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ABSTRACT 
A new non-quadratic model is proposed for solving unconstrained optimisation problems which modifies and develops the 

classical conjugate gradient methods. The technique has the same properties as the classical conjugate gradient method that can be 

applied to a quadratic function. An algorithm is derived and evaluated numerically for some standard test functions. The results 

indicate that in general the new algorithm is an improvement on the previous methods . 
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A Rational Logarithmic Model for Unconstrained Non-Linear Optimization 

INTRODUCTION 

A more general model than the quadratic one is 

proposed in this paper as a basis for a conjugate algorithm. 

If q(x) is a quadratic function, then a function f is defined 

as a nonlinear scaling of q(x) if the following condition 

holds: 

f= F (q(x)), dF I dq = F '> 0 and q(x) > 0 (l) 

where x* is the minimizer of q(x) with respect to x, 

Spedicato [I]. 

The following properties are immediately derived from 

the above condition: 

i) every contour line of q(x) is a contour line off, 

ii) if x* is a minimizer of q(x), then it is a minimizer off, 

iii) that x* is a global minimum of q(x) does not necessarily 

mean that it is a global minimum of f. 

Various authors have published related work in this area 

(see AI Assady, et. al., [2], AI Assady and AI Bayati, [3], AI 

Bayati, [4] and Hu et. at., [5]). 

A conjugate gradient method which minimizers the 

function f (x) = (q(x))P, p > 0 and x e Rn in at most n step 

had been described by Fried [6] and the special case, 

F (q(x)) = e I' q(x) + l/2 e 2 q2(x). 

where e 1 and e 2 are scalars, has been investigated by 

Boland et. ai [7], [8]. 

Tasspoulos and Storey [9] and [lO] have proposed a 

specific model, vis, a rational model that is denoted by TIS. 

It is as follows: 

F (q(x)) = (e 1 q(x) +l) I e 2 q(x), e 2 < 0. 

where e 1 and e 2 are scalars and q(x) = l/2 xTGx+bTx +c 

is a quadratic function. 

In this paper a new logarithmic model is investigated 

and tested on a set of standard test functions, on the 

assumption that condition (1) holds. An extended conjugate 

gradient algorithm is developed which is based on this new 

model which scales q(x) by the natural Jog function for the 

rational q(x) functions. 

F (q(x)) =log [e 1 q(x) I (e 2 q(x)+l)], e 2 < 0. (2) 

We first observe that q(x) and F(q(x)) given by (2) have 

identical contours, though with different function values, 

and they have the same unique minimum point denoted by 

x*. 

For any f satisfying the condition (1) it is shown in [7], 

[8] that the updating process given below generates 

identical conjugate directions and the same sequence of 

approximations xi to the minimiser x*, as does the original 

method of Fletcher-Reeves [11) (FIR) when applied to 

f (x) = q(x). 

In order to modify the property (iii) in the following 

way: 

"that x* is a global minimizer of q(x) implies that it is a 

global minimiser of f', we have suggested a new 

logarithmic model defined in equation (2) based on the 

Renpu Ge's Theorem, [12] which is illustrated below: 

Suppose F(x) has the form 

F(x) = f 1(x 1) I g2(x2) 

where xT = (x 1T, x2T) and 

f 1(x1) > 0 and g2 (x2) > 0 

it follows from equations (3) and (4) that: 

(3) 

(4) 

log F(x) =log f 1(x1) I -log g2 (x2) (5) 

is a separable function. Thus according to the following 

theorem which states: 

Theorem ( l): x*T = (x7T, x;T, ... ,x:T) is a global minimizer 

of a separable function F(x) if and only if every x; , 

(i = I ,2, ... ,n) is a global minimizer of /i(xi). 

Proof: See, [12]. 

We can conclude that x* is a global minimizer of log F 

(x) if and only if xf and x; are respectively global 

minimizers of log f 1(x1) and -log g2(x2). Furthermore, the 

monotonicity of log t implies that x* is a global minimizer 

of F(x) if and only if xr and X~ are respectively global 

minimizers of f 1(x1) and g2(x2). 

The Algorithm: 

Given X
0 

e Rn an initial estimate of the minimizer x* 

Step (I): Set d
0 

= -g
0

• 

Step (2): For i = l, 2 ... 

compute xi= X;_ 1 + A.i-J d i-l 

where A;. 1 is the optimal step size obtained by the line 

search procedure. 

