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ABSTRACT 

This paper discusses an approach using theM-valued symbolic logic with syllogistic reasoning and direct 

inference principle (reasoning from statistical information to conclusions about individuals), to manipu­

late statistical knowledge evaluated in a qualitative way. The graduation scale of M symbolic quantifiers 

is expressed in terms of truth degrees, which should not be arbitrary, but rather should be based on the 

available information from the knowledge base. 
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Introduction 

Consider an agent with some knowledge base KB, who has to make specific decisions about his actions 

in the world. For example, a doctor may need to decide on a treatment for a particular patient, P. The doc­

tor's knowledge base should contain information of different types, including: statistical information, 

"75% of patients with jaundice have hepatitis"; first-order information, "all patients with hepatitis have 

jaundice"; and some information about the particular patient at hand, e.g., "X has jaundice". In most 

cases, the knowledge base will not contain complete information about a particular individual. For exam­

ple, the doctor may be uncertain about the exact disease that P may have. Since the efficacy of a treat­

ment will almost likely depend on the disease itself, it is important for the doctor to be able to quantify 

the relative likelihood of various possibilities. To apply standard tools for decision making an agent must 

assign some degrees of belief, to various events. For example, the doctor may wish to assign a degree of 

belief to an event such as "P has hepatitis". Thus, the representation of statistical information is made by 

quantified statements like "all", "almost all", "most", ''few", "a bit", "a little", etc. A given model is 

important, if it has an inference process like the syllogistic reasoning of Zadeh [12], or the "direct infer­

ence principle" of Bacchus [2], which can allow deducing new assertions (i.e., reasoning from statistical 

information to conclusions about individuals). For example, knowing that "most teachers are old" and 

"almost all teachers are married", we can deduce that "most teachers are old or married'' or knowing 

that "most birds fly" and "Tweety is a bird'', so we can deduce that "it is very probable that Tweety flies". 

We interpret a statement such as "Birds typically fly" as expressing the statistical assertion that "almost 

all birds fly". Many approaches of these problems are generally based on probability theory [ 1 ,2,3], or 

fuzzy set theory [4,10,11]. However, in this work we propose an intuitive approach to manipulate effi­

ciently some knowledge based on statistical information and evaluated in a qualitative way, using theM­

valued symbolic logic introduced by Pacholczyk [7 ,8] with syllogistic reasoning and direct inference 

principle presented in [5,6]. We consider a graduation scale with seven adverbial expressions. The first 

scale degrees of truth, denoted by L7, enables us to express the graduation of vagueness: "Frank is very 

smart" is equivalent to say that "Frank" satisfies the predicate "smart" with the degree "very". A second 

scale of "degrees of statistical probability" denoted by Q
7

, that permits to express the graduation of pro­

portion: given the basic space n, "Qa Q'are A's" means that an absolute proportion Qa of individuals of 

Q are in A with respect to the uniform probability distribution on Q. A third scale of "degrees of cer­

tainty" denoted by U7 is used to express the "graduation of certainty": "it is very probable that Tweety 

flies" means that "very-probable" is the certainty degree of the assertion "Tweety flies". The graduations 

scales that we use are the following: 

(1) L7 = {ta I a= 1, 7} = {Not-at-all-true, Very-little-true, Little-true, Moderately-true, Very-true, Almost­

true, Totally-true}, 

(2) Q7 = {Qa I a= 1, 7} = {None, Very-few, Few, About-half, Most, Almost-all, All}, and 

(3) u7 = {ua I a= 1, 7} = {Not-at-all-probable, Very-little-probable, Little-probable, Moderately-proba­

ble, Very-probable, Almost-certain, Certain}. 
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TheM-Valued Logic and Satisfaction Formulas 

Let M ~ 2 be an integer and let I be the integer interval [ 1, M] ordered by the relation ::;;, and let n be the 

mapping function defined by the following formula: n (a) = M + 1-a. Then, {I, v, A,n} is a De Morgan 

lattice with: av ~ = max (a,~) and a/\ ~=min (a,~). Let LM = {'ta' aE I} be a set of M elements total­

ly ordered by the relation::;;: 'ta::;; 'ta' <=>a::;;~. Thus {~,~}is a chain in which the least element is 't1 and 

the greatest element is 'tM. 

