Show simple item record

AuthorPan, Xiaoying
AuthorGencturk, Bora
AuthorAlnaggar, Mohammed
AuthorSohail, Muazzam Ghous
AuthorKahraman, Ramazan
AuthorAl Nuaimi, Nasser
AuthorRodrigues, Debora F.
AuthorYildirim, Yucel
Available date2023-02-15T10:16:35Z
Publication Date2023
Publication NameCement and Concrete Composites
ResourceScopus
URIhttp://dx.doi.org/10.1016/j.cemconcomp.2022.104858
URIhttp://hdl.handle.net/10576/40096
AbstractThe existing self-healing concretes that rely on capsules require modifications to one or more traditional concrete mixing, placing, and consolidating methods. Additionally, concrete mixture designs need alterations to accommodate these self-healing capsules. This paper presents the development and characterization of a novel encapsulation method for self-healing concrete. This method, using engineered aggregates (EA), features macro-capsules with a cementitious coating, a brittle container, and a healing agent. Like coarse aggregates, the EA are randomly dispersed in the concrete, and they are added just like any other admixture during the mixing process. Lattice discrete particle models (LDPM) were developed employing randomly packed coarse aggregates and EA with different volume fractions, shapes, sizes, coating thicknesses, and different coating mortars. The models were calibrated using experimental results of split tensile, four-point bending, and uniaxial compression tests. The formation and propagation of cracks in the concrete matrix and EA were observed in the LDPM models. A detailed presentation of the stresses inside the EA and the concrete matrix was obtained. Stress concentration in the EA was affected by the strength of the coating mortar and the shape of EA. Parametric studies were conducted to understand the effect of volume fraction of EA, EA coating thickness, and strength on the overall mechanical behavior of concrete. The results suggest that using coating mortar with higher strength can increase the load-carrying capacity of the concrete, especially when the coating is thicker, but reduce the crack opening in the EA when the crack occurs. The concrete's strength increases with the cavity's size inside the EA at the same EA dosage. These simulations inform the EA design and develop an understanding of the effect of EA on the load-carrying capacity of concrete.
SponsorThis research has been partially funded by the United States National Science Foundation under the award no. 1642488 and by the National Priorities Research Program of the Qatar National Research Fund (a member of the Qatar Foundation ) under the award no. NPRP 11s-1211-170085 . The findings and views presented herein are those of the authors and do not necessarily reflect the views of the sponsors.
Languageen
PublisherElsevier
SubjectConcrete
Engineered aggregates
Fracture
LDPM
Self-healing
TitleNumerical simulation of the fracture and compression response of self-healing concrete containing engineered aggregates
TypeArticle
Volume Number136


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record