Step (3): Calculate exp (f)= 1 + f + f 
2 

+ f 
3 

+ ... 
2! 3! 

and define n = n =A.. 1 gT 1 d 1 /2 1- 1~ 1-
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w = exp (f;)- exp Cf;.1) 

c = w - n exp (f;.J) 

Step (4): If lwl s 0.1 E-5 or leis 0.1 E-5, then set p1 = 1.0 

and go to step (6). 

Else go to step (5). 

Step (5): Compute 

P; = [exp(f) I exp(f;.1)] [n exp(f;_1) I w]2 

where the derivation of scaling P; will be presented below. 

Step (6): Calculate the new direction 

d, = -gi + 13; dj.J 

where 13; is defined by different formulae according to 

variation and it is expressed as follows: 

13; = P;(ll g, W 111 gi+I W> (modified Fletcher and Reeves 

[11]) 

13; = g; (P; g; -g1_1) I dT- 1 (g1 -gi_ 1)) (modified Hestenes and 

Stiefle [13]) 

13; = (g; (P; g; -g;_1) I gL gi_ 1) (modified Polak and Ribiera 

[14]) 

Conjugate gradient methods are usually implemented by 

restarts in order to avoid an accumulation of errors affecting 

the search directions. It is therefore generally agreed that 

restarting is very helpful in practice, so we have used the 

following restarting criterion in our practical investigations. 

If the new direction satisfies: 

(6) 

then a restart is also initiated. This new direction is 

sufficiently downhill. 

The Derivation of 1t for the New Model: 

The implementation of the extended conjugate gradient 

method has been performed for general functions F(q(x)) of 

the form of equations (2). The unknown quantities P; were 

expressed in terms of available quantities of the algorithm 

(i.e function and gradient values of the objective function). 

It is first assumed that neither e 2, nor e 2 is zero in 

equation (2). Solving equation (2) for q (x), then: 

q = - exp (f) I e 2, [ exp (f) - e 11 e 2] (7) 

and using the expression for P; (henceforth P; NEW) 
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P; NEW = f 'i+l If '; 

= [exp (f)/ exp (f;.1)] [(exp (f;_1)- e 1 / e 2) I exp (f 1)-

2 
E 11 E 2) (8) 

the quantity which has to be determined explicitly is e 11 e 2 

During every iteration e 1 / e 2 must be evaluated as a 

function of known available quantities 

From the relation: 

g1 = f; G (x1 - x*) 

gi-l = f 'i-1 G (xi-1 - x*) 

(9) 

(10) 

where G is the Hessian matrix and x* is the minimum point, 

we have: 

P; NEW= f ';. 1 If '1 

= ( gT- 1 I g T) (x;_1 x*) X;. 1 - x*)) (11) 

Furthermore, 

and 

gT1_1 (x;_1 - x*) = gT1_1 + (x;. 1 + A;_1 d 1_1 - x*) 

= gT,_, (X;.t - x*) + "-i-1 gTi-1 d i-1 

gT1 (x;.J - x*) = gT; (x;-"-;. 1 d;_ 1 -x*) 

= gTi (X; - x*) 

Since gT1 d;. 1 = 0 

Therefore we can express P; NEW as follows: 

P; NEW= (gT1_1(x1_1-x*)+A;_ 1gT;_ 1d;_ 1) I (gT1(X;·x*)) (12) 

From (9) and ( 10), we get: 

P; NEW= (f1_1 (x1_1-x*)TG (x;.1-x*)+A.;_ 1gT;.A. 1) I 

<f; (x1_1 - x*) TG (X;- x*)) 

Therefore, 

P; NEW== (2_f1 g;_ 1 + A.1_1 gT;. 1 d 1_1) l2f{q; 

= P; NEW(q;jq;)+A.;_1 gT;_1d;_ 1 /2f;' Q; (13) 

The quantities (q;.1 /q) and fi q; can be rewritten as: 

(q,_ 1 lq,) = (li.Vp, NEW) [ -/exp Cf;_ 1) I exp (f)] (14) 

f; Q; = 11 qi (e 2q, +1)] (q1) 

=1/ (e 2q; +l) 

-e 2 (exp(f;)-e/e 2) le 1 

Substituting (14) and (15) in (13), gives: 

P; NEW=.Vp, NEW) [ .Vexp f 1. 1) I exp (f;)]-

(15) 

(\_1 gT;_ 1 d ;.1 12) (e 1 I e 2) I ( exp(f;) e 1 / e 2] (16) 
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Using the transformation: - A;. 1 gT;.1 d ;.1 = 2n 

From (8) and ( 16), it follows that: 

