Account is always taken multiplicity in these definitions. Hence $P \in H_{1}$ may have only one periodic solution of multiplicity 2 . Let H_{11} be the set of P which have exactly one real T-periodic solution. In [2] we proved that H_{11} is the boundary between H_{1} and H_{2}, that is; $\mathrm{H}_{11}=\overline{\mathrm{H}}_{1} \cap \overline{\mathrm{H}}_{2}$ (where $\overline{\mathrm{H}}_{1}$ and $\overline{\mathrm{H}}_{2}$ are the closures of H_{1} and H_{2}, respectively) and Lloyd in [4] proved that $H_{1} \cup H_{2}$ is a component of $\mathrm{H} \backslash \mathrm{B}$.

In [2] we proved that H_{2} and $H_{1} \cup H_{2}$ are open subsets of H and H_{1} is a closed subset of H .

2. Two Real T-Periodic Solutions

The method used in [2], [3] and [4] to study P was to look at the linear equation P^{*} :

$$
\begin{equation*}
\ddot{u}-p(t) \dot{u}+r(t) u=0, \tag{2}
\end{equation*}
$$

whose solutions are related to those of P by the transformation $z=-\dot{u} / u$. Let D be the set of \mathbf{P} whose corresponding P^{*} are disconjugate on [O, T]. (Recall that a second order linear differential equation is disconjugate on an interval I if every non-trivial real solution has fewer than two zeros in I).

Lemma $2.1 \quad \mathrm{~B} \supseteq \mathrm{H} \backslash \mathrm{D}$.

(For the proof see [3]).
Directly from Theorem 7 of [1] we can prove the following lemma,
Lemma 2.2 $P=(p, r) \in D$ if and only if

$$
\int_{0}^{\mathrm{T}}\left(\exp -\int_{\mathrm{o}}^{\mathrm{t}} \mathrm{p}(\mathrm{~s}) \mathrm{ds}\right)\left(\dot{y}^{2}-\mathrm{ry}^{2}\right) \mathrm{dt}>0
$$

for all functions y which are piecwise continuously differentiable on [O, T] and satisfy $\mathrm{y}(\mathrm{O})=\mathrm{y}(\mathrm{T})=\mathrm{O}$.

Directly from Lemma 2.2 we can prove the following lemma,
Lemma 2.3 Let $\left(p, r_{o}\right) \in D$ and $r_{1} \in P$. If $r_{1}(t) \leqslant r_{o}(t)$ for all $t \in[O, T]$, then $\left(p, r_{1}\right) \in D$.
Lemma 2.4 If ϕ is the unique T-periodic solution of $(p, r) \in H_{11}$, then

$$
\underset{\mathrm{o}}{2} \int_{\mathrm{o}}^{\mathrm{T}} \phi(\mathrm{t}) \mathrm{dt}=-\int_{\mathrm{o}}^{\mathrm{T}} \mathrm{p}(\mathrm{t}) \mathrm{dt} .
$$

(For the prove see [4]).

Lemma 2.5 If $\left(\mathrm{p}, \mathrm{r}_{\mathrm{o}}\right),\left(\mathrm{p}, \mathrm{r}_{1}\right) \in \mathrm{H}_{11}$, and $\mathrm{r}_{\mathrm{o}}\left(\mathrm{t}_{\mathrm{o}}\right)>\mathrm{r}_{1}\left(\mathrm{t}_{\mathrm{o}}\right)$ for some $\mathrm{t}_{\mathrm{o}} \in[\mathrm{O}, \mathrm{T}]$, then there exists $\mathrm{t}_{1} \in[\mathrm{O}, \mathrm{T}]$ such that

$$
r_{o}\left(t_{1}\right) \leqslant r_{1}(t)
$$

Proof Suppose that $r_{o}(t)>r_{1}(t)$ for all $t \in[O, T]$ and ϕ, ϕ are the periodic solutions of ($\mathrm{p}, \mathrm{r}_{\mathrm{o}}$) and ($\mathrm{p}, \mathrm{r}_{1}$), respectively. We have two cases: (i) $\phi_{i}(\mathrm{t})$ $>\phi_{j}(t)$ for all $t \in[O, T],(i i) \phi_{0}\left(t_{2}\right)=\phi_{1}\left(t_{2}\right)$ for some $t_{2} \in[O, T]$.