We define then in LM the following operators: 

• 'tV't ='t a ~ max(a,~)' 

't ;\ 'tr. = 't . ( "')' a .., mtn a,.., • 
• 

We interpret LM as a set of linguistic truth degrees dealing with vague predicates. With M = 7, we can 

introduce the previous set L
7

• We call an interpretation structure 1'} of the M-valued predicate language L, 

a pair< D, I>, where Dis the domain of 1'} and I the interpretation function. We denote by Rn the multi­

set associated with the predicate P . We call a valuation of variables, a sequence denoted by 
n 

s = <s0, ... ,si-1' si, si+l' ... >with si ED. The valuations (i/a) is defined by the following: 

( '/)-< > s va - s0, ... , si-1' a, si+l' ... . 

Definition 1: The premise is given by r u <p :::::} \j/, and the conclusion is given by r:::::} <p
1 
A <p

2
/\ ... A<pn. 

The relation "s 'ta -satisfies <\> in-1'}", denoted by 1'} =1'a <\>, is defined as follows: 

s 
(J) 1'} =!,a pn (zil' ... , 2 ik) <=> <sil' ... , sik> EaRn, 

(2) 1'}=1';-' <\> <=:>=1s~ <\>with 'ta = ~ 't(~)' 
( 3) 1'} =!,sa <\> n \jl <=> { 1'} =!, s ~ <\> and 1'} =!, s y '¥ with 't a = 't (~) ;\ 't (y)' 

( 4) 1'} =!,sa <\> u \jl <=> { 1'} =!,s ~ <\> and 1'} =!,sy \jl with 'ta = 't(~) v 't(y)}' 

(5) 1'} =!,sa<\> ::J \jl <=> {1'} =!, s~ <\>and 1'} =!,sy \jl with 'ta = 't(~) ---7 't(y)' 
s s(n/a) 

(6) 1'} =1 a 3 zn \jl <=> 'ta =max {'t(y) 11'} =1Y \jl, a ED}, 
s . s(n/a) 

(7) 1'} =1 a V zn \jl <=> 'ta = mzn {'t(y) 11'} =1Y \jf, a ED}, 

We generalize the definition of conditional statistical probability in a symbolic context, by using a new 

predicate with a "symbolic probabilistic division'" operator, denoted by C, or equivalently a "symbolic 

probabilistic division" operator, denoted by I. Note that, the operator Cis deduced from I by a unique way 

as follows: 
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To define the probability space, we have to choose an appropriate set of possible worlds. Given some 

domain of individuals, we stipulate that the set of worlds is simply the set of all first-order models over 

this domain. That is, a possible world corresponds to a particular way of interpreting the symbols in the 

agent's vocabulary over the domain. We can assume that the "true world" has a finite domain of size N. 

In fact, without loss of generality, we assume that the domain is { 1 .. N}. Having defined the probability 

space, we can construct a probability distribution over this set. We assume that all the possible worlds are 

equally likely (that is, each world has the same probability). This can be viewed as an application of the 

principle of indifference. 

Definition 2: Consider the following space Q, thus: 

(1) Any quantified assertion "Qa Q's are A's" means that an absolute proportion Qa of individuals of Q 

are in A with respect to the uniform probability distribution on Q. 

(2) Any quantified assertion "Q A's are B's" means that among the elements of the basic space Q which 
I! 

belong to A, a relative proportion Q of these elements belong to B, and this with respect to the uniform 
I! 

probability distribution on n. It is defined as follows: 

if {Q:x Q's are A's and Q).. Q's are AnB's}, then "Q
11 

A's are B's" with Q
11

E C (Qa, Q)). 

Axiom 1: AnB -::f:. A, "Qa Q's are A's" and "Qa Q's are (AnB)'s" and QaE [Q
3

, Q
7

] =::::} "Almost all A's 
are B's. 