[exp(f;) I exp (/;.1)] [(exp (/;.1)- e 11 e 2) I (exp (f;)-
2 e 11e 2] = 

[exp(/;.1)e 11 e 2) I (exp (/;)- e 11 e 2))- n (e 11 e 2) I [exp (/;) 

- E 11 E 2J (17) 
2 [exp (f;.1)- e 1 I e 2] = 

[exp (/;.1)1 exp (f)] [exp (/;.1)- e 11 e 2}[exp (f) - e 11 e 2]-

n (e 1 I e 2) (exp (/;.1) I [ exp (/;)] (exp (f)- e 11 e 2] (18) 

By solving the equation (18), we have: 

ell e2 = exp (f;.,)-

n[exp(f;)- exp(/;.1)} exp(/;.1) I (exp(/;)· exp(f;.1) 

n exp(/;.1)) 

Using the following transformations; exp (/;)- exp (/;. 1) =w 

The above equation can be rewritten as: 

e 1 / e 2 exp (/;.1)- [ n w exp (/;.1)) I [w- n exp (/;.1) (19) 

and substituting equation (19) in equation (8), we get: 

P; NEW= [ exp (/;)I exp (/;.1) [ n exp (h1)1 wf 

Defining P; and assuming that f; 'is positive for the new 

model, P; must be postive 

P; =I [exp (/;)I exp (f;. 1)J [n exp (/;.1) I w]
2 1 

The Numerical Experiments: 

In order to test the effectiveness of the new algorithm 

(henceforth NEW) that have been used to extend the 

conjugate gradient methods, a number of functions has been 

chosen and solved numerically by utilizing the new and 

established methods. 

The same line search was employed for all the methods. 

This was the Cubic interpolation procedure described in 

[14}. 

After the results of the NEW method being obtained, 

they were compared with the previous published results 

achieved by some scholars specialized in this field such as 

TIS and TTR (see [15]), methods. 

It is found that the NEW method which modifies 

CO-algorithms is better than the previous published method 

such as the TIS and TTR methods as shown in Tables (1) 

and (2) below. 

As shown from the following series that has been chosen 

for the test: 
exp /= l+f+f 2/2i +l13i + ... (20) 

the more terms are used the better the results will be. 

Consequently, we selected the program which uses three 

and six terms out of the series (20) for the computations. 
Table {l), which uses the FIR formula, gives a 

comparison between the results of the NEW method, that 

utilizes three terms out of the series (20), and the results of 

'the previous published TIS method. This table shows that 

the NEW method has less Fes (i.e number of function 

evaluations (NOF) plus n times the number of gradient 

evaluations) than the T/S method. Thus, we can see from 

this computation in this table that the NEW method is better 

than the T/S method for FIR formula. 
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Table-t The comparison between the different 
ECG-methods by using the FIR formula. 

Test-Functions N dimension NEW (3-terms) Fes TIS Fes 

Cubic 2 144 162 

Rosen 2 219 201 

Wood 4 305 530 

Wood 20 2247 2331 

Wood 200 28140 70149 

Wood 400 56140 184460 

Powell 4 600 595 

Powell 80 19359 23895 

Powell 200 93063 113597 

Miele 4 890 2340 

Miele 20 2457 5649 

Miele 80 19521 33120 

Total Fes 223085 437028 

It is observed that from this table above that the NEW 

method has less Fes than the TIS method. So the NEW is 

better than the T/S method for FIR formula. Moreover, in 

this table (l) above, we have considered Fes as a criterion 

for the comparison between the algorithms as the published 

results in Tassopoulous and Storey [9}. 

Table (2), which uses the PIR formula, presents a 

comparison between the results of the previous published 

TTR method and the NEW method, that utilizes three terms 

out of the series (20). This table shows that the NEW 

method has less (NOI) and (NOF) than the TTR method. So 

the NEW method is also better than the T/S method for PIR 

formula. 
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Table -2 The comparison between the different 
ECG-methods by using the PIR formula. 

Test- N NEW (3-tenns) TIS Fes 
Functions dimension NOI (NOF) NOI(NOF) 

Cubic 2 17(48) 18 (58) 

Nrosen 20 24(59) 36(107) 

OSP 50 24(79) 30(113) 

Dixon 10 22(46) 58(125) 

Rosen 2 31(73) 15(43) 

Rosen 100 26(62) 34(106) 

Miele 4 74(225) 26(76) 

Miele 20 25(63) 39(108) 

Powell 4 77(183) 66(198) 

Wood 4 23(49) 38(93) 

Wood 200 32(66) 35(82) 

Total NOI (NOF) 375(953) 395(1109) 

Furthennore, to show that when we increase the number 

of tenns of the series (20) in the NEW method the best the 

results will be, we have used the NEW method, that utilises 

six tenns out of the series (20) instead of the three tenns. 

