Show simple item record

AuthorEliebid M.
AuthorMahmoud M.
AuthorShawabkeh R.
AuthorElkatatny S.
AuthorHussein I.A.
Available date2020-03-18T08:11:11Z
Publication Date2018
Publication NameJournal of Natural Gas Science and Engineering
ResourceScopus
ISSN18755100
URIhttp://dx.doi.org/10.1016/j.jngse.2017.04.019
URIhttp://hdl.handle.net/10576/13397
AbstractIn this study, CO2 injection for the purpose of Enhanced Gas Recovery (EGR) and sequestration after primary recovery is investigated on Pink Desert limestone from Edwards Plateau formation in central-west Texas. In this paper, competitive adsorption of CH4 and CO2 is studied in the temperature range 50 ?C?150 ?C using a mixture of CO2 and CH4. Methane adsorption on the surface of the carbonate rock reduced from 50 mg/g at 50 ?C to 12.4 mg/g at 150 ?C due to exothermic nature of physical adsorption of methane on calcite. Addition of 10% CO2 to methane has enhanced the adsorption from 12.4 mg/g for pure methane to 18.3 mg/g for the 10% CO2 gas mixture at 150 ?C. Adding CO2 to methane will compete with CH4 on the adsorption sites and due to CO2 high adsorption affinity the total uptake of the system is increased depending on CO2 partial pressure. The adsorption experiments have shown that the adsorption of CO2 on Pink Desert limestone is four times higher than that of CH4 at the same pressure and temperature due to the high affinity of CO2 to the calcite rocks derived from strong electrostatic attraction between CO2 molecules and calcite. The thermodynamic analysis confirmed the high natural selectivity of carbonate toward CO2 with lower heat of adsorption for CO2 and the adsorption is spontaneous at low temperatures. The adsorption-desorption experiments showed that CO2 content of injected gas has a strong influence on natural gas desorption from the rocks. The CO2 content and rock mineralogy influence the desorption isotherm model. The potential of using CO2 in EGR and sequestration applications especially in low temperature reservoirs is discussed. A model that explains the contribution of the desorption of natural gas to the total gas production is proposed. ? 2017 Elsevier B.V.
SponsorThe authors would like to acknowledge the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project No. 11-ADV2131-04 as part of the National Science, Technology and Innovation Plan. In addition, KFUPM is also acknowledged.
Languageen
PublisherElsevier B.V.
SubjectCarbon dioxide injection
Carbonate reservoirs
CO2 sequestration
Enhanced gas recovery
Methane removal
TitleEffect of CO2 adsorption on enhanced natural gas recovery and sequestration in carbonate reservoirs
TypeArticle
Pagination575 - 584
Volume Number55


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record