Axiom 2: "Qa Q's are A's", Qa E [Q2, Q
7

] and "Almost-All A's are B's" =::::} "Qa Q's are (AnB)'s". 

Axiom 3: "Qa Q's are A's" ¢=> "Qn(a) E Q's are A with n(a) = M + 1 -a". 

Axiom 4: "Q Q's are A's", "QA Q's are B's", AuB -::f:. Q and AnB = 0 -::f:. =::::} "Q Q's are (AuB)'s" with 
a p r 

Qr E S (Qa, Qb) where S is a symbolic addition. 

If A and AuB represent the same significant absolute proportion, that means "almost all A's are B's" 

(Axiom 1). Secondly (Axiom 2), knowing that "almost-all A's are B's", then AnB has the absolute pro­

portion of A. Thirdly, A and A have symmetrical absolute proportions (Axiom 3). Finally, the absolute pro­

portion of AuB results from the ones of A, Band AnB (Axiom 4). The "symbolic sum" is denoted by S 

and the "symbolic difference" is denoted by D which can be deduced from S. 

Proposition 1: Let A and B be subsets of Q. If "Qa Q's are A's" and AcB then "Qf3 Q's are B's" with 

Qa:::;; QW If Qa Q's are A's", "Q"- Q's are yAIB),s" with QY E D (Qa, Q"-). 

Definition 3: A syllogism is an inference rule that consists of deducing a new quantified statement from 

quantified statements. 

Let R be the set of available quantified assertions, then we can deduce from R, by using syllogisms, a 

set R* containing R and new quantified assertions. We then adapt the following syllogisms: 
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Relative Duality: IfR contains "Q
11

I A's are B's" then R* contains "Q
112 

A's are B's" with Q
112 

= Qn(Jli) if 

QJli ::f::. Qn(Jli) and Qn(Jl2) E [Qn(Jli) ' Qn(Jli)+l]. 

Mixed Transitivity: If R contains Q
11

I A's are B's" then R* contains "Q
112 

A's are B's" with Q
112 

= Qn(Jli) 

if Q 11I ::f::. Qn(Jli) and 

Intersection (Product Syllogism): If R contains "Q
11

I 1 A's are B's" and "Q
112 

(AnB)'s are C's" then 

R* contains "Q A's are (BnC)'s", with Q = I (Q I' Q 
2
). 

ll ll ll ll 

Intersection (Quotient Syllogism): If "Q A's are B's" "Q A's are C's" and "Q (AnB)'s are C's" 
Jli ' Jl2 Jl3 

then Q (AnC)'s are B's", with Q E C (Q 2, I (Q I' Q 
3
)). 

ll ll ll ll ll 

Contraction: If R contains "Almost-all As are.B s" and "Almost-all (AnB) s are Cs" then R* contains 

"Almost-all As are Cs". 

Cumulativity: If R contains "Almost-all As are B s" and "Almost-all As are C s" then R* contains Q 
ll 

(AnB)'s are C's", with Q E [Most, Almost-all]. 
ll 

Union Left: If R* contains "Almost-all As are Cs" and "Almost-all Bs are Cs" then R* contains "Q 
ll 

(AuB)'s are C's", with Q E [Most, Almost-all]. 
ll 

Subjective Probability 

An intelligent agent will often be uncertain about various properties of its environment, and when act­

ing in that environment it will frequently need to quantify its uncertainty. For example, if the agent wish­

es to employ the expected-utility paradigm of decision theory to guide its actions, he will need to assign 

degrees of belief (i.e., subjective probabilities) to various assertions. Once we describe the language in 

which our knowledge base is expressed, we may need to decide how to assign degrees of belief given a 

knowledge base. Perhaps the most widely used framework for assigning degrees of belief (which are 

essentially subjective probabilities) is the Bayesian paradigm. There, one assumes a space of possibilities 

and a probability distribution over this space (the prior distribution), calculates posterior probabilities by 

conditioning on what is known (in our case, the knowledge base). To use this approach, we must specify 

the space of possibilities and the distribution over it. In Bayesian reasoning, relatively little is said about 