Also we have used the HIS fonnula since this fonnula is the 

best fonnula among the others. 

This procedure is calculated as follows: 

Suppose that, 

the total results of the previous algorithm =A 

and the total results of the new algorithm = B 

Then the procedure is ((A-B) /Ax 100) 

Table (3), which uses the HIS formula, presents a 

comparison between the results of the NEW method, that 

utilizes six tenns out of the series (20) and the classical 

CG-method. So we can show that the NEW method 

(6-terms) has less (NOI) 
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Table-3 The comparison between the different 
ECG-methods by using the HIS formula. 

Test- N NEW (6-terms) Classical CG 
Functions dimension NOI(NOF) NOI (NOF) 

Cubic 2 17 (48) 17 (48) 

Nrosen 20 24(61) 24(61) 

OSP 50 29(71) 24(79) 

Dixon 10 21(44) 22(46) 

Wood 4 36(75) 28(61) 

Wood 20 34(70) 52(107) 

Wood 100 76(154) 69(140) 

Wood 200 48(98) 69(140) 

Wood 400 34(270) 69(140 

Powell 4 51(109) 69(140) 

Powell 40 54(120) 50(114)) 

Powell 80 95(194) 72(158) 

Powell 200 215(444) 112(239) 

Rosen 2 31 (73) 229(463) 

Rosen 80 19 (46) 31(73) 

Rosen 100 20(49) 23(56) 

Miele 4 57(178) 57(178) 

Miele 20 42(105) 46(114) 

Miele 80 101(233) 102(241) 

Funl 10 12(31) 11(31) 

Fun2 10 3(9) 3(9) 

Fun3 10 2(14) 2(14) 

Fun3 30 2(15) 2(15) 

Total NOl(NOF 1123(2511) 1137(2583) 
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APPENDIX 

1- Cubic Function: 

3 2 2 T F(x) = l00(x2 - x1) +(I - x1) , x0 = ( -1.2, l.O) . 

3- Non-Diagonal Variant ofRosenbrock Function: 

F(x) =~2 [ 100 (x;- xD
2 

+ (1- xY] ; n > 1, 

Xo = (-1.0; ... )T 

4- OSP Oren and Spedicato Powell Function: 

F(x)= [ 1: ix~]
2

, x0 =(l.O; .. / 
1=1 

5- Wood Function: 

T x0 = (-3.0; -1.0; -3.0; 1.0; ... ) 

6- Generalised Powell Quartics Functions: 

F(x) = 'f [(x4i-3 + 10x4i-2 )
2
+5(x4i-t X4; )

2 
] 

1=1 4 4 
+ (x4i-2 -2 x4i-l) + 10(x4i-r X4;) , 

x0 = (3.0; -1.0; 0.0; 1.0) T 

7- Rosenbrock Function: 

n/2 [ 2 2 2) F(x) =~ 100 (x2i- Xzi-1) + (1- x2i-l) ' 
1-1 

x0 =(-1.2; 1.0; ... )T 

8- Miele Function: 

F(x) = ~1 [ exp (x4i-3)- x4i-2) f + 100 (x4i-2- x4i-t )
6 

[ ]
4 8 2 

+ tan(x4i-1 X4;) +x4i-3 +(x4;-1), 

Xo = (1.0; 2.0; 2.0; 2.0; ... )T 
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9. Fun1. Function: 

30 
F (x) = ~ f (x)i' 

I= I 

30 
f(x) = 420 x- + (i-tsl +I: .. (x

2
J+i /j )0 12l 

1 1 J= 1, J"l 

[sin5 log (x~ +i/j)012
l + cos5 log (x~ +i/j)(t/2)] 

30 
x = -2.8742711 I: e. f (0) 

j:j 1 I 

10. Fun2. Function: 
30 30 . ]2 

F(x) = ~ (y; ~ Car sm X; +b;J· cos x;)-
1=1 j=l J 

30 
y;- I: (a .. sin ~-+b .. cos 0 

j=l IJ j IJ j 

aii' bij random coefficients uniformly distributed within 

the interval (- 100, +100) 

random coefficients uniformly distributed within 

the interval e-n, +n) 

11. Fun3 Function: 
30 2 

F(x) + 1- exp (-1160 I: X;) 
I= I 

30 . 
x = ~ (-1)' (l+i/30) e; 

•=I 
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