Case (i) In this case we have

$$
\int_{0}^{T} \phi_{i}(t) d t>\int_{o}^{T} \phi_{j}(t) d t
$$

which cotradicts Lemma 2.4
Case (ii) Let $h(t)=\phi_{o}(t)-\phi_{1}(t)$ If $h\left(t_{2}\right)=O$ for some $t_{2} \in[O, T]$, then $\dot{h}\left(t_{2}\right)=r_{o}\left(t_{2}\right)-r_{1}\left(t_{2}\right)>O$. Hence $h(t) \geqslant O$ over $[O, T]$ and $h(\dot{t})>O$ for some \dot{t} near t_{2}. Therefore

$$
\int_{0}^{\mathrm{T}} \mathrm{~h}(\mathrm{t}) \mathrm{dt} \geqslant 0
$$

and again we have a contradiction to Lemma 2.4.
Theorem 2.6 Suppose that $\left(p, r_{o}\right) \in H_{1}$. If $r_{1} \in P$ and $r_{1}(t) \leqslant r_{o}(t)$ for all $t \in[O, T]$, then $\left(p, r_{1}\right) \in H_{1}$.
Proof Let us assume that $r_{1}(t)<r_{0}(t)$ for all $t \in[O, T]$.
Since ($\mathrm{p}, \mathrm{r}_{\mathrm{o}}$) $\in \mathrm{H}_{1}$, then by lemma 2.3

$$
L_{1}=\left\{\left(p, \lambda r_{o}+(1-\lambda) r_{1}\right) ; O \leqslant \lambda \leqslant 1\right\} \leqslant D
$$

Hence $\left(p, r_{o}\right)$ and $\left(p, r_{1}\right)$ are in the same component of $H \backslash B$. Hence $\left(p, r_{1}\right) \in \mathrm{H}_{1} \cup \mathrm{H}_{2}($ see Theorem 2 of $[4])$.

Let us assume that $\left(p, r_{1}\right) \in H_{2}$ and let
$\mathrm{L}_{2}=\left\{\left(\mathrm{p}, \lambda \mathrm{r}_{1}\right) ; \mathrm{O} \leqslant \lambda \leqslant 1\right\}$. It is clear that $\mathrm{L}_{1} \cap \mathrm{H}_{1} \neq \phi, \mathrm{L}_{1} \cap \mathrm{H}_{2} \neq \phi$, $\mathrm{L}_{2} \cap \mathrm{H}_{2} \neq \phi$ and $\mathrm{L}_{2} \cap \mathrm{H}_{1} \neq \phi$. Hence there exist λ_{1} and λ_{2} such that $\left(p, \lambda_{1} r_{0}+\left(1-\lambda_{1}\right) r_{1}\right)$ and $\left(p, \lambda_{2} r_{1}\right) \in H_{11}$. But $\lambda_{2} r_{1}<\lambda_{1} r_{0}+\left(1-\lambda_{1}\right) r_{1}$ contradicts Lemma 2.4 Therefore $\left(\mathrm{p}, \mathrm{r}_{1}\right) \in \mathrm{H}_{1}$.

Now suppose that $r_{1}(t) \leqslant r_{0}(t)$ for all $t \in[O, T]$. Let $s_{n}=r_{1}-(1 / n)$ $(\mathrm{n}=1,2, \ldots)$. Hence $\left(\mathrm{p}, \mathrm{s}_{\mathrm{n}}\right) \in \mathrm{H}_{1}$ and $\left(\mathrm{p}, \mathrm{s}_{\mathrm{n}}\right) \rightarrow\left(\mathrm{p}, \mathrm{r}_{1}\right)$ as $\mathrm{n} \longrightarrow \infty$.

Therefore $\left(\mathrm{p}, \mathrm{r}_{1}\right) \in \mathrm{H}_{1}$, because H_{1} is a closed subset of H .
Corollary Let $r \in P$ and $k \in R$. If $r(t) \leqslant k^{2} / 4$ for all $t \in[O, T]$, then $(k, r) \in H_{1}$.

Proof It can be checked that $(k, b) \in H_{1}$, where $b=\max r(t)$. Hence by Theorem 2-6(k,r) $\in \mathrm{H}_{1}$.

REFERENCES

1. Coppel, W. A., 1971. Discojugacy (Lecture Notes in Mathematics, 220, Springer-Verlag, Berlin).
2. Hassan, H. S., 1982. On the sets of periodic solutions of differential equations of Riccati Type, Proceedings of Edinburgh Mathematical Society, 27 : 195-208.
3. Lloyd, N. G., 1973. The number of periodic solutions of the equations $\dot{z}=z^{N}+p_{1}(t) z^{N-1}+\ldots+p_{N}(t)$, Proc. London Math. Society 27 ; 667-700.
4. Lloyd N. G., 1975. On a class of differential equations of Riccati type, J. London Math. Society (2) 10:1-10.

في وجــود حليــن حقيقييــن دورييــن لمــادلات تفاضليـة من نـوع ريـكاتي

حنــن صــادق حسـن

$$
\begin{align*}
& \dot{i}=\mathrm{z}^{2}+\mathrm{p}(\mathrm{t}) \mathrm{z}+\mathrm{r}_{\mathrm{o}}(\mathrm{t}), \tag{*}\\
& \mathrm{i}=\mathrm{z}^{2}+\mathrm{p}(\mathrm{t}) \mathrm{z}+\mathrm{r}_{1}(\mathrm{t}) \tag{**}\\
& \text { في هذا البحث سندرس المعادلتين : }
\end{align*}
$$ سنبرهن إذا (*) عندها حلين حقيقيين دوريين فان (*) (t) (1) لما حلين حقيقيين دوريين إذا

$$
t \in[0, T] \quad r_{1}(t) \leqslant r_{0}(t)
$$