how this should be done. Indeed, the usual philosophy is that these decisions are subjective. More pre­

cisely, knowing that a particular individual "a" belongs to A (or "a is A"), we wish to deduce from "Q A's 
ll 

are B's" and available knowledge, a symbolic certainty degree to which the particular individual a belongs 

to B (or "a is B"). We introduce then a certainty function F which is applied to Boolean formulas. Thus, 

the statement "A( a) is u (or v -probable)" is translated into F(A(a)) = u . 
a a a 
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Definition 4: F(A(a)) = ua is equivalent to say that "A(a) is va-probable" is totally true. The function F 

satisfies the following axiomatics: 

C
1
: A(a) = B(a) ==> F(A(a)) = F(B(a)), 

C
2

: A(a) is true==> F(B(a)) = u
7

, 

C
3

: A(a) is false==> F(B(a)) = ul' 

C
4

: F(A(a)) = ua ==> F(::"l A( a))= u
8
_a, 

C5 : {F(A(a)) = ua, F(B(a)) = uW F(A(a) nB(a)) = u
1

} J F(A(a) f B(a)) = u
1 

with uy = S (ua, u~). 

This certainty concept has to satisfy a number of postulates, each ofthem being justified at a Meta-log­

ical level. First of all (Axioms C
2 

and C
3
), if a statement is true (respectively, false), its certainty degree is 

certain (respectively, impossible). lftwo statements are equivalent, they receive the same certainty degree 

(Axiom CJ The certainty degree of the negation is the symmetrical value in the graduation scale of the 

one of the affirmation (Axiom C _J. Finally, if the intersection of two statements is false, then the certain­

ty associated with their union is the "symbolic sum" (Axiom C
5

) of their uncertainty. 

Direct Inference Principle 

The quantified assertion "cxO/o of individuals of the domain verifY a property" can be interpreted as "the 

probability that a randomly selected domain individual satisfies the property is equal to d'. This inter­

pretation can be seen as a way of justifying the deduction of uncertain conclusions about particular indi­

viduals (i.e., subjective probabilities) from statistical knowledge (i.e., statistical probabilities) via the 

direct inference [2,9]. Indeed, the principle of direct inference is based on the idea that a particular indi­

vidual in the domain is considered as a member randomly selected from a population, if no particular infor­

mation distinguishes it from other members of this population. For example, if all we know about Tweety 

is that it is a bird, then Tweety can be viewed as a randomly selected member of the population of birds 

since we do not have any other information that distinguishes it from other birds. Thus, knowing that 

Tweety is a bird, the (subjective) probability that Tweety flies is equal to the (statistical) probability that a 

bird randomly selected from the set of birds flies, i.e. the proportion of flying birds among the birds. 

We have proposed a symbolic generalization of the direct inference principle allowing us to infer a sym­

bolic subjective probability degree from a symbolic statistical probability degree. 

Definition 5: The available knowledge base can be formally represented in the basic domain by the cou­

ple KB = (X,R) where X is the conjunction of formulae representing the available knowledge about the par­

ticular individuals of the basic domain, and R is the set of quantified assertions. 

(1) By using syllogisms, we can deduce from R a set R* containing Rand new quantified assertions. 

(2) X(a) will be the conjunction of formulas appearing in X mentioning a. 

(3) x(alz) is the formula obtained when textually substituting each occurrence of a in the formula x(a) by 

the free variable z. 
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(4)----, X (alz) and--, B (alz) denote respectively the sets associated with the formulas x(alz) and B(alz). 

( 5) Given a as an individual of the basic domain, a reference class of a given knowledge base KB for a for­

mula B(a) (in which we want to generate a certainty degree) is a subset of the basic domain to which 

belongs the individual a. 

