• English
    • العربية
  • العربية 
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
Advanced Search
Advanced Search
View Item 
  •   Qatar University QSpace
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University QSpace
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comprehensive in silico screening and molecular dynamics studies of missense mutations in Sjogren-Larsson syndrome associated with the ALDH3A2 gene.

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020-02-01
    Author
    Udhaya Kumar, S
    Thirumal Kumar, D
    Mandal, Pinky D
    Sankar, Srivarshini
    Haldar, Rishin
    Kamaraj, Balu
    Walter, Charles Emmanuel Jebaraj
    Siva, R
    George Priya Doss, C
    Zayed, Hatem
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Sjögren-Larsson syndrome (SLS) is an autoimmune disorder inherited in an autosomal recessive pattern. To date, 80 missense mutations have been identified in association with the Aldehyde Dehydrogenase 3 Family Member A2 (ALDH3A2) gene causing SLS. Disruption of the function of ALDH3A2 leads to excessive accumulation of fat in the cells, which interferes with the normal function of protective membranes or materials that are necessary for the body to function normally. We retrieved 54 missense mutations in the ALDH3A2 from the OMIM, UniProt, dbSNP, and HGMD databases that are known to cause SLS. These mutations were examined with various in silico stability tools, which predicted that the mutations p.S308N and p.R423H that are located at the protein-protein interaction domains are the most destabilizing. Furthermore, to determine the atomistic-level differences within the protein-protein interactions owing to mutations, we performed macromolecular simulation (MMS) using GROMACS to validate the motion patterns and dynamic behavior of the biological system. We found that both mutations (p.S380N and p.R423H) had significant effects on the protein-protein interaction and disrupted the dimeric interactions. The computational pipeline provided in this study helps to elucidate the potential structural and functional differences between the ALDH3A2 native and mutant homodimeric proteins, and will pave the way for drug discovery against specific targets in the SLS patients.
    DOI/handle
    http://dx.doi.org/10.1016/bs.apcsb.2019.11.004
    http://hdl.handle.net/10576/13474
    Collections
    • Biomedical Sciences [‎268 ‎ items ]

    entitlement


    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of QSpace
      Communities & Collections Publication Date Author Title Subject Type Language
    This Collection
      Publication Date Author Title Subject Type Language

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video