Intuitively, the substitution X(aiz) denotes a form related to the process of"random selection". The con­

stant a is considered as a "random member" by replacing it in x(a) by the free variable z. This leads to sup­

pose that the individual denoted by a is randomly chosen among the individuals sharing all its properties, 

i.e. the individuals satisfying x(alz). Let us now present the basic notions leading to our basic definition of 

symbolic direct inference. Given a knowledge base KB, we suppose that a denotes an individual constant 

of the basic domain. Given a, we search its certainty degree ua-probable resulting from the available 

knowledge base KB = (X,R). It is defined in the following way: 

The Direct Inference Principle 

Let us suppose that a denotes an individual constant of the domain, z a variable, and KB = (X,R) the 

available knowledge base. We say that F(B(a)) = u results from direct inference principle, if the quanti-
a 

tied assertion {Qa X(alz)'s are B(alz)'s} belongs toR*. 

The Reference Class 

The only necessary relationship between objective knowledge about frequencies and proportions on the 

one hand and degrees of belief on the other hand is the simple mathematical fact that they both obey the 

axioms of probability. However, practically, we usually hope for a deeper connection: the latter should be 

based on the former in some "specific" way. Definitely, the random-worlds approach is precisely a theory 

of how this connection can be made. Most of the previous work is based on the idea of finding a suitable 

reference class. In this section, we review some of this work and we discuss the suitable reference class 

that we have selected. 

The Basic Approach 

The first sophisticated attempt at clarifying the connection between objective statistical knowledge and 

degrees of belief, and the basis for most subsequent proposals, is due to Reichenbach [9], using the fol­

lowing idea: 

If we are asked to find the probability holding for an individual future event, we must first incor­

porate the case in a suitable reference class. An individual thing or event may be incorporated in 

many reference classes. We then proceed by considering the narrowest (smallest) reference class 

for which suitable statistics can be compiled. 

Reichenbach's approach was to equate the degree of belief in the individual event with the statistics 

from the chosen reference class. As an example, suppose that we want to determine a probability, or a 

degree ofbelief, that Frank, a particular patient with jaundice, has the disease hepatitis. The particular indi­

vidual Frank is a member of the class of all patients with jaundice. Hence, following Reichenbach, we can 

use the class of all such patients as a reference class, and assign a degree of belief equal to our statistics 

concerning the frequency of hepatitis among this class. If we know that this frequency is 90%, then we 
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would assign a degree of belief of 0:9 to the assertion that Franc has hepatitis. This approach consists of 

(1) the postulate that we use the statistics from a particular reference class to infer a degree of belief 

with the same numerical value, and 

(2) some guidance as to how to choose this reference class from a number of competing reference class­

es. In general, a reference class is simply a set of domain individuals that contains the particular individ­

ual about whom we wish to reason and for which we have "suitable statistics". We may take the set of 

individuals satisfying a formula \jf(x) to be a reference class. The requirement that the particular individ­

ual c we wish to reason about belongs to the class is then represented by the logical assertion \jf( c). 

However, what does the phrase "suitable statistics" mean? Assume for now we take a "suitable statistic" 

to be a closed interval that is nontrivial (i.e., that is not [0; 1]), in which the proportion or frequency lies. 

Competing Reference Classes 

Even if the problem of defining the set of "legitimate" reference classes can be resolved, the reference­

class approach must still address the problem of choosing the "right" class out of the set of legitimate ones. 

The solution to this problem has typically been to posit a collection of rules indicating when one reference 

class should be preferred over another. The basic criterion is the one we already mentioned: choose the 

most specific class. However, even in the cases to which this specificity rule applies, it is not always appro­

priate. Assume, for example, that we know that between 70% and 80% of birds chirp and that between 0% 

and 99% of magpies chirp. If Tweety is a magpie, the specificity rule would tell us to use the more spe­

cific reference class, and conclude that Pr (Chirps(Tweety)) [0; 0:99]. Although the interval [0;0:99] is cer­

tainly not trivial, it is not very meaningful. Had the 0:99 been a 1, the interval would have been trivial, and 

we could have then ignored this class and used the more detailed statistics of [0:7; 0:8] derived from the 

class of birds. The knowledge base above might be appropriate for someone who knows little about mag­

pies, and so feels less confidence in his statistics for magpies than in his statistics for the class of birds as 

a whole. But since [0:7; 0:8] [0; 0:99], we know nothing that indicates that magpies are actually different 

from birds in general with respect to chirping. There is an alternative intuition that says that if the statis­

tics for the less specific reference class (the class of birds) are more precise, and they do not contradict the 

statistics for the more specific class (magpies), then we should use them. That is, we should conclude that 

Pr (Chirps(Tweety)) [0:7; 0:8]. This intuition is captured and generalized in Kyburg's strength rule. 

Unfortunately, neither the specificity rule nor its extension by Kyburg's strength rule are adequate in most 

cases. In typical examples, the agent generally has several incomparable classes relevant to the problem, 

so that neither rule applies. Reference-class systems such as Kyburg's and Pollock's simply give no use­

ful answer in these cases. For example, suppose we know that Fred has high cholesterol and is a heavy 

smoker, and that 15% of people with high cholesterol get heart disease. If this is the only suitable refer­

ence class, then (according to all the systems) Pr (Heart-disease(Fred)) = 0:15. On the other hand, sup­

pose we then acquire the additional information that 9% of heavy smokers develop heart disease (but still 

have no nontrivial statistical information about the class of people with both attributes). In this case, nei­

ther class is the single right reference class, so approaches that rely on finding a single reference class gen­

erate a trivial degree ofbeliefthat Fred will contract heart disease in this case. For example, Kyburg's sys­

tem will generate the interval [0; 1] as the degree of belief. Giving up completely in the face of conflict-
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ing evidence seems to us to be inappropriate. The entire enterprise of generating degrees of belief is geared 

to providing the agent with some guidance for its actions (in the fom1 of degrees of belief) when deduc­

tion is insufficient to provide a definite answer. That is, the aim is to generate plausible inferences. The 

presence of conflicting information does not mean that the agent no longer needs guidance. When we have 

several competing reference classes, none of which dominates the others according to specificity or any 

other rule that has been proposed, then the degree of belief should most reasonably be some combination 

of the corresponding statistical values. In general, we can find three conflict types as follows: 

(1) Conflict between less and more specific classes, 

(2) Conflict between classes associated with less and more precise information, and 

(3) Conflict between incomparable classes. 

To solve the first and the second conflict types, we are going to modify the basic definition of the direct 

inference by a symbolic formalization of the specificity rule of Reichenbach and the strength rule of 

Kyburg. For the third type, we are going to propose a combination function of symbolic degrees associat­

ed with incomparable reference classes. The specificity rule Reichenbach consists of choosing among ref­

erence classes, the smallest (specific) class for which we have meaningful information. We propose a sym­

bolic formalization of the specificity rule allowing us to infer the certainty symbolic degree in B (a) from 

KB, by choosing information associated with the smallest reference class designed by x'(alz). 

Definition 6: Let us suppose that: KB = (X,R). The specificity rule allows us to infer "C(B(a)) = ua" if the 

three following conditions are satisfied: 

(1) We have {Q[l,M] x(alz)'s are B(alz)'s} (i.e. from Ql to QM: total ignorance), 

(2) 3 X'(aiz) such that R* contains {Q
7

; X(alz)'s are x'(aiz)} and {Qa x'(alz)'s are B(alz)'s}, 

(3)--, 3 X"(aiz) such that R* contains {Q
7

; x"(alz)'s are X'(alz)} and {Q~x"(alz)'s are B(alz)'s}. 

Intuitively, the three conditions above express respectively the following: 

(I) We don't have any meaningful information for the smallest reference class x(alz). Otherwise, the 

corresponding definition will be used. 

(2) The existence of a reference class x'(alz) for which we possess a meaningful information. 

(3) There is no smaller reference class X"(aiz) that x'(aiz) for which we possess a meaningful informa­

tion. 

Definition 7: Let KB = (X,R). The strength rule allows us to derive F(B(a)) = ua with ua L [uc,ud], if the 

following conditions are satisfied: 

(1) R* contains {Qui x(alz)'s are B(alz)'s with Qui E [Qa,Qb]}, 

(2) P' contains {Qa2 x'(alz)'s are B(alz)'s with Qa2 E [Qc,Qct]}, and [Qc,Qct] c[Qc,Qct]}. 

We define a combination function denoted by T which is an application of U
2 
M into U M possessing the 

following properties: 
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P1: 'v'a,B E [2 .. M], T(ua,u~) = T(u~,ua), 

P2: '\?'a, A E [2 .. M], T(u ,u,J E [u . c "-)'u c "-)], P ex ,_, mtn a,.., max a,,_, 

P3: '\?'a E [2 .. M], T(ua,u1) = ul' where u
1 

is an absorbent element for any a E [2 .. M], 

P4: '\?'a E [l..M-1], T(ua,uM) = uM, where uM is an absorbent element for any a E [l..M-1], 

P5: '\?'a E [2 .. M-1], T(ua,'Un(a)) = U4, 

P 6: '\?'a,B,y E [l..M], T(T((ua,u~),u) = T(ua,T(u~,u)), 

P7: '\?'a,B,y E [2 .. M-1], T((ua,u~) = uy) ~ T(ua,u~+l) L [uy,uy+J 

We can choose the function T as follows: 'v'a,B E [2 .. M-1]: 

T(ua,u~) = u[a+~)121 if a+B:::; M 

T(ua,u~) = 'Ua+~)/2 if a+B > M 

The table of the function Tis given as follows: 

T '\)I '\)2 '\)3 '\)4 '\)5 '\)6 

'\)I '\)I '\)I '\)I '\)I '\)I '\)I 

'\)2 '\)I '\)2 '\)2 '\)3 '\)3 '\)4 

'\)3 '\)I '\)2 '\)3 '\)3 '\)4 '\)5 

'\)4 '\)I '\)3 '\)3 '\)4 '\)5 '\)5 

'\)5 '\)I '\)3 '\)4 '\)5 '\)5 '\)6 

'\)6 '\)I '\)4 '\)5 '\)5 '\)6 '\)6 

'\)7 '\)7 '\)7 '\)7 '\)7 '\)7 

Definition 8: Given KB = (X,R) for which we have the following: 

(1) X( a) ... A/a)n ... nAJa), with n ~ 2, 

'\)7 

'\)7 

'\)7 

'\)7 

'\)7 

'\)7 

'\)7 

(2) R* contains Qa1 A1 (alz)'s where-, ::3 ai E [l..n],--, ::3 aj E [l..n], such that ai = 1 and aM= M. 

(3) The classes referred by Ai (alz) are incomparable. 

The certainty degree ua results from a combination (using the function T) of the certainty degree uai 

associated with these classes, i.e. T(ual' T(ua2, ... )) = ua 

Bacchus [2] was interested mainly in representing the quantifier "most" e.g., denoting the majority. In 

our approach, this quantifier can be represented either by the quantifiers "most", "almost-all", or "all" 

which correspond to "at least most" and we get similar results like as Bacchus. For instance, "Most native 

speakers of German are not born in America", "All native speakers of Pennsylvanian Dutch are native 

speakers ofGerman", "Most native speakers of Pennsylvanian Dutch are born in Pennsylvania", "All peo­

ple. who are born in Pennsylvania are born in America" and "Hermann is a native speaker of 

Pennsylvanian Dutch". In [2], Bacchus deduced that the probability that "Hermann is born in America is 

> 0.5'', that is to say "it is probable that Hermann is American". In our framework, we have a similar state­

ment which is "it is very probable that Hermann is born in America". Thus, the results found in our frame­

work are in accordance with those found in Bacchus' direct inference. 
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Conclusion 

In this paper we have proposed a symbolic logical approach using the M-valued logic with syllogistic 

reasoning and direct inference principle, to manipulate some statistical and qualitative knowledge. This 

approach allows to reason qualitatively on quantified assertions, since we provide inference rules based 

upon statements involving linguistic quantifiers. Thus our approach is consistent with the common sense 

reasoning and similar to Bacchus approaches [2,3]. It can be used in different areas of sciences like 

Artificial Intelligence and Linguistics for an explicit treatment of uncertainty and fuzzy environment